大跨度斜拉桥抖振响应的气动导纳函数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代跨江跨海桥梁向着大跨度柔性方向发展,随着桥梁跨径的长大化,桥梁的抗风设计已经成为主要控制因素之一。目前普遍采用的由Scanlan和Davenport于20世纪60年代建立起来的桥梁风振理论框架是否需要补充和改进,以适应超大跨度桥梁的抗风设计是一个令人关注的课题。如何做到大跨度桥梁抗风精细化分析,气动导纳函数是桥梁抖振精细化研究的一个重要参数。本文开展了以下研究
     (1)利用Scanlan二维流场中的升力和力矩的拟定常力模型,采用变尺度法对残差目标函数求无约束最优化,建立了MITD时域优化的颤振导数理论识别方法,通过对平板模型的数值仿真和解析解对比,验证了识别方法的有效性和适应程度。在风洞试验识别出了湍流风场中模型一(闭口扁平流线型钢箱梁模型)的颤振导数,再利用颤振导数和气动导纳的关系,进行气动导纳函数识别。
     (2)通过讨论脉动风引起的非定常空气抖振力模型下的气动导纳函数识别理论和方法,建立了引入抖振力谱的气动导纳识别方法。通过对比风洞试验测得的类平板模型的气动导纳和Sears导纳函数,发现二者较接近,说明了该识别方法是可行的。
     (3)针对三种典型桥梁截面模型一(闭口扁平流线型箱梁)、模型二(开口扁平流线型箱梁)和模型三(钝体主梁)的气动导纳风洞识别试验,试验内容包括:1)脉动风场模拟和测量技术,在风洞中建立了湍流强度均匀的格栅湍流场;2)介绍了高频动态天平测力的原理,建立了高频动态天平的动力学模型,并对5分量高频动态天平的精密度和准确度进行了校检。分析试验结果发现,1)箱梁底板开闭口、有无栏杆等模型气动外形变化和小幅度攻角变化对气动导纳函数的影响不明显;2)引入抖振力谱方法识别出来4种模型6个气动导纳函数均与Sears导纳函数具有很好的一致性,在测试段的低频段均比Sears函数略小一些,但在测试段的高频段几乎重合;3)栏杆、箱梁底板开槽和由类平板渐变到钝体等模型的气动外形变化对气动导纳值的影响在低频段模型外形越钝,气动导纳值越大,但不超过1 ,而在高频段对χLu2、χDu2和χMu2的影响不明显。
     (4)应用引入气动导纳函数的多模态耦合斜拉桥抖振响应计算方法,对主跨720m的厦门-漳州跨海大桥北汊斜拉桥进行了抖振频域分析,计算出了多种气动导纳函数下的抖振响应。并通过与全桥气弹模模型抖振试验响应结果进行比较,验证气动导纳识别结果应用于实际桥梁工程的适用性及可靠性。
     (5)通过计算厦门-漳州跨海大桥北汊桥720m主跨大跨度斜拉桥的抖振响应,得出气动导纳取1和Sears函数计算大跨度斜拉桥的抖振,都高估了它的抖振响应。采用试验拟合的气动导纳计算的抖振响应结果与全桥气弹模型试验抖振响应结果相近,得出本文试验拟合的气动导纳结果具有一定的可靠性。
The developmental trend of modern bridges is towards larger span and higher flexibility, which makes the wind-resistant design one of the key factors in bridge design. A topic of great concern is whether supplementation and improvement should be made to the currently widely adopted theoretical frame for bridge wind vibration established by Scanlan and Davenport in 1960s to suit the wind-resistant design of super-span bridges. To conduct refined analysis on the wind resistance of large-span bridges, aerodynamic admittance function is an important parameter in the refined study of bridge buffeting. This paper presents the following studies:
     (1) Unconstrained optimization of the residual objective function was made with variable metric method using the quasi steady force model of the lift force and moment in Scanlan two-dimensional flow field; following that, a theoretical MITD-optimized identification method of flutter derivative was established.Then its effectiveness and adaptation degree were verified through numerical simulation of the plane model and analytic solution comparison. The flutter derivative of model one (closed streamlined flat steel box girder model) was identified in the wind tunnel test and then aerodynamic admittance function identification was conducted using the relation between flutter derivatives and aerodynamic admittance.
