并网风力发电机组的转矩控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类社会生存和发展的重要物质基础,现代社会和现代文明离不开能源的支撑作用。与历史上发达国家工业化过程一样,我国的经济发展需要大量的能源作为保障。从能源的需求和环境保护这两个方面都需要大力发展可再生能源。在以太阳能、风能、生物质能和波浪能等可再生能源中,风能以其良好的投入/产出比和大规模开发利用的能力,成为最具竞争力的可再生能源。随着传统能源的稀缺和风力发电的规模化发展,风电成本越来越具有竞争力,成为环保和廉价新兴能源。风力机技术一直伴随着风电的发展而快速发展,研究风力机技术有利于发展具有自主知识产权的产业,加快风力发电的规模化进程,促进国民经济又好又快发展。
     本文首先从能源和经济发展的关系,论述了可再生能源在经济持续发展和环境保护的重要作用,以较详尽的数据,分析了国内外风力机发展现状,对照了风力机系统的主流结构,分析了风力机系统的控制策略和现代控制方法在风力机系统的应用。接着,将风力机的控制分成两个部分即气动和机械传动部分和并网发电机部分,发电机的电磁转矩联系两个部分,其创新性体现在以下几个方面:
     分析了气动和机械传动部分的结构和模型。受风速的随机变化的作用,风力机风轮的气动转矩将随之变化,但是由于风轮的巨大惯性作用使其转速很难快速变化,因此不能简单地根据风速来调节风轮转。采用与风轮固有动态特性相匹配的参考模型来提供发电机电磁参考转矩,可以使得风力机的工作更加合理和有效。风轮转矩系数随风速和风轮转速呈非线性关系,本文建立了具有永磁同步发电机的变转速风力机非线性模型,采用反馈线性化方法设计出控制器。仿真结果表明在低风速下能够实现最大风能捕获而在高风速下达到发电机恒功率输出。
     双馈电机能够实现风力机的变速运行而只投入少量逆变功率,并可提高并网输出的品质。目前双馈风力机系统逐渐成为并网风力机的主流,而无刷双馈风力机系统仍处于研究试验阶段。本文研究了采用无刷双馈磁阻电机的风力机系统。在电机模型、运行、直接转矩控制和智能控制方面进行了新的探索研究。首先建立了无刷磁阻双馈电机的模型,进而研究这种电机的直接转矩控制,并首次将遗传算法结合模糊控制技术应用到双馈无刷电机的控制中,利用遗传优化模糊控制参数取得了较为满意的结果。
     在风力机的运行过程中,由于风速的随机脉动风力机的机舱和塔架会出现振动。这一现象将影响风力机的正常工作和工作寿命。本文首次将风力机转矩控制和左右方向上振动抑制相结合,通过对风力机机舱和塔架的动力学分析,找出风力机振动的主要模态,并在转矩控制中抑制激发振动的频率,使得风力机平稳工作。
     并网风力机输出功率受发电机的转矩控制,而在直接转矩控制由空间电压向量的选择与向量的作用时间决定。本文在传统的空间矢量脉宽调制(SVPWM)的基础上,采用混合SVPWM,其作用是通过改变逆变器的工作序列来获得对参考电压向量的最佳等效。因此采用SVPWM有利于减少绕组中的电流波动,也就减少了电机功率绕组电流的脉动量,从而提高了风力发电机的发电品质。本文详细分析了各空间矢量系列对电流脉动的影响情况,确定了减少谐波分量的方案并通过仿真验证了这一方案的有效性。
     风力机的现场试验往往受自然条件的限制,风轮模拟器提供了在实验室条件下模拟运行风力机环境。本文从风轮特性入手,分析了用控制电机和传动装置等效风轮的方案,提出了电机直接转矩模拟风轮气动转矩方案。分别采用无差拍控制异步电机和模糊自适应同步电机控制,最后是转矩控制的实验研究,建立了空间矢量脉宽调制的转矩控制平台。对永磁同步电机的转矩控制进行了实验研究并作简要分析,为风力机系统的实验室试验创造了良好的基础。
Energy is an important material foundation for living and developing of human societyand without its supporting there is no modern civilization. Like other industrialized processesof many developed countries, the development of our country also needs large quantity ofenergy. Renewable energy is a feasible solution to deal with the conflict between conventionalenergy and environment. Among renewable energies such as solar energy, wind energy,biomass power and ocean power, wind power is the most competitive one because of niceinvest/output ratio. With the shortage of conventional energy and large-scale deployment ofwind power, the cost of wind power will be more and more reasonable, a truly low pollutionand low cost new energy. Research of wind turbine conversion system and related techniqueswill benefit to the development of knowledge owned techniques, to push forward the processof large-scale wind power, to push forward the development of our economy.
