大跨越输电塔—线体系动力特性和风振控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展特高压输电技术是国家“十一五”期间的重大技术政策,是电力与土木领域赶超世界先进水平的攀登计划,特高压输电线路的建设对我国经济的持续发展将产生重大作用。输电塔-线体系作为特高压输电线路的支撑体,它是由导线、绝缘子和输电塔组成的具有强烈非线性的复杂耦联体系,而大跨越则是特高压输电线路中跨越大江大河的塔-线体系。由于大跨越输电塔是一种高耸柔性结构,对风荷载等动荷载比较敏感,易产生较大的动力响应。对大跨越输电塔-线体系进行振动控制研究是电力工程与土木工程界一个重要的研究课题,既有其重要的理论意义,又有其重要的经济价值。
     本文的研究主要在大跨越输电塔-线体系的动力特性,风荷载特性和数值模拟,橡胶铅芯阻尼器的研发和布置方法,风振控制,风控效果的敏感性和验证,地震响应等方面开展,希望能给出在工程实际运用时大跨越输电塔的动力特性计算和风振控制方法的合理选择指引。主要工作包括以下方面:
     (1)研究了大跨越输电塔-线体系进行精细建模的方案,着重分析了对杆件和节点的不同处理对计算分析结果的影响。提出了基于模态识别技术提取大跨越输电塔-线体系中塔架第一周期的方法,归纳了考虑导(地)线及绝缘子的刚度和质量的影响后,大跨越干字型塔和酒杯塔的第一周期近似公式。研究了两种模型(简化导线体系模型与分裂导线模型)中塔架的自振周期和振型之间的差异,证明了可以用简化导线体系模型来代替分裂导线体系模型,进行各种动力响应分析。
     (2)编制了空间相关的风速场模拟程序WVFS,生成了设计风速下风荷载的时程样本。在精确模拟的基础上,对风场模拟结果进行了误差分析,推导了一个风场样本的均值、相关函数、功率谱函数、根方差等概率统计量的时域估计表达式。将由该风场产生的动位移与按电力设计规程简化计算方法产生的静位移进行了比较,证明了空间相关风速场的数值模拟是合理的。
     (3)研发了橡胶铅芯阻尼器,介绍了其工作原理和细部构造。通过对橡胶铅芯阻尼器进行性能试验,得到了加载频率、应变幅值和铅芯直径等因素对橡胶铅芯阻尼器性能的影响,对阻尼器的耐久性能进行了说明,推导了阻尼器各个参数的计算公式。研究了阻尼器的位置优化方法,并提出了具体安装方案。设计了实际工程中阻尼器的连接和安装方法,并讨论了阻尼器对主体结构的影响。
     (4)进行了橡胶铅芯阻尼器控制前后不同风向角的动风下大跨越输电塔-线体系的动力响应计算,分析了各控制点位移和各控制钢管内力的控制效果。研究表明:阻尼器控制后大跨越输电塔-线体系的位移、内力响应均大幅降低;各风向角动风作用下均会引起大跨越输电塔-线体系的横线向和顺线向振动;同时,位移响应的最不利风向角与内力响应的最不利风向角不一定相同;此外,顺风向风荷载调整系数得到有效减少,动力可靠度有所提高。
     (5)研究了大跨越输电塔-线体系风控效果的敏感性和橡胶铅芯阻尼器的实用性,从橡胶铅芯阻尼器的变形、刚度和阻尼各自的减振效果等方面验证了阻尼器的风控效果。研究表明:塔高和输电线张力均会影响大跨越输电塔-线体系的横线向与顺线向的位移和加速度响应和风控效果。在设计风速下,安装于优化位置的橡胶铅芯阻尼器均能正常工作,其刚度和阻尼对大跨越输电塔-线体系的风控效果均有贡献,阻尼发挥了主导作用。
     (6)用时程分析方法计算了地震作用下大跨越输电塔-线体系在橡胶铅芯阻尼器控制前后的时程响应。研究表明:地震作用下大跨越输电塔-线体系的位移响应远远小于设计风速下的动风位移响应,在设计工作中应以动风荷载作为输电塔的控制荷载。由于输电塔在地震作用下的位移响应很小,其控制效果相应较小。
The development of special high-voltage transmission technology is one of the most significant technology policys of the Eleventh-five National Key engineering project, while it is the climbing plan to surpass the world's advanced level in power and civil areas, whose construction will have significant function to our country's sustained economic development. As the support body of special high-voltage transmission line, the tower-line system is a strong non-linear coupled system, which is composed by wire, insulators and power transmission towers, while the long-span is a special case across great rivers. Long-span transmission tower is a high flexible structure, it is sensible to dynamic load, especially to wind, which would easily generate significant dynamic response. It is an important researching subject for both power engineering and civil engineering to control the vibration of long-span transmission tower due to its important theoretical meaning as well as economical value.
