悬垂绝缘子串风偏角计算公式中风荷载调整系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,风偏闪络事故频繁发生,对电网的安全运行造成了严重威胁。初步分析表明,现行设计规程中风偏角的计算公式的不足可能是造成风偏事故频发的主要原因之一。因此,研究架空高压输电线路在随机风场中的风偏,并据此对悬垂绝缘子串风偏角的计算公式进行修正,具有极其重要的工程实用价值。
     本文首先阐述了国内外高压输电线路的风偏以及风荷载数值模拟的研究现状,指出现有研究输电线路风偏响应的时程分析方法存在不足,主要表现在模拟风荷载时没有考虑空间相关性,未深入研究线路中各种参数对线路风偏的影响。讨论了输电线路随机风场的数值模拟方法,利用考虑沿高度变化的Kaimal风速谱和Davenport空间相干函数,实现了输电线路的风场数值模拟。然后运用时程分析方法,利用ABAQUS有限元软件对不同档距和不同高差的特征段线路在不同风速的风场作用下的风偏响应进行时程分析。得到了特征段线路中悬垂绝缘子串下端点的风偏响应时程曲线,并利用统计方法得到在一定保证率下风偏角的统计值。结果表明,考虑脉动风的动态特性,用数值模拟方法得到的悬垂绝缘子下端的风偏角远大于按规程中传统静力学方法计算得到风偏角,这可能是输电线路产生风偏闪络事故的原因之一。为此提出了利用风荷载调整系数对现行风偏角工程计算公式的修正方法。研究了500kV特征段线路在脉动风作用下,不同档距、不同高差和不同高度风荷载调整系数的取值。
Flashover accidents caused by windage yaw of suspension insulator strings of high voltage transmission lines frequently happened and threatened electric power system in recent years. Analysis indicates that the shortage of the calculation method of windage yaw of suspension insulator string in the current design code, which may cause flashover accidents, is one of the main reasons. Therefore, studying on high voltage transmission lines under random wind field, and improving the calculation method of windage yaw of suspension insulator string behave important practical significance in engineering.
     In this thesis, the researches on windage yaw of high voltage transmission lines and numerical simulation of wind field are firstly reviewed. It indicated that the existing time-history analysis method of the windage yaw of overhead transmission lines behaves some shortcoming, in which spatial correlation effect of wind filed and the effects of various parameters, such as wind speed, height difference, length of span, and height of the line over ground, of transmission lines on windage yaw have not be investigated throughout. To overcome this drawback, the method of numerical simulation of wind field is discussed, and based on the Kaimal spectrum of wind speed fluctuation, in which the variation of wind speed with height above ground is taken into account, and the Davenport coherence function, the fluctuating wind field along the typical transmission line section is simulated by means of WAWS. The finite element models of typical 500kV high voltage overhead transmission line section consisting of bundle conductors, insulator strings and spacers is set up by means of ABAQUS/CAE software. To take into account the dynamic and random effect of wind loads, the statistical results of windage yaw of the typical line section under wind loads, obtained from the time histories of windage yaw responses determined by means of ABAQUS software, are compared with those determined by the traditional method, which reflected that former is larger than the later and this is probably one of the most important reasons causing flashover accidents. Based on the numerical results, an adjustment coefficient of wind load, which is in the range of 1.4-1.6, is suggested to be introduced into the traditional calculation formula of windage yaw of suspension insulator string.
引文
[1]张禹芳.我国500kV输电线路风偏闪络分析[J].电网技术,2005,4:65-67,73.
    [2]胡毅500 kV输电线路风偏跳闸的分析研究.高电压技术[J]. 2004. 8:第30卷第8期:9-10.
    [3]胡毅.影响送电网安全运行的有关问题及对策[J].高电压技术,第31卷第4期2005,4:77-78,91.
    [4]张殿生.国家电力公司东北电力设计院电力工程高压送电线路设计手册[M].第二版,北京,中国电力出版社,2003.
    [5]邵天晓.架空送电线路的电线力学计算[M].第二版,北京,中国电力出版社, 2003.190-194.
    [6]陈勉,张鸣.对采用重锤来改善直线杆塔绝缘子串风偏的看法[J].广东电力, 2000,13(6):18-21.
    [7]郎需军,黄兆峰,李如振等. V型悬垂绝缘子串工程设计计算[J].山东电力技术,2000,6:12-14.
    [8]杨振谷. V形绝缘子串的受力与摆动分析[J].电力建设,1997, 1:33-35.
    [9]刘焕明. 500 kV侯临线286号风偏故障分析[J].山西电力,2004, 6:14-15.
    [10]杨明彬. 330kV兰海Ⅰ回64 #塔中相跳线对塔身主材放电事故的分析[J].青海电力,2000,2: 22-25.
    [11]江慧聪. 220kV梧侣变“8·29”故障分析与处理[J].福建电力与电工,2003,23,(3):39-40,49.
    [12]赵文元.杨保东.输电线路中风偏故障的预防和抑制[J].电力学报,2004,19(1):59-60.
    [13]周丹. 110kV送电线路转角塔中相跳线风偏故障分析[J].云南电力技术,2001,3:29.
    [14]弓建新,秦润生,贾雷亮等. 220 kV输电线路JG1型塔中相跳线风偏问题的探讨[J].山西电力技术,2001,2:11-11,41.
    [15]卢钢,武爱民. 220 kV线路故障分析及应对措施[J].电力学报,2001,2(16): 109-110,124.