     In the thesis, the relation between energy and development is discussed. Concerning theaction of renewable energy in environment protection, the global status of wind power ispresented with updated information. The structures of wind turbine are compared as well asthe control strategies. It is reasonable to divide the whole system of a wind turbine into twosub-systems, the first one includes aerodynamic and mechanical parts and the second oneincludes a grid-connected generator. The main research work focus on following sections.
     The structure analysis and modeling of the first sub-system are presented in the paper.The aerodynamic torque of a wind turbine is fluctuated, owing to the fluctuation of windspeed. However, the rotor speed will be controlled to meet the requested tip-speed ratio, it isdifficult to track. In this section, a reference model matching the characteristic of the windturbine is applied to generate needed electro-magnetic torque. With this scheme the operationof wind turbines will be more reasonable and effective. There is a nonlinear function of torquecoefficient of a wind turbine, and the model of transmission chain is typically nonlinear.Control approach of this kind is complicated. A output feedback is used to solve the problem.In fact, it is feasible in the control design and simulation.
     The control mean of the second sub-system is torque based. Brushless doubly-fedgenerator has advantages in variable speed wind energy conversion system. The mainresearch object is the reluctance one or BDFRM. In the view of the air gap field of BDFRM,the principles and basic structures of stator and rotor are introduced in detail, at the same timea d-q-0model has been developed under rotating reference frame. With the dynamic equation,three kinds of operating model, synchronous、asynchronous and doubly-fed, are investigated. The analysis of simulation results indicate that the machine possess excellent dynamicperformance under these operating models, a conventional direct torque control model isconstructed, then the paper deeply analyze the advantage and disadvantage of this controlstrategy, simulation results and theory analysis keep high accord, therefore it can be said thatthe simulation model of BDFRM is right.
     Aiming at the shortcoming of the conventional direct torque control, the thesis proposeda novel method to improve dynamic characteristic of machines by application of intelligentcontrol to replace bang-bang control. Firstly, a converter switch-table is established by meansof fuzzy control, then the parameters of fuzzy membership functions and rule-bases table havebeen optimized by through of genetic algorithm. Genetic Algorithm is a kind of excellentintelligent algorithm, it possess great advantage on aspect of function optimizing incomparison with other algorithm. A genetic based fuzzy direct torque control of BDFRM ispresented in the paper, to improve the performance of by optimazing the membershipfunctions and rules, and it is proved effective.
     During its operation, the nacelle and the tower of a large-scale wind turbine willsometimes vibrate owing to the fluctuation of wind speed. This status will influence theperformance and even the life time of the wind turbine. In this paper, a new approach withwind turbine torque control and side vibration control is introduced, and the dynamic analysisis used to find out the main vibration mode of the system. Control scheme will attenuate thisvibration to keep the wind turbine in normal operation.
     The output power of grid connected a wind turbine is regulated by torque from thegenerator. This torque is determined by spatial vectors acting on the control winding and theireffective times. A hybrid SVPWM is used to reduce the current ripples in the control windingand therefore improve the power quality to the grid. In the paper, difference spatial vectorseries are analysis to find out their influences to current ripple, and relevant schemes areprovided to improve the performance.