     (2)Through discussion on the identification theory and method for aerodynamic admittance function with fluctuating wind-induced unsteady air buffeting force model, an identification method for aerodynamic admittance of buffeting force spectrum was established Comparison between the aerodynamic admittance of the quasi flat plate model measured in the wind tunnel test and the Sears admittance function indicated the closeness between them, which showed that the identification method in question was feasible.
     (3) Experiments on the identification of aerodynamic admittance in the wind tunnel were carried out relating to three typical bridge section models: model one (closed streamlined flat box girder), model two (open streamlined flat box girder) and model three (bluff main girder). Experiment contents included: 1) simulation and measurement technique of fluctuating wind field and the establishment of a grid turbulent flow field with uniform turbulence in the wind tunnel; 2) introduction of the force-measuring principle of high-frequency-force-balance, establishment of the mechanic model of high-frequency-force-balance and then verification on the precision and accuracy of 5-component high-frequency-force-balance. Analysis of the experimental results showed that: 1) no obvious effect on the aerodynamic admittance function was caused by the variation in model's aerodynamic configurations such as with open or closed bottom place, with or without railings and so on and slight variation in attack angles; 2) all 6 aerodynamic admittance functions of 4 models identified with buffeting force spectrum method were considerably identical to Sears admittance function; all being smaller than Sears function in the low-frequency section of the testing section, but almost coincident in the high-frequency section; 3) the effect of such variations in the model's aerodynamic configuration as with or without railings, with open or closed bottom plate and gradual changing from quasi flat plate to bluff body on the value of aerodynamic admittance had a characteristic that the bluffer the model configuration was the bigger the value of aerodynamic admittance would be, but not exceeding 1; and in high-frequency section there was no obvious effect onχLu2、2χDu andχMu2.
     (4) Buffeting frequency domain analysis was conducted on the Beicha Cable-stayed Bridge with 720m main span of Xiamen-Zhangzhou Cross-sea bridge applying multi-mode coupling buffeting response calculation method for cable-stayed bridges with aerodynamic admittance functions and the buffeting responses under various aerodynamic admittance functions were obtained. Then, the adaptation and reliability of applying the identification results in actual bridge engineering were verified by comparing the results with those of the full-bridge aeroelastic model buffeting experiments.
     (5) By calculating the buffeting response of the Beicha Cable-stayed bridge with the 720m main span of Xiamen-Zhangzhou Cross-sea bridge, the buffeting responses were obtained respectively when the value of the aerodynamic admittance was 1 and when Sears function was adopted. This showed that the buffeting response of this bridge was overestimated. The closeness between the buffeting responses calculated by the aerodynamic admittance fitted in the experiment and that of the full bridge aeroelastic model experiment indicates that the aerodynamic admittance results fitted in the experiment discussed in this paper is reliable to a certain degree.
引文
陈宝林.2005.最优化理论与算法(第二版)[M].北京:清华大学出版社.
    陈斌,葛耀君,项海帆.2009.非流线型截面气动导纳识别的零点分离法[J].同济大学学报(自然科学版),37(2):155-158,186.
    陈斌.2006.识别气动参数的测压法试验研究[D].上海:同济大学博士学位论文.
    陈斌.2006.识别气动参数的测压法试验研究[D].上海:同济大学博士学位论文.
    陈隽,张晓琴.2009.风速风向联合概率密度分布的一种经验函数[A]//第十四届全国结构风工程学术会议论文集[C].中国土木工程学会,北京.
    陈凯,毕卫涛,魏庆鼎.2003.振动尖塔对风洞模拟大气边界层的作用[J].空气动力学学报,21(2):211-217.
    陈伟.1993.大跨桥梁抖振反应谱研究[D].上海:同济大学博士学位论文.
    陈政清,胡建华.2005.桥梁颤振导数识别的时域法与频域法对比研究[J].工程力学,22(6):127-133.
    陈政清,于向东.2002.大跨桥梁颤振自激力的强迫振动法研究[J].土木工程学报,35(5):1221-1227.
    陈政清.2005.桥梁风工程[M].北京:人民交通出版社.
    丁泉顺,陈艾荣,项海帆.2002.大跨度桥梁耦合抖振分析的有限元正交组合方法[J].同济大学学报(自然科学版),30(5):557-562.
    丁泉顺,陈艾荣,项海帆.2002.大跨度桥梁耦合抖振正交组合分析方法的应用[J].同济大学学报(自然科学版),30(6):655-660.