    [16] Simiu .E, Scanlan .R .H,刘尚培等译.风对结构的作用[M].上海同济大学出版社,1992.
    [17] Rocha. M. M, Cabral. S. V .S, Riera J. D, A comparison of proper orthogonal decomposition and Monte Carlo simulation of wind pressure [J]. wind Eng.Ind.Aerodyn,2000, 84:329-334.
    [18]李国豪.桥梁结构稳定与振动[M].北京,中国铁道出版社, 1997.
    [19] Deodatis.G. Simulation of ergodic multivariate stochastic process[J]. J. of Eng.Mech.,ASCE,1996,122(8):778-787.
    [20] Shinozuka M. Simulation of multivariate and multidimensional random process[J]. Journal of the Acoustical Society of America,1971,49(1):357-367.
    [21] Shinozuka M ,Jan C M. Digital simulation of random process and its application[J]. Journalof sound and Vibration. 1972,25(1):111-128.
    [22] Iannuzzi A ,Spinelli P. Artificial wind generation and structural response [J]. Journal of Structural Engineering, ASCE 1987,113(12):2382-2398.
    [23] Grigoriu M. On the spectral representation method in simulation[J]. Probabilistic Engineering Mechanics , 1993 ,8 :75– 90.
    [24]王之宏.风荷载的模拟研究[J ].建筑结构学报,1994 ,15(2):41– 52.
    [25] Mignolet M P, Spanos P D. Simulation of homogeneous two-dimensional random fields :part I - AR to ARMA models[J]. part II-MA to ARMA models. Journal of Applied Mechanics ,Transactions of the ASME ,1992 ,59 ,part I :260 - 269 ;part II :270 - 277
    [26]王修琼,张相庭.混合回归模型及其在高层建筑风响应时域分析中的应用[J] .振动与冲击,2000 ,19(1) :5 - 7
    [27] Owen J S etal. The application of auto- regressive time series modeling for the time-frequency analysis of civil engineering structures[J]. Engineering Structures ,2001 ,23 :521 - 536
    [28] Naganuma T, Deodatis G, Shinozuka M. ARMA model for two-dimensional process [J ] .Journal of Engineering Mechanics ,ASCE ,1987 ,113(2) :234– 251
    [29] Samaras E, Shinozuka M,Tsurui A. ARMA representation of random process[J] . J . of Eng.Mech. ,ASCE ,1985 ,111(3) :449 - 461
    [30] Mignolet P M, Spanos P D. Recursive simulation of stationary multivariate random process[J]. Transactions of the ASME ,Journal of Applied Mechanics ,1987 ,54 :674 - 680
    [31]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟[J].空间结构,1996,2(2): 21- 25.
    [32]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制[J].空间结构,2001, 7(3) :3-11.
    [33]向阳,沈世钊,李君.薄膜结构的非线性响应分析[J] .建筑结构学报,1999, 20(6) :38– 46.
    [34]郑佳艳.动态风作用下悬垂绝缘子串风偏计算研究[D].重庆,重庆大学工程力学,2006.
    [35] Bo Yan, Xiaohui Liu, Baoan Liu. Dynamic response analysis of windage yaw of overhead transmission lines [J]. WSEAS Transactions on Applied and Theoretical Mechanics, 2006, 1(1): 90~97.
    [36]谭冠日,严济远,朱瑞兆.应用气候[M].上海科学技术出版社,1997,2:114-115.
    [37]国家电力公司东北电力设计院.电力工程高压送电线路设计手册[M].第二版,北京:中国电力出版社,2003.
    [38]张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985,5:60-69.
    [39]张相庭.工程结构风荷载理论和抗风计算手册[M].上海,同济大学出版社,1990,2:5-10.
    [40]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006,29-42.
    [41]刘小会.架空高压输电线路风偏数值模拟研究[D].重庆,重庆大学工程力学,2007.
    [42] Roshan Fekr M, McClure G. Numerical modeling of the dynamic response of ice-shedding on electric transmission lines[J]. Atmos Res,1998,46:1-11.
    [43] Barbieri N., Honorato de Souza junior O. and Barbieri R. Dynamic analysis of transmission line cables[C]. Part I– linear theory, Mechanical Systems and Sgnal Processing, 2004,18:659-669.
    [44] Barbieri N, Honorato de Souza junior O. and Barbieri R. Dynamic analysis of transmission line cables[C]. Part II– damping estimation, Mechanical Systems and Sgnal Processing, 2004, 18:659-669.
    [45]郑佳艳,严波,刘小会等.悬垂绝缘子串动态响应的数值模拟[J].重庆大学报,2006,29(12):100-103.
    [46] DL5092-1999.110~500kV架空送电线路设计技术规程[S].
    [47]朱伯芳.有限单元法原理和应用[M].水利电力出版社,1998.
    [48]蒋孝熠.有限元法基础[M].清华大学出版社,1992.
    [49]张国瑞.有限元法[M].机械工业出版社,1991.
    [50]王勖成.邵敏.有限单元法基本原理和数值方法[M].清华大学出版社,2000.
    [51] Owen D R J, Hinton E. Finite Elements in Plasticity[M]. Theory and Practice, Pineridge Press Limited,1980.
    [52] Clough R W and Penzien J. Dynamics of Structures[M]. McGraw-Hill,1975.
    [53] NAFEMS Ltd. A Finite Element Dynamics Primer[M]. Pineridge Press Limited 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700