     The experiment of wind turbine operation is restricted by weather conditions; windturbine emulator is a powerful tool to realize the experiment in laboratory. In the paper windturbine characteristics are discussed, and a scheme of a controlled machine with drive-chainequivalent to a wind turbine is introduced. Direct torque control of asynchronous machinewith dead-beat control and of synchronous machine with adaptive fuzzy control is introducedto emulate aerodynamic torque. Comparative experimental study is done on the test plateform.Experment results are provided and analyzed. It creates a good experiment foundation oflaboratory test of wind turbines.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,(4):345-359
    [2]BPstatistical view of wind energy[R]2007
    [3]Renewable2007—Globle status report[R],2007,www.ren21.net
    [4]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[EB],2007-09-28
    [5]刘细平,于仲安,梁建伟,风力发电技术研究及发展,微电机[J],2007,40(4):76-79
    [6]田德,国内外风力发电技术的现状和发展趋势,新能源产业[J],2007.1
    [7][法]D·勒古里雷斯(著),施鹏飞(译).风力机的理论与设计[M].北京:机械工业出版社,1987:31-33.
    [8]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2006:11-13.
    [9]赵宏图.世界能源格局的变化与调整[J].国际石油经济,2006,(10):17-22
    [10][英]D·F沃恩著,林景尧译。风能设备[M]。机械工业出版社,1990年8月。
    [11]林景尧,王汀江,祁和生。风能设备使用手册[M]。机械工业出版社,1992年10月。
    [12]世界能源理事会。新的可再生能源——未来发展指南[M]。海洋出版社,1998年4月。
    [13] Steinbuch M. Dynamic Modelling and Robust Control of a Wind Energy ConversionSystem[D], PhD Thesis,1989a.
    [14]肖劲松.风力发电机组的动态建模与鲁棒控制[D].北京:清华大学,1996.6
    [15]Novak, P., et al, Modelling and control of variable-speed wind-turbine drive-systemdynamics[J], IEEE control system, Aug.,1995.
    [16]卢强,孙元章,电力系统非线性控制[M],科学出版社,1993
    [17]Song Y. D., Dhinakaran B. and Bao X. Y.,Variable speed control of wind turbines usingnonlinear and adaptive algorithms[J].Journal of Wind Engineering and IndustryAerodynamics[J].2000,85:293-308
    [18]Ronilson Rocha, Peterson Resende, et al. Control of stall regulated wind turbine throughH loop shaping method[C],0-7803-6733-2/01,IEEE2001:925-929
    [19]郑黎明叶枝全.具有失速调节的变转速风力机的动态分析与控制策略[J],太阳能学报,2001,22(3):351-355
    [20]李华德.交流调速控制系统[M].北京:电子工业出版社,2003.1~2.
    [21]林友杰.无刷双馈电机及其智能控制[D].湖南大学硕士论文.2002.1~3.
    [23]臧英杰,吴守箴.交流电机的变频调速[M].北京:中国铁道出版社.1984.2~5.
    [24]高景德,王祥衍,李发海.交流电机及其系统分析[M].北京:清华大学出版社.1993.42-45.
    [25]L.J.Hunt. The Cascade Induction Motor[J].J.IEE.1914,52:406-426.
    [26]F.Creedy. Some Development in Multi-speed Cascade Induction Motors[J].J.IEE.1921,59:511-532.
    [27]Broadway A. R.W., Burbridge L.. Self-cascade Machine: A Low-speed Motor orHighfrequency Brushless Alternator[J]. Proc.IEE.1970,117(7):1277-1290.
    [28]Baader U, Depenbrock M. Direct self-control (DSC) of inverter-fed induction machine; Abasis for speed control without speed measurement[J].IEEE Trans. Indus. Applicant.199228(3):581-588.
    [29]Takahashi. A new quick-response and high-efficiency control strategy of an inductionmotor[J].IEEE Trans. Indus. Applicant.1986,22(5):820-827.
    [30]Brassfield W. R., Spee R,and Habertler T G. Direct Torque Control for BrushlessDoubly-fed Machines[J]. IEEE Trans. Industry Application,1996,32(5):1098-1103.
    [31]王凤翔.双馈调速技术在变速恒频风力发电系统中的应用[J].沈阳工业大学学报.1998,(2):105~109.
    [32]张凤阁,王凤翔,林成武.无刷双馈电机的结构特点与设计原则[J].微特电机.1999(3).21-24.