    丁泉顺,陈艾荣,项海帆.2003.大跨度桥梁结构耦合抖振响应频域分析[J].土木工程学报,36(4):86-93.
    丁泉顺.2007.大跨度桥梁耦合抖振响应分析[M].上海:同济大学出版社.
    葛耀君,林志兴,项海帆.2002.上海地区风速风向联合分布概型的统计分析[A]//大型复杂结构的关键科学问题及设计理论研究论文集(2001)[C].哈尔滨:哈尔滨工业大学出版社.
    韩艳.2007.桥梁结构复气动导纳函数与抖振精细化研究[D].长沙:湖南大学博士学位论文.
    贺德馨.2006.风工程与工业空气动力学[M].北京:国防工业出版社.
    胡国风,朱本华.1996.高频动态天平JZW005研制报告[R].中国空气动力研究与发展中心.
    胡国风.1998.高频动态天平技术[D].长沙:国防科技大学硕士学位论文.
    黄汉杰.2004.大跨度悬索桥成桥及施工态颤振、抖振时域分析[D].绵阳:中国空气动力研究与发展中心博士学位论文.
    黄林,廖海黎.2003.桥梁气动导数的数值计算[A]//第十三届全国结构风工程学术会议论文集[C].中国土木工程学会,辽宁大连.
    黄鹏,施宗城,陈伟.1999.TJ-2大气边界层风场模拟及测试技术的研究[J].同济大学学报(自然科学版), 29(1):40-44.
    蒋永林,廖海黎,强士中.2001.关于桥梁结构的气动导纳[J].西南交通大学学报,36(3):299-302.
    蒋永林,强士中,廖海黎.2001.薄板结构气动导纳试验研究[J].流体力学实验与测量,15(4):26-29,52.
    靳欣华,项海帆,陈艾荣.2003.平板气动导纳识别理论及测量[J].同济大学学报(自然科学版),31(10):1168-1172.
    靳欣华.2003.桥梁断面气动导纳识别理论及试验研究[D].上海:同济大学博士学位论文.
    李昌春.2008.某斜拉桥的静动态风荷载研究[D].重庆:重庆大学硕士学位论文.
    李国豪.1996.桥梁结构稳定与振动[M].北京:人民交通出版社.
    李丽,廖海黎,李乔.2004.桥梁结构三维气动导纳研究[J].西南交通大学学报,39(2):167-171.
    李丽.2007.桥梁气动导纳函数研究及其应用[D].成都:西南交通大学博士学位论文.
    李岩,盛洪飞,陈彦江.2008.模态综合理论在斜拉桥抖振时域分析中的应用[J].四川建筑科学研究,34(5):139-142.
    李永乐,廖海黎,强士中.2004.三塔斜拉桥抖振的耦合行为研究[J].工程力学,21(4):184-188
    李永乐,廖海黎,强士中.2004.桥梁断面颤振导数识别的加权整体最小二乘法[J].土木工程学报,37(3):80—84.
    李永乐,廖海黎,强士中.2005.考虑桥塔风效应的斜拉桥时域抖振分析[J].空气动力学学报,23(2):228-233.
    李永乐,廖海黎,强士中.2005.桥梁抖振时域和频域分析的一致性研究[J].工程力学,22(2):179-183.
    廖海黎.2007流线箱型桥梁断面气动导纳研究[A]//第十三届全国结构风工程学术会议论文集[C].中国土木工程学会,辽宁大连.
    马存明,李丽.2010.特大跨钢桁梁悬索桥主梁气动参数试验研究[J].四川建筑科学研究,36(2):43-46.
    马存明.2007.流线箱型桥梁断面三维气动导纳研究[D].成都:西南交通大学.
    庞加斌,林志兴,陆烨.2004.关于风洞中用尖劈和粗糙元模拟大气边界层的讨论[J].流体力学实验与测量,18(2):32-37.
    秦仙荣,顾明.2005.紊流风场中桥梁气动导数识别的随机方法[J].土木工程学报,38(4):73-77.
    秦仙蓉.2004.桥梁结构气动导纳识别的随机子空间方法[J].同济大学学报(自然科学版),32(4):421-425.
    邵德民,端义宏,张维.2003.上海地区大风风速剖面特性的观测与分析[A]//第十一届全国结构风工程学术会议论文集[C].三亚.
    施文杰.2009.大跨度斜拉桥主梁断面气动导纳试验研究[D].重庆:重庆大学硕士学位论文.