     In order to provide a guide of the reasonable methods in natural vibration period and wind-induced vibration control, the dynamic characteristics, the numerical simulation of wind load, the research and development of lead-rubber damper, the effect of wind-induced vibration control and its verification, the seismic response deserve special attention. Consequently, study on the following aspects would be included in this dissertation.
     (1)Delicate modeling programs have been studied for long-span transmission tower-line system using finite element method, focusing on different treatments of the poles and nodes. Based on modal identification techniques, the natural vibration period of transmission tower in tower-line system were obtained for two different types, while the stiffness and weight of transmission line and insulator were considered. The natural vibration period and mode shapes of the towers in simplified model and bundle conductors model were researched, the former can be used to simplify the latter to execute a variety of dynamic response analysis.
     (2)A simulation program WVFS has been compiled to simulate applicable fluctuating wind velocity field in this paper. The examination was carried on from the detailed derivation of average value, correlation function, power spectral density and root variance. According to the research on simplified method of the electric power industry, it could be got that there are little differences between the displacements derived here by FELM time history method and that derived by simplified method, which means that the simulation on space relevant wind velocity field are reasonable.
     (3)The lead-rubber damper (LRD) was developed, while its working principle and structure were introduced. According to the performance testing, the loading frequency, strain amplitude, lead diameter and durability were considered, the formula for parameters of LRD were derived. According to the research on optimalizing location of LRD, the specific installation scheme was obtained. The connection and installation methods, the impact on the structure were discussed.
     (4)The time history analysis method was used to calculate the response of the wind-induced response of long-span transmission tower-line system. According to the research on the displacement and internal force of the main material under five wind directions, the effects of wind-induced vibration controlling were obtained. The most disadvantageous wind direction of the displacement and inner force are not always identical, so the different input wind direction in engineering design should be considered. Dynamic wind in different directions would lead to both transverse and longitudinal vibration of the tower. Besides, the adjustment factors along wind were obvious decreased, while the dynamic reliability has improvement in a certain extent.
     (5)The sensitivity of the controlling effect and the practicality of LRD were researched for long-span transmission tower-line system. According to the research on the deformation, stiffness and damping effect of LRD, the controlling effect is verified. The response and controlling effect of displacement and acceleration in transverse and longitudinal would be affected by tower height and tension of transmission lines. It is also proved that all the LRD are ensured to work under design wind velocity according to the research on LRD deformation; it is also proved that the controlling effect is not ideal when only member stiff is increased according to the research on controlling effect under dynamic wind when apply only stiff to the members on which the dampers used to be applied.
     (6)The time history analysis method was used to calculate the response of the seismic response of long-span transmission tower-line system. It is shown that the seismic displacement response is far less than dynamic wind, which means it should be based on dynamic wind loads in the design work. Due to the seismic displacement response is very small, the controlling effect is not ideal.