    [33]张凤阁.磁场调制式无刷双馈电机研究[D].沈阳工业大学博士论文.1999.10-13.
    [34]P.Krause. Analysis of Electric Machinery [M]. McGraw Hill.1986:48-52.
    [35]Betz R. and Jovanovic M.. Introduction to brushless doubly fed reluctance machines–thebasic equations [R]. Tech. rep.. Dept. Elec. Energy Conversion, AalborgUniversity,Denmark.April1998.45-59.
    [36]Liang F., Xu L. and Lipo T.. d-q analysis of a variable speed doubly AC excitedreluctance motor[J].Electric Machines and Power Systems.1991,19(3):125-138.
    [37]王凤祥,张凤阁.磁场调制式无刷双馈交流电机[M].吉林:吉林大学出版社.2004:13-17.
    [38]李夙.异步电动机直接转矩控制[M].北京:机械工业出版社.1994.6-7.
    [39]Schulz E M, Betz R E. Optimal torque per amp for brushless doubly-fed reluctancemachines[C]. IAS2005:1749-1753.
    [40]陈伯时.电力拖动自动控制系统-运动控制系统(第三版)[M].北京:机械工业出版社,2003:49-53
    [41] G.jovanovicm M., Yu J.,and Levi E, Direct Torque Control of Brushless Doubly FedReluctance Machines.Electric[J] Power Components and System.2004(32):941-958.
    [42]R. E. Betz and M. G. Jovanovic. The brushless doubly fed reluctance machine and thesynchronous reluctance machine--A comparison[J]. IEEE Transactions on Indus.Appli.2000,vol.32, no.4.1195~1203..
    [43] Betz R.E. and Jovanovi′c M.G. Comparison of the brushless doubly fed reluctancemachine and the synchronous reluctance machine[R]. Tech. Rep. EE0024,1998:3-14.
    [44]章卫国,杨向忠.模糊控制理论及应用[M].西安:西北工业大学出版社.2000:1-72.
    [45]韩俊峰,李玉惠等.模糊控制技术[M].重庆:重庆大学出版社.2003:1-65.
    [46]Gurocak H.B. A genetic algorithm based method for tuning fuzzy logiccontrollers[J].Fuzzy Sets and System.1999,108:38-47.
    [47]Dumitusche I., Buiu C.. Genetic learning of fuzzy controllers [J].Mathematics andComputers in Simulation.1999,49:13-26.
    [48]Wong S.V., Hamouda A.M.S.. Optimization of fuzzy rules design using geneticalgorithm[J]. Advances in Engineering Software.2000,31:251-262.
    [49]金耀初,蒋静坪.最优模糊控制的两种方法[J].中国电机工程学.1996,16(3):201-204.
    [50]蒋海琳,靳东明.基于基因算法的模糊控制研究[J].电子学报,2002,30(5):676-679.
    [51]诸静.模糊控制原理与应用[M].北京:机械工业出版社.2005:42-152.
    [52] Zadeh L.A. Fuzzy sets[J]. Information and Control,1965,(8):338-353.
    [53]张乃尧.用遗传算法优化模糊控制器的隶属度的参数[J].电气自动化.1996,18(1):4-6.
    [54]顾峻,沈炯,陈来九.遗传算法对模糊控制的优化及应用[J].东南大学学报(自然科学版).1998,28(a11):109-119.
    [55]王宏杰,邱熔胜,杨智.用遗传算法设计模糊控制器[J].甘肃工业大学学报,1997.23(4):56-61.
    [56]张晓绩,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139.
    [57]汪秉文,范衡,梁尧成.一种基于GA的模糊控制器直接设计方法[J].华中理工大学学报,1998,26(5):81-82.
    [58]王日宏.不同目标函数对用GA寻优Fuzzy控制规则的影响[J].微型电脑应用,2000,16(1):22-23.
    [59] Rudolph.G. Convergence analysis of canonical genetic algorithms[J]. IEEE Transactionon Neural Networks.1994,5(1):96-101.