    施宗城,黄鹏,1994.中性大气边界层模拟试验调试方法研究[J].同济大学学报(自然科学版),22(4):469-480.
    宋丽莉,林志兴,庞加斌等.2004.登陆台风近地层湍流特性观测研究[A]//2004年全国结构风工程实验技术研讨会论文集[C].长沙,2004.168-173.
    索尔著.吴兆金,范红军译.2010.数值分析[M].北京:人民邮电出版社.
    王统宁,马麟,刘健新.2009.基于混合编程的大跨桥梁桥塔抖振时域分析[J].长安大学学报(自然科学版),29(3)68-72.
    王雄江,顾明,秦仙蓉.2009.基于气动参数之间关系的桥梁断面气动导纳识别[J].空气动力学学报,27(6):707-712.
    项海帆,鲍卫刚,陈艾荣,林志兴,等. 2004.公路桥梁抗风设计规范[S].北京:人民交通出版社.
    项海帆,葛耀君.2007.现代桥梁抗风理论及其应用[J].力学与实践,29(1):1-13.
    项海帆.2002.进入21世纪的桥梁风工程研究[J].同济大学学报,30(5):529-532.
    项海帆.2005.现代桥梁抗风理论与实践[M].北京:人民交通出版社.
    杨转运,张亮亮,刘会,等.2010.桥梁节段模型颤振导数识别的MITD时域优化研究[J].土木建筑与环境工程,32(2):78-81.
    曾宪武,韩大建,苏成.2004.混合自激力模型在桥梁风致抖振时域分析中的应用[J].华南理工大学学报(自然科学版),32(1):69-74.
    张亮亮,杨转运,等.2008.厦门-漳州跨海大桥北汊桥抗风试验研究报告[R].重庆:重庆大学.
    张亮亮,杨转运,等.2010.重庆大宁河特大桥成桥状态抖振响应分析[J].实验流体力学, 24(5):42-47.
    张亮亮.1994.高层建筑风荷载及其动态响应研究[D].成都:西南交通大学博士学位论文.
    赵林,葛耀君,李鹏飞.2010.桥梁断面气动导纳互谱识别方法注记[J].振动与冲击,29(1):707-712.
    赵林.2003.风场模式数值模拟与大跨桥梁抖振概率评价[D].上海:同济大学博士学位论文.
    中国空气动力研究与发展中心.2007.应变天平校准证书(TH1002B)[R].
    中国空气动力研究与发展中心.2007.应变天平校准证书(JZW005).
    诸葛萍,卢彭真.2008.现行规范桥梁气动导纳理论局限性的分析[J].重庆交通大学学报:自然科学版, 27(2):191-194.
    诸葛萍.2008.桥梁气动导纳试验研究及斜拉桥抖振响应分析[D].成都:西南交通大学硕士学位论文.
    祝志文,顾明.2006.基于自由振动响应识别颤振导数的特征系统实现算法[J].振动与冲击,25(5):28-31.
    A.G.Davenport.1961.The spectrum of horizontal gustness near the ground in high wind[J], Q.J.R. Meteorol. Soc.,87:194-211.
    A.G.Davenport.1962.Buffeting of a suspension bridge by stormy winds[J], J of Structural Division, ASCE, 88(ST3): 233-268.
    A.G.Davenport.1963.Buffeting of structures by gusts . Wind Effects on Building and Structures[J].Dept of Science & Industry Research,National Physl Lab,1(16):358-391.
    A.G.Davenport.1968.The dependence of wind load upon meteorological parameters. Proc. Int. Res. Seminar on Wind Effects on Building and Struct. University of Toronto Press.
    A.G.Chowdhury,P.P.Sarkar.2004.Identification of eighteen flutter derivatives[J].Wind and Sturctures,7(3):187-202.
    A.Hatanaka,H.Tanaka.2002.New estimation method of aerodynamic admittance function[J].Journal of Wind Engineering and lndustrial Aerodynamics,90:2073-2086.
    B.L.Sill.1988.Turbulent boundary layer profiles over uniform rough surfaces[J]. J. Wind Eng. & Ind. Aerodyn., 31:147-163
    C.Fang,B.L.Sill.1992.Aerodynamic roughness length: correlation with roughness elements[J]. J. Wind Eng. & Ind. Aerodyn., 41-44:449-460.