引文
[1] 国家电力公司华北电力设计院.110-500kV架空送电线路设计技术规程.北京:中国电力出版社,1999
    [2] 项立人.应该加快我国特高压输电前期工作研究.电网技术,1999,20(2):54-58
    [3] 张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展.高电压技术,2003,29(9):16-18
    [4] 尹鹏,李黎,胡亮.大跨越输电塔线体系风致抖振时域分析.银川:中国电机工程学会,2007
    [5] 李黎,张行,尹鹏.大跨越输电线路脱冰跳跃反应的控制研究.振动与冲击,2008,27(10):61-64
    [6] 夏正春,李黎,梁政平.输电塔在线路断线作用下的动力响应.振动与冲击,2007,20(11):45-49
    [7] 夏正春,梁政平,李黎,尹鹏.大跨越输电塔线的断线振动及控制.武汉理工大学学报,2008,30(9):84-88
    [8] 唐国安.我国500kV线路倒塔事故率浅析.电力建设,1999,15(1):11-14
    [9] Li.Hongnan. Seismic Response Analysis method For Coupled System of Transmission Lines And Tower. Earthquake Engineering and Engineering Vibration, 1996, 16(4): 23-27
    [10] Li Hongnan. Response of Transmission Tower System to Horizontal and Rocki Earthquake Excitations. Earthquake Engineering and Engineering Vibration, 1997, 17(4): 32-39
    [11] Liang Zheng-ping, Li Li, Yin Peng, Duan Song-tao. Application of Lead Viscoelastic Dampers to Wind Vibration Control on Long-span Power Transmission Tower. Journal of Southwest Jiaotong University, 2008, 16(4): 320-328
    [12] 胡亮霞,李黎,尹鹏.橡胶铅芯阻尼器控制下大跨越输电塔可靠性分析.电力建设,2008,29(11):19-23
    [13] 李黎,尹鹏.大跨越输电塔-线体系风振控制研究.工程力学,2008,25(2):213-229
    [14] 尹鹏,李黎,胡亮霞,梁峰.橡胶铅芯阻尼器控制下输电塔风振响应研究.电力建设,2008,29(10):1-4
    [15] 尹鹏,李黎,梁政平.粘弹铅芯阻尼器在控制输电塔风振反应中的应用.振动与冲击,2007,26(8):1-4
    [16] 李宏男,阎石.中国结构振动控制的研究与应用.地震工程与工程振动,1999,19(1):107-112
    [17] Anderson K., Hagedom P. On the energy dissipation in spacer dampers in bundled conductors of overheand transmission lines. Journal of Sound and Vibration, 1995, 180(4): 539-556
    [18] Qu Wei Lian, Chen Z. H. and Xu Y. L.. Dynamic analysis of wind-excited truss tower with friction dampers. Computers and Structures, 2001, 79:2817-2831
    [19] Albert, Richardson S. Performance requirements for vibration dampers. Electric Power System Res, 1996, 36:21-28
    [20] 陈晓明,邓洪洲等.大跨越输电线路舞动稳定性的研究.工程力学,2004,21(1):56-62
    [21] 邓洪洲,朱松哗.大跨越输电塔线体系风振控制研究.建筑结构学报,2003,24(3):15-18
    [22] 胡松.大跨越输电线路的风振反应分析及振动控制研究[博士学位论文].上海:同济大学,1999
    [23] 黄斌,唐家祥.大跨越自立式高压输电塔风振控制.特种结构,1997,14(3):49-52
    [24] 黄斌,唐家祥.大跨越输电塔的风振响应.力学与实践,1998,20(5):4-9
    [25] 江宜诚,钟寅亥,樊剑,李黎.粘弹性阻尼器控制下大跨越输电塔风振响应分析.特种钢结构,2003,4(18):34-36
    [26] 钟寅亥,李黎,江宜诚.粘弹性阻尼器在控制输电塔风振反应中的应用.华中科技大学学报(城市科学版),2003,20(2):69-71
    [27] 郭迅,张敏政.摆、油阻尼器减振的试验研究.地震工程与工程振动,1996,16(1):122-128
    [28] 林佳,魏陆顺,刘文光,王豫.油阻尼器的力学性能试验研究.国外建材科技,2004,25(5):92-94
    [29] 姜南,李忠献.基于半主动控制的MR阻尼器控制力优化.地震工程与工程振动,2008,28(3):138-144
    [30] 瞿伟廉,朱晓辉.两种半主动MR阻尼器对电视塔的控制.武汉理工大学学报,2005,27(1):44-46
    [31] 徐晓龙,孙炳楠.基于智能算法的高层建筑非线性地震反应的MR阻尼器半主动控制.工程力学,2008,25(1):209-216
    [32] 赵林,王旭峰,张猛.基于MR阻尼器高耸钢塔结构风振半主动控制.同济大学学报,2008,36(8):1057-1061
    [33] H.Yasui. Analytical study on wind-induced vibration of power transmission towers. Wind Engineering and Industrial Aerdynamics, 1999, 83(2): 150-155
    [34] Rao G.V., Iyengar R.N. Seismic response of a long span cable. Earthquake Engng Struct Dyn, 1991, 20(3): 243-258
    [35] 祝贺.输电塔结构风力功率谱随机振动分析.吉林电力,2007,35(2):16-18
    [36] H. Max Irvine, Gaughey T. K. The linear theory of free vibrations of a suspended cable. 1974:299-315
    [37] H. Max Irvine, Gaughey T. K. Cable Structures. The MIT Press, 1981
    [38] S.Ozono. Characteristics of in-plane free vibration of transmission line systems. Engng Struct, 1988, 10(10): 272-280