    [60]杨俊华.无刷双馈风力发电系统及其控制研究[D].华南理工大学博士论文.2006:1-19.
    [61] Yamamoto M., Motoyoshi O. Active and reactive power control for doubly-fed woundrotor induction generator[J].IEEE Trans. Power Electronics.1991,l.6(4):624-629.
    [62]杜秀霞,倪受元.抽水蓄能电站变速恒频运行分析与设计[J].电工电能新技术.1993,(3):13-17.
    [63]林瑞光,赵荣祥,黄进,许大中.水轮发电机交流励磁变速运行的控制策略[J].电工技术学报.1995,10(3):1-5.
    [64] Zhang L., Watthanasan C.. A matrix converter excited doubly-fed induction machine as awind power generator[C]. Proc.in Seventh International conference on Power Electronicsand Variable Speed Drivers,1998:523-537.
    [65]黄科元,贺益康,卞松江.矩阵式变换器交流励磁的变速恒频风力发电系统研究[J].中国电机工程学报,2002,.22(11):100-105.
    [66]卞松江.变速恒频风力发电关键技术研究[D].浙江大学博士论文,2003:35-40.
    [67] Wu R., Dewan S.B., Slemon G..R.. Analysis of an ac-to-dc voltage source converterusing PWM with phase and amplitude control[J]. IEEE Trans. Ind. Applicant.1991,27(2):355-364.
    [68] Blasko V., Kaura V.. A new mathematical model and control of a three-phase AC-DCvoltage source converter[J].IEEE Trans. Power Electronics,1997,12(1):116-123.
    [69]熊健,张凯,裴雪军,陈坚.一种改进的PWM整流器间接电流控制方案仿真[J].电工技术学报.2003.18(1):57-63.
    [70]史伟伟,蒋全,胡敏强,唐国庆,蒋平.三相电压型PWM整流器的数学模型和主电路设计[J].东南大学学报(自然科学版),2002,32(1):50-55.
    [71] Pena R., Clare J.C.and Asher G.M. Doubly fed induction generator using back-to-BackPWM converters and its application to variable-speed wind-energy generation[J]. IEEProc. Electr. Power Appl.,1996,143(3):478-484.
    [72]赵振波,李和明.单位功率因数PWM整流器双闭环PI调节器设计[J].电力电子技术,2003,37(5).68-84.
    [73]董晓鹏.三相电压型单位功率因数PWM整流器的研究[J].电力电子技术,1997,31(4):39-41.
    [74]董晓鹏,裴云庆.一种电压型PWM整流器控制方法的研究[J].电工技术学报.1998,13(5):31-36.
    [75]张家祥,方凌江,毛全胜.基于MATLAB6.x的系统分析与设计-虚拟现实.西安:西安电子科技大学出版社.2002:112-119.
    [76] Burton T., Sharpe D., Jenkins N., E.Bossanyi, Wind Energy Handbook[M], John Will&Sons,2001
    [77] Bianchi F.D., Battista H.D. and Mantz R.J., Wind Turbine Control Systems:Principles:Modelling and Gain Scheduling Design[M], Springer,2006
    [78] Bosssanyi E.A., Wind Turbine Control for Load Reduction[J], Wind Energy,2003,(6):229-244
    [79] Johnson K. E., Pao L. Y., Balas M. J. et al, Control of Variable-speed Wind Turbines:Standard and Adaptive Techniques for Maximizing Energy Capture, IEEE ControlSystems Magazine,2006,(6):70-81
    [80] Muhando E.B., Senjyu T., Yona A.,et al, Regulation of WTG Dynamic Response toParameter Variations of Analytic wind Stochasticity[J], Wind Energy,2007.5
    [81] Alan D. Wright, Lee J. Finersh and Karl A. Stol, Designing and Testing Controls toMitigate Tower Dynamic Loads in the Controls Advanced Research Turbine, NRELconference paper,2007.1
    [82] K.A. Stol and L.J. Finersh, Wind Turbine Field Testing of State-Space Control Design,NREL Subcontractor Report,2004.9
    [83] Keld Hammerum, A Fatigue Approach to Wind Turbine Control[D], master thesis,Technical University of Denmark,2006
    [84]Mate Jelavic, N. Peric, Ivan Petrovic, Damping of Wind Turbine Tower Oscillationsthrough Rotor Speed Control[C], International Conference On Ecologic Vehicles&Renewable Energy,2007.3
    [85] P.J. Murtagh, A. Ghosh, B.Basu and B.M. Broderick, Passive Control of wind turbineVibrations Including Blade/Tower Interaction and Rotationally Sampled Turbulence[J],Wind Energy,2007