    C.Carlotta,B.Claudio,F.Olivier.2007.Time-domain buffeting simulations for wind-bridge interaction [J]. J. Wind Eng. Ind. Aerodyn., 95:991-1006.
    C.Borri,L.Salvatori,W.Zahlten.2005.Finite-element time-domain simulations of bridge aeroelasticity: implementation and profiling[M]. Computat. Fluid Solid Mech. 1:103-107.
    E.Conti,G.Grillaud,J.Jacob etc.1996.Wind effects on the normandie cable-stayed bridge:comparison between full aeroelastic model tests and quasi-steady analytical approach[J]. Journal of Wind Engineering & Industrial Aerodynamics, 65(1-3):189-201.
    E.Simiu,R.H.Scanlan.1996.Wind Effects on Structures[M].The 3rd edition. New York: Wiley-Interscience.
    E.Simiu,R.H.Scanlan.Wind effects on structure[M]. NY:Wiley,1996.
    Emil Simiu.1974.Wind spectra and dynamic along wind response[J].Journal of the Structural Division,100(9):1897-1910.
    F.Tubino.2005.Relationships among aerodynamic admittance functions,flutter derivatives and static coefficients for long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,93:929-950.
    F.Chen,G.F.Hu,B.E.Lee.1993.Design and calibration of high frequency base balances used dynamic wind load on building models[C],Third Aisa-Pacific Symposium on wind engineering .
    G.Bucher,Y.K.Lin.1988.Effect of spanwise correlation of turbulence field on the motion stochastic stability of long-Span bridges[J]. J. of Fluids and Structures, 2.
    G.Bucher,Y.K.Lin.1988.Stochastic stability of bridges considering coupled modes[J].Journal ofEngineering Mechanics, 114(12):2055-2071.
    G.Bucher,Y.K.Lin.1989.Stochastic stability of bridges considering coupled modesⅡ[J]. Journal of Engineering Mechanics, 115(2):384-400.
    G.L.Larose,H.Tanaka,N.J.Gimsing.1997.Direct measurements of buffeting wind forces on bridge decks[C]//2 EACWE[A].Italy,Genova,1:1452-1432.
    G.S.Campbell,N.M.Standen.1969.Simulation of earth’s surface winds by artificially thickened wind tunnel boundary layers[R],Progress Report II, National Research council of Canada, NAE Rep., LTR-LA-37.
    H.A.Panofsky,J.A.Dutton.1984.Atmospheric turbulence-models and methods for engineering application[M].NY:Wiley,1984.
    H.A.Panofsky.1959.Atmospheric turbulence[R].SCR-118,USA.
    H.W.Liepmann.1952.On the application of statistical concepts to the buffeting problem [J].Journal of Aeronautical Science,19:793-800,822.
    J.Boussinesq.1877.Theorie de lecoulement tourbillant mem.[J]. Presentes par divers Savants Acad. Sci. Inst. Fr, 23:46-50.
    J.C.Kaimal,J.C.Wyngaard,Y.Izumi,O.R.Cote.1972.Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society,98(417):563-589.
    J.Counihan.1979.A method of simulating a neutral atmospheric boundary layer in a wind tunnel[C].Proc. Advisory Group for Aerospace Research and Development, Conf. On the Aerodynamics of Atmospheric Shear Flows, No. 48.
    J.Counihan.1975.Adiabatic atmospheric boundary layers: A review and analysis data from the period 1880-1972[J]. Atmospheric Environment,9:1-35.
    J.E.Cermak.1970. Fluctuating moments on tall building produced by wind loading[C].Proc.Tech..Meeting Concerning Wind Loads on Buildings and Structures.
    J.B.Pang,Y.J.Ge,Y.Lu.2002. Analysis methods for integral length of turbulence[R].Proceeding of the 2nd International Symposium on Advances in Wind and Structures,Teehno-Press,Korea.
    J.D.Raggett and R.H.Scanlan.1993. A least-squares identification procedure for the eight aeroelastic flutter coefficients for a 2-dimensional section model[C]// in: Proc. 7th U.S. Nat. Conf. on Wind engineering, UCLA, pp27-30.
    J.L.Lumley,H.A.Panofsky.1964. The Structure of Atmospheric Turbulence[M].Interscience publishers.
    Jia Y.Q,B.L.Sill,T.A.Reinhold.1998. Effects of surface roughness element spacing on boundary-layer velocity profile parameters[J]. J. Wind Eng. & Ind. Aerodyn.,73:215-230.