    [39] S.Ozono, J.Mdeda. In-plane dynamic interaction between a tower and conductors at lower frequencies. Engng Struct, 1992, 14(4): 210-216
    [40] Liang Suguo. An analysis of wind induced responses for Dashengguan electrical transmission tower-line system across the Yangtze River. Copenhagen: Proceedings of the 10th International Conference on Wind Engineering, 1999:565-570
    [41] 梁枢果,朱继华,王力争.大跨越输电塔-线体系动力特性分析.地震工程与工 程振动,2003,23(6):63-69
    [42] 刘群.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究.中国电力,1997,30(9):12-16
    [43] 张朝阳.多跨输电线平面振动特性的传递矩阵法分析.华中理工大学学报,1997,25(4):4-7
    [44] 何锃.大跨越分裂导线静动特性的计算分析.武汉汽车工业大学学报,1997,25(4):16-19
    [45] 何锃,赵高煜.安装防振锤的分裂导线自由振动的有限元计算.工程力学,2003,2(101):22-26
    [46] 马星.输电塔线耦合体系风振响应分析.第十届全国结构风工程学术会议论文集,1999
    [47] 马星.桅杆结构风振理论及风效应系数研究[博士学位论文].上海:同济大学,1999
    [48] 胡松.输电线路大跨越塔的自振特性研究.钢结构,2000,15(1):21-25
    [49] 赵滇生,金三爱.有限元模型对输电塔架结构动力特性分析的影响.特种结构,2004,21(3):8-11
    [50] 傅鹏程,邓洪洲,吴静.输电塔结构动力特性研究.特种结构,2005,4(1):47-49
    [51] Li Y., Kareem A. ARMA representation of wind field. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36:415-427
    [52] Mignolet M.P., Spanos P.D. MA to ARMA modeling of wind. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36:429-438
    [53] Samaras E., Shinozuka M., Tsurui A. ARMA representation of random processes. Eng Mech ASCE, 1985, 111(3): 449-461
    [54] Shinozuka M. Simulation of multivariate and multidimensional random processes. Acoust Soc Am, 1971, 49(1): 357-368
    [55] SHinozuka M., Jan C.M. Digital simulation of random processes and its applications. Journal of Sound and Vibration, 1972, 25(1): 111-128
    [56] Shinozuka M., Yun C.B. Stochastic methods in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36:829-843
    [57] Farge M. Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech, 1992, 24:395-457
    [58] Hayashi T. An analysis of wind velocity fluctuations in the atmospheric surface layer using an orthogonal wavelet transformation. Bound-Layer Meteorol, 1994, 70: 307-326
    [59] Kitagawa T., Nomura T. A wavelet-based method to generate artificial wind flutuation data. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 943-964
    [60] 卢文生,陈亦.大跨越输电线体系风荷载模拟.特种结构,2004,21(3):12-14
    [61] 王之宏.风荷载的模拟研究.建筑结构学报,1994,15(1):15-19
    [62] 祝贺.基于Ar模型的输电塔结构风荷载模拟技术.吉林电力,2006,34(2):20-23
    [63] 白海峰,李宏男.大跨越输电塔线体系随机脉动风场模拟研究.工程力学,2007, 24(7):146-151
    [64] Takahashi T. Turbulence characteristics of wind over a hill with a rough surface. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 1697-1706
    [65] E.Savory, G.Parke, M.Zeinoddin, N.Toy, P.Disney. Modelling of tornado and microburst induced wind loading and failure of a lattice transmission tower. Engng Struct, 2001, 23(20): 365-375
    [66] Kikuchi N. Aerodynamic drag of new-design electric power wire in a heavy rainfall and wind. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 41-51
    [67] McComber P. A cable galloping model for thin ice accretions. Atmos Res, 1998, 46: 13-25
    [68] Zhang Q. Galloping of bundle conductor. Sound and Vibr, 2000, 234(1): 115-134
    [69] A.Y.Shehata, A.A.ElDamatty, E.Savory. Finite element modeling of transmission line under downburst wind loading. Finite Elements in Analysis and Design, 2005, 42(41): 71-89