    [86] Olimpo Anaya-lara, F. Michael Hughes, Nicholas Jenkins, Goren Strbac, Rotor FluxMagnitude and Angle Control Strategy for Doubly Fed Induction Generators[J]. WindEnergy,2006,(9):479-495
    [87]雷亚洲,Gorden Lightbody,国外风力发电导则及动态模型简介,电网技术,2005,29(12),pp.27-32
    [88] Vestas V80-1.8MW[R]使用手册
    [89]张新房,徐大平,吕跃刚等,大型变转速风力发电机组的自适应模糊控制[J].系统仿真学报,2004,16(3):573-577
    [90]张新房,徐大平,柳亦兵.定桨距变速风力发电机组的控制测量研究[J].华北电力大学学报,2004,31(5):37-43
    [91]F.Jurado,Jose R. Saenz. An Adaptive Control Scheme for Biomass-Based Diesel-WindSystem[J].Renewable Energy,2003,28:45-57
    [92]杨俊华,李建华,吴捷.无刷双馈风力发电机组的模糊自适应控制[J].电机与控制学报,2006,10(4):346-350
    [93]M.A.Mayosky.Cancelo. Direct Adaptive Control of Wind Energy Conversion SystemUsing Gaussian Networks[J].IEEE Tans. On NN,1999,10(4):898-906
    [94] Al-duwaish H. N., Adaptive Output Feedback Controller for Wind Turbine GeneratorsUsing Neural Networks[J]. Electric Machines and Power Systems,1999,27:465-479
    [95]包能胜,姜桐.微分几何在水平轴恒速风力发电机系统中的应用[J].太阳能学报,1999,20(2):130-134
    [96]包能胜,姜桐,陈庆新.变转速风力机额定风速以上的非线性控制---恒功率输出控制问题[J].控制理论与应用,1999,16(5):747-750
    [97]Boukhezzar B, and Siguerdidjane H., Nonlinear control of variable-speed wind turbinesfor torque limiting and power optimization [J]. Journal of solar energy engineering,2006,128(4):516-530.
    [98]Lima M. J., Silvino J. L., H control for a variable-speed adjustable-pitch wind energyconversion system[C]. Pro. Of the1999IEEE Canadian Conf. on Elec.and ComputerEngineering,1999.2:556-561
    [99]Bonger P. M. M., et al. Load Reduction in a Wind Conversion System Using HController[C].2nd IEEE Conf. on CA,1993.9:965-970
    [100]Rugh W., Analytical framework for gain scheduling. IEEE Contrl SystemMagzine[J].1991,11(1):79-84
    [101] Shamma J., and Athans M., Guaranteed properties of gain scheduled control for linearparameter-varying plants[J]. Automatica27(3):559-564
    [102] Rugh W. J. and Shamma J. S., Research on gain scheduling, Automatica[J].2000,36(10):1401-1425
    [103]Wang C. and Weiss G., Self-Schedual LPV Control of a Wind Driven Doubly-FedInduction Generator[C]. Proc. of the45th IEEE Conf. on Decision and Control,2006.12:1246-51
    [104]R. M. Hilloowala. A Rule-Based Fuzzy Logic Controller for a PWM Inverter in a standAlone Wind Energy Conversion Scheme[J].IEEE Trans. IA.1996,32(1):57-65
    [105]M. G. Simoes et al. Fuzzy Logic Based Intelligent Control of a Variable Speed CageMachine Wind Generation System[J].IEEE Trans. PE,1997,12(1):87-95
    [106]刘新海、于书芳.模糊控制在大型风力发电机控制中的应用[J].自动化仪表,2004,25(5):13-17
    [107] Prats M.M., A New Fuzzy Logic Controller to Improve the Captured Wind Energy in aReal800kW Variable Speed-Variable Pitch Wind Turbine [C].2002IEEE33rd AnnualPower Electronics Spe. Conf.,2002:101-105
    [108] Dadone A., Estimator Based Adaptive Fuzzy Logic Control Technique for a WindTurbine-Generator System[J].Energy Conversion&Management,2003,44:135-153
    [109]Wang L. X., Mendel M., Fuzzy Basis Functions, Universal Approximation, andOrthogonal Least-Squares Learning[J]. IEEE trans. on Neural Networks,1992,3(5):807-814
    [110]Farret F. A., Gules R. and Marian J., Micro-turbine simulator based on speed and torqueof a DC motor to drive actually loaded generators[A]. IEEE0-7803-2672-5/95:89-93.