    Jin Cheng,C.S Cai,Ru-cheng Xiao,etc.2005.Flutter reliability analysis of suspension bridges [J].J.Wind Eng. Aerodyn., 93: 757-775.
    K.Matsuda,Y.Hikami,T.Fujiwara.1999. Aerodynamic admittance and the strip theory for horizontal buffeting forces on a bridge deck[J] . Journal of wind Engineering and Industrial Aerodynamics,83:337-346.
    L.Singh,N.P.Jones,R.H.Scanlan,O.Lorendeaux.1995.Simultaneous identification of 3-DOF aeroelastic parameters[C].Proc. 9th Int. Conf. Wind Eng., New Delhi,India.
    M.Gu,R.Zhang,H.F.Xiang.2000.Identification of flutter derivatives of bridge[J]. J. Wind Eng. Ind. Aerodyn.,88:151–162.
    M.Matsumoto,K.Kobayashi,Y.Niihara,H.Shiarto.1995.Flutter mechanism and itsstabilisation of bluff bodies[C]. In: Proceedings of the 9th International Conference on Wind Engineering. Wiley Eastern Ltd, New Delhi, pp. 827-838.
    M.Matsumoto,K.Kobayashi,Y.Niihara,H.Shiarto.1996.The influence of aerodynamic derivatives on flutter[J]. J. Wind Eng. Ind. Aerodyn. 60:227-239.
    M.Matsumoto,Y.Daito,F.Yoshizumi,Y.Ichikawa,T.Yabutani.1997. Torsional flutter of bluff bodies[J]. J. Wind Eng. Ind. Aerodyn. 69-71:871-882.
    M.Matsumoto.2004.On the flutter characteristics of separated two box girders [J]. Wind and Sturctures,7(4):281-291.
    N.N.Minh,T.Miyata,H.Yamada,Y.Sanada.1999.Numerical simulation of wind turbulence and buffeting analysis of long-span bridges[J]. J. Wind Eng. Ind. Aerodyn. 83 (1-3): 301-315.
    N.P.Jones,L.Singh,R.H.Scanlan,O.Lorendeaux.1995.A force balance for measurement of 3-D aeroelastic parameters, in: Proc. Structures Congress, ASCE.
    P.A.Irwin.2007. Buff body aerodynamic in wind engineering[J]. J. Wind Eng. Aerodyn,95:1-12.
    P.P.Sarkar,N.P.Jones,R.H.Scanlan.1994.Identification of aeroelastic parameters of flexible bridges[J]. ASCE Journal of Engineering Mechanics, 120:1718-1742.
    P.P.Sarkar,A.G.Chowdhury,T.B.Gardner.2004.A novel elastic suspension system for wind tunnel section model studies [J]. J. Wind Eng. Aerodyn.,92:23-40.
    P.P.Sarkar,N.P.Jones,R.H.Scanlan.1992.System identification for estimation of flutter derivatives[C]//in:Progress in wind engineering, Proc. 8th Int. Conf. on Wind engineering (Elsevier, Amsterdam),pp1243-1254.
    P.P.Sarkar,N.P.Jones,R.H.Scanlan.1994.Identification of aeroelastic parameters of flexible bridges, J.Eng. Mech., ASCE 120:1718-1739.
    R.E.Whitbread.1977.The measurements of non-stead wind forces on small-scale building models[C]. Proc.The 4th IAWE conference..
    R.H.Scanlan,N.P.Jones.1999.A form of aerodynamic admittance for use in bridge aeroelasticanalysis[J]. Journal of Fluids and Structures,13:1017-1027.
    R.H.Scanlan,N.P.Jones.1990.Aeroelastic analysis of cable-stayed bridges[J]. ASCE Journal of Structural Engineering 116:279-297.
    R.H.Scanlan,N.P.Jones,L.Singh.1997.Inter-relations among flutter derivatives[J]. Journal of Wind Engineering and Industrial Aerodynamics, 69-71:829-837.
    R.H.Scanlan.1974.Indicial aerodynamics functions for bridge decks[J]. J. of Engineering Mechanics, 100(4):975-998.
    R.H.Scanlan.1984.Role of indicial functions in buffeting analysis of bridges[J]. ASCE Journal of Structural Engineering, 110:1433-1446.
    R.H.Scanlan.2000.Motion related body-force functions in two-dimensional low-speed flow[J]. J. Fluids Struct.,2000,14:49–63.