    [70] 邓洪洲,陈晓明,屠海明,马星,王肇民.江阴大跨越输电塔模型试验研究.建筑结构学报,2001,22(6):31-35
    [71] 楼文娟,孙炳楠,唐锦春.高耸格构式结构风振数值分析及风洞试验.振动工程学报,1996,9(3):318-322
    [72] 付国宏,程志军,孙炳楠.架空输电线路风振试验研究.流体力学实验与测量,2001,15(1):15-21
    [73] 邓洪洲,朱松哗,陈晓明.大跨越输电塔线体系气弹模型风洞试验.同济大学学报,2003,31(2):132-137
    [74] A.M.Loredo-Souza, A.G. Davenport. A novel approach for wind tunnel modeling of transmission lines. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89:1017-1029
    [75] A.M.Loredo-Souza, A.G. Davenport. Wind tunnel aeroelastic studies of two parallel cables. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 407-414
    [76] Ballio G., Solari G. A 60-year-old 100m high steel tower: Limit states under wind action. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 2089-2100
    [77] Harikrishna P. Analytical and experimental studies on the gust response of a 52m tall steel lattice tower under wind loading. Computers and Structures, 1999, 70:149-160
    [78] Momomura Y. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72:241-252
    [79] Plaluch J.M. Experimental and numerical assessment of EPS wind action on long span transmission line conductors. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 10:100-116
    [80] 何敏娟,杨必峰.江阴500kV拉线式输电塔脉动实测.Structural Engineers,2003,2(4):74-79
    [81] 胡宇滨,马人乐.江阴500kV输电塔动力性能测试.Structural Engineers,2002, 12(4): 62-66
    [82] Battista R. C., R. R. S., Afeil M. S. Dynamic behavior and stability of transmission line towers under wind forces. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(8): 1051-1067
    [83] 陈亦.大跨越输电线路塔的振动控制.特种结构,2000,17(3):15-18
    [84] 周云,邓雪松,徐赵东.铅粘弹性阻尼器性能试验研究.地震工程与工程振动,2001,21(1):139-142
    [85] 周云,徐赵东,邓雪松.铅粘弹性阻尼器的力学模型.地震工程与工程振动,2000,20(1):120-123
    [86] 朱继华.输电塔线体系动力特性及风振响应的理论与实验研究[博士学位论文].武汉:武汉大学土木建筑工程学院,2001
    [87] 张宏德.高耸结构TMD风振控制研究[硕士学位论文].上海:同济大学,1997
    [88] 王仲刚.桅杆结构风振响应及混沌振动研究[博士学位论文].上海:同济大学,2001
    [89] 苏速.大跨越输电塔线体系风振控制[硕士学位论文].上海:同济大学,2003
    [90] 楼文娟.大跨越输电铁塔风振响应研究[博士学位论文].杭州:浙江大学,1995
    [91] 李泽.大跨越输电塔线体系地震反应分析[博士学位论文].上海:同济大学,2002
    [92] 川罗烈.空间索网结构非线性分析[硕士学位论文].上海:同济大学,1995
    [93] 陈勇.风荷载模拟及风振时程分析[硕士学位论文].杭州:浙江大学,1997
    [94] 陈晓明.大跨越输电线舞动及其控制研究[博士学位论文].上海:同济大学,2002
    [95] A.Mercio, L.Souza. The behaviour of transmission lines under high wind. The University of Western Ontario, 1994
    [96] 王力争.输电铁塔顺风向风振系数专计算方法的对比分析.电力建设,1996,10(6):28-32
    [97] 王力争.输电塔风振系数简化计算.中国电力,1998,10(1):15-17
    [98] Rice S. O. Mathematical analysis of random noise. Bell System Technical Journal, 1944, 23:282-332
    [99] Rice S. O. Mathematical analysis of random noise. Bell System Technical Journal, 1945, 24:52-162
    [100] Siegert A. F. On the first-passage time proability problem. Physical Review, 1951, 81:617-623
    [101] Helmstrom C. W. Note on a Markov Envelop Process, Institute of Radio Engineers. Insitute of Radio Engineers, 1959
    [102] Coleman J. J. First Passage Problem Probalility for a Linear Oscillator. Doctoral Department of Mechanical Engineering, M.I.T., Cambridge, 1964
    [103] Cramer H. On the intersections between the trajectories of a normal stationary stochastic pross and a high level. Arkiv Mat, 1966, 6:337-349