    [111]Chang L., Doraiswami R., et al, Development of a wind turbine simulator for windenergy conversion systems[A], IEEE0-7803-5957-7/00:550-554.
    [112]Zhong L, Rahman M F, Hu Y W, Lim K W, Analysis of direct torque control inpermanent magnet synchronous motor drivers[J]. IEEE Trans. on powerelectronics.1997,12(3):528-535
    [113]田淳,胡育文,永磁同步电机直接转矩控制系统理论及控制方案的研究.电工技术学报[J],第17卷1期2002:7-11
    [114]CASADEI D., SERRA G., TANI, A., Assessment of Direct Torque Control for InductionMotor Drives [J]. Bulletin of the Polish Academy of Sciences,2006,54(3):237-254
    [115]Habetler T. G., Profumo F., Pastorelli M., Direct Torque Control of Induction MachinesUsing Space Vector Modulation [J]. IEEE Transactions on Industry Application,1992,28(5):1045-1053
    [116] Neves F. A. S., Habetler T. G., Parma, G. G. et al, An Evaluation of SensorlessInduction Motor Drives for Low speed Operation [C]. Congesso Brasileiro DeElectr nica De Potência,1999
    [117]Yen-Shin Lai and Jian-Ho Chen, A New Approach to Direct Torque Control of InductionMotor Drives for Constant Switching Frequency and Torque Ripple Reduction [J]. IEEETransactions on Energy Conversion,2001,16(3),220-226
    [118]黄文新,李勇,胡育文.用空间矢量调制异步电动机的直接转矩控制[J].南京航空航天大学学报,2007,39(1):129-132
    [119] Vasudevan M., Arumugam R. and Paramasivam S., Development of Torque and FluxRipple Minimization Algorithm for Direct Torque Control of Induction Motor Drive [J].Electrical Engineering,2006,89(1):41-51
    [120] Zhong L., Rahman M.F., Hu W.Y., Lim K.W., Analysis of direct torque Control inPermanent Magnet Synchronous Motor Drives[J],IEEE Trans. On P.E,1997,12(3):528-535.
    [121] Rahman M.F., Zhong L., Lim K.W.,A Direct Torque-Controlled Interior PermanentMagnet Synchronous Motor Drive Incorporating Field Weakening[J], IEEETrans,On.IA,1998,34(6):1246-1253.
    [122]李永东,交流电机数字调速系统[M]机械出版社2003
    [123]刘和平,TMS320LF240X DSP结构原理及应用[M],北京航空航天大学出版社2002.
    [124]刘和平,TMS320LF240X DSP C语言开发应用[M],北京航空航天大学出版社2002.
    [125]王成元等矢量控制交流伺服驱动电动机[M]沈阳工业大学出版社1995.6
    [126]符曦高磁场永磁式电动机及其驱动系统[M]机械工业出版社1997.8
    [127]孙增圻等.智能控制理论[M]清华大学出版社广西科学技术出版社[M],1996
    [128]李海波林辉线性光耦HCNR200在电流采样中的应用[J]世界电子元器件2003.11
    [129]Interfacing a TMS320C2x, C2xx, or 'C5x DSP to a TLC5488-Bit A/D Converter[R],www.ti.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700