    R.H.Scanlan,J.J.Tomko.1971.Airfoil and bridge deck buffeter derivatives[J]. ASCE Journal of Engineering Mechanics, 97:1717-1737.
    R.H.Scanlan,J.G.Bed Liveau,K.Budlong.1974.Indicial aerodynamic functions for bridge decks[J]. ASCE Journal of Engineering Mechanics,100:657-672.
    R.H.Sanlan.1993.Problematic in the formulation of wind force models for bridge decks[J]. ASCE Journal of Engineering Mechanics, 119:1353-1375.
    R.A.Irwin.1981.The design of spires for wind simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 7:361-366
    R.H.Scanlan,J.J.Tomko.1971.Airfoil and bridge deck flutter derivatives[J]. ASCE Eng. Mech. Div. 97(6):1717-1746.
    R.H.Scanlan,N.P.Jones.1990. Aeroelastic analysis of cable-stayed bridges,J. Str. Eng.,ASCE 116:279-305.
    R.H.Scanlan.1987.Interpreting aeroelastic models of cable-stayed bridges,J. Eng. Mech.,ASCE 113:555-576.
    R.H.Scanlan,N.P.Jones.1997.Comparison of taut-strip and section.model-based approaches in long-span bridge aerodynamics[J].Journal of wind Engineering and Industrial Aerodynamics,72:275-287.
    R.H.Scanlan.1999.A form of aerodynamic admittance for use in bridge aeroelastic analysis[J].Journal of fluids and Structures,13:1017-1027.
    R.H.Scanlan.2000.Motion-related body-force functions in two-dimensional low-speed flow[J].Journal of Fluids and Structures,14:49-63.
    R.H.Scanlan.2001.Reexamination of sectional aerodynamic force functions for bridges[J].Journal of Wind Engineering and lndustrial Aerodynamics,89:1257-1266.
    R.Sankaran,E.D.Jancauskas.1992.Direct measurement of the aerodynamic admittance of two-dimensionaI rectangular cylinders in smooth and turbulent flows[J].Journal of Wind Engineering and Industrial Aerodynamics,41-44:601-611.
    S.Y.Can,A.Nishi,H.Kukugawa,Y.Matsuda.2002.Reproduction of wind velocity history in a multiple fan wind tunnel[J]. J.Wind Eng.Ind.Aerodyn.,90:1719-1729.
    T.Miyata,H.Yamada,V.Boonyapinyo,J.C.Santos.1995.Analytical investigation on the response of a verylong suspension bridge under gusty wind[C]. In: Proceedings of the 9th International Conference on Wind Engineering, New Delhi, pp. 1006–1017.
    T.Miyata,K.Tada,H.Sato, H.Katsuchi,Y.Hikami.1994.New findings of coupled flutter in full model windtunnel tests on the Akashi Kaikyo Bridge[C].In: Proceedings of the International Symposium on Cable-Stayedand Suspension Bridges. Deauville, pp. 163–170.
    T.Miyata,K.Yamaguchi.1993.Aerodynamics of wind effects on the Akashi Kaikyo Bridge[J]. J. Wind Eng. Ind. Aerodyn. 48:287-315.
    T.Theodorsen.1935.General theory of aerodynamic instability and the mechanism of flutter[J]. NACA Report 496, U.S. Advisory Committee for Aeronautics, Langley, VA, U.S.A.
    W.R.Sears.1940.Operation method in the theory of airfoil in non-uniform motion[J],J of Franklin Institute,230(1):120-145.
    W.R.Sears.1941.Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of Aeronautical Science,8:104-108.
    Y.K.Lin,Q.C.Li.1993.New stochastic theory for bridge stability in turbulent flow[J]. Journal of Engineering Mechanics,119(1):113-127
    Y.Nakamura,T.Yoshimura.1976.Binary flutter of suspension bridge deck sections[J]. J. Eng. Mech. Div. 102(EM4):685-700.
    Y.Nakamura,T.Mizota.1975.Torsional flutter of rectangular prisms[J]. J. Eng. Mech. Div. 101(EM2):125-142.
    Y.Nakamura.1978.An analysis of binary flutter of bridge deck sections[J]. J. Sound Vib. 57(4):471-482.
    Y.Nakamura.1979.On the aerodynamic mechanism of torsional flutter of bluff structures[J]. J. Sound Vib.67 (2):163-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700