    [104] Crandall S. H. Perterbation techniques for random vibration of nonlinear systems. Journal of the Acoustical Society of America, 1963, 35(2): 1700-1705
    [105] Iyenger R. N. First passage probability during random vibration. Journal of Sound and Vibration, 1973, 31(2):185-193
    [106] Gasparini D. A. Response of MDOF systems to nonstationary random excitation. Journal of the Engineering Mechanics Division, 1979, 105(1): 13-27
    [107] Milford R.V. Tornado risk model for transmission line design. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72:468-478
    [108] Naterajan K. Reliability-based optimization of transmission line towers. Computers and Structures, 1995, 55(3): 387-403
    [109] 李宏男.大跨越高压输电塔线体系抗震研究.大连理工大学,2003
    [110] 李宏男,石文龙,贾连光.考虑导线影响的输电塔侧向简化抗震计算方法.振动工程学报,1997,16(2):233-237
    [111] Alam M.J. Reliability analysis and full-scale testing of transmission tower. Journal of Structural Engineering, 1996, 122(3): 338-344
    [112] Foschi R.O. Reliability theory and applications to risk analysis of power components and systems. Electrical Power and Energy Systems, 2004, 26:249-256
    [113] Phoon K.K. Reliability-based design for transmission line structrue foundations. Comput Geotech, 2000, 26:169-185
    [114] A.M. Loredo-Souza, A.G. Davenport. The effects of high winds on transmission lines. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 6(8): 987-994
    [115] A.M. Loredo-Souzaa, A.G. Davenport. The influence of the design methodology in the response of transmission towers to wind loading. Journal of Wind Engineering and Industrial Aerodynamics, 2003: 995-1005
    [116] Fekr M.R. Numerical modeling of the dynamic response of ice-shedding on electrical transmission lines. Atoms Res, 1998, 46:1-11
    [117] McClure G Modeling the structrual dynamic response of overhead transmission lines. Computers and Structures, 2003, 81:825-833
    [118] 刘习军,贾启芬.工程振动理论与测试技术.北京:高等教育出版社,2004
    [119] 张令弥.振动测试与动态分析.北京:航空工业出版社,1992
    [120] 曹枚根,周福霖,徐忠根.钢管组合大跨越输电塔简化模型研究.钢结构,2005,20(6):27-32
    [121] 庄表中,梁以德,张佑启.结构随机振动.北京:国防工业出版社,1993
    [122] 胡宇滨.江阴500kV输电塔地脉动实测与模型分析[硕士学位论文].上海:同济大学,2002
    [123] 陈奎孚,张森文.半功率点法估计阻尼的一种改进.振动工程学报,2002,15(2):151-155
    [124] Simiu E., Scanlan R.H. Wind effects on structures. New York, 1996
    [125] Bendat J.S.,Piersol A.G.随机数据分析方法.北京:国防工业出版社,1978
    [126] 戴诗亮.随机振动试验技术.北京:清华大学出版社,1981
    [127] Zhang R.H., Soong T. T. Seismic Design of Viscoelastic Dampers for Structural Applications. Journal of Structural Engineering, 1992, 118(5): 1375-1392
    [128] Haftka R.T., Adelman H.M. Selection of Actuator Locations for Static Shape Control of Large Space Structures by Heuristic Integer Programming. Computers and Structures, 1985, 20(1): 578-582
    [129] Agrawal A.K., Yang J.N. Optimal Placement of Passive Dampers on Seismic and Wind-Excited Building Using Combinational Optimization. Journal of Intelligent Material Systems and Structures, 1999, 20(10): 997-1014
    [130] 滕军.结构振动控制系统优化理论与方法[博士学位论文].哈尔滨:哈尔滨建筑工程学院,1992
    [131] 徐龙河.基于磁流变流体阻尼器的半主动结构控制理论的研究[博士学位论文].天津:天津大学,2000
    [132] 何运详.大跨越输电塔的抗震及绝缘子断裂分析[博士学位论文].杭州:浙江大学,2006
    [133] Hao H. Effects of spatial variation of ground motion on large multiply-supported structurers. 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700