计及分布式电源的电力系统潮流及可靠性与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国能源消耗的日益增大,以集中式单一供电方式为主要特征的电力系统所引起的环境问题、能源问题以及经济性问题等越来越引起人们的重视,同时为了有效提高能源利用效率和实现电力工业的可持续发展,我国必须加大对诸如微型燃气轮机、太阳能发电、风力发电、燃料电池等各种形式的分布式电源(Distributed Generation,DG)的开发和利用。鉴于DG具有能够安装在负荷中心、低投资成本、能及时跟踪负荷变化,以及提高系统供电可靠性等优点而具有很好的应用前景。通过全面了解不同类型的DG技术,对含DG的电力系统进行合理规划,研究其对电力系统的影响具有重要的理论价值和实际意义。
     本文主要针对含有风力发电、太阳能发电形式的DG的电力系统潮流、规划、可靠性以及稳定性进行研究,主要研究内容可概括为:
     (1)如何较为准确的预测风速,是风电场资源状况评估中比较难以解决的问题。本文以风速为研究对象,根据风速本身具有时序性和自相关性的特点,建立基于时间序列分析的自回归和滑动平均风速预测模型,提出采用长自回归计算残差校验算法进行模型定阶和参数估计。通过对实际风速数据进行测试,验证了本文所提出的预测计算方法的有效性。
     (2)风力发电和太阳能发电作为目前应用最广泛的两种DG形式,接入配电网后对配电网的潮流影响很大,因此有必要将二者结合起来研究,以提高配电网潮流计算模型的准确度。本文提出计及这两种DG的交直流混合迭代潮流计算方法。首先分析了风力发电机和太阳能电池接入配电网后在潮流计算方面所涉及的问题,然后构建含DG的潮流计算模型,并在此基础上,根据配电网特性对灵敏度分析法进行简化,使得能够快速求解断线故障模式下的配电网潮流。通过对测试系统的计算分析表明了文中所提方法的有效性。
     (3)在分析DG接入配电网前后对网络损耗影响的基础上,对配电网扩展规划中DG的选址和定容问题进行研究,提出基于混合模拟退火算法的改进粒子群算法来优化求解分布式电源选址和定容问题。该算法在粒子群个体寻优过程中采用Metropolis准则优选个体最优值,用其结果作为下一代群体中各个体的历史最优解,随着搜索的进行逐步定位在最优解附近区域并进行精确搜索,从而能够快速得到DG位置和容量问题的最优解。通过两个算例将所提出的算法与采用遗传算法、模拟退火算法的计算结果进行对比分析,表明本文算法的可行性和良好的寻优性能。
     (4)在考虑风速的时序性和自相关性、风电机组的功率特性以及强迫停运影响的基础上,建立基于蒙特卡罗方法的风电场可靠性评估模型,并将其与输电网可靠性模型相结合,在满足系统安全运行的前提下,进一步提出以输电网最大负荷供应能力为目标函数的考虑风电场影响的发输电系统可靠性评估模型,对反映风电场影响的相关可靠性指标进行了分析计算。
     (5)建立引入DG后的配电网孤岛划分问题,采用广度优先搜索技术求解该模型。此外,结合配电网孤岛运行方式,对孤岛形成后的负荷点可靠性指标进行分析,应用传统的故障后果分析方法和最小路算法对含DG的配电网供电可靠性进行评估,该评估方法可以用来研究DG本身的随机特性对供电可靠性的影响。以典型测试系统为算例验证了DG合理接入配电网后,可以提高配电网供电可靠性。
     (6)研究大型风电场接入电网后的系统小干扰稳定问题。以单个风力发电机为研究对象,考虑风力发电机传动轴柔性和桨距角控制,建立用于研究系统小干扰稳定性的风电场数学模型,推导出等值风力发电机的线性化方程,通过实际算例分析与各个发电机强相关的振荡模式、阻尼比等参数,探讨风力发电机出力及接入系统的距离等改变时对系统小干扰稳定性的影响。
In recent years, with the rapid growth of energy consumption, the centralized and single power supply mode has caused many environmental issues, energy problems, as well as economic issues, which have aroused extensive concern in the international community. At the same time in order to effectively improve energy efficiency and realize sustainable development of the electric power industry, our country must step up the development and use of Distributed generations (DG). DGs include photovoltaic cells, wind generation, battery storage, fuel cell, etc. These units are usually sited at or near consumers to meet specific needs, low investment cost, be able to track the load changes in time, as well as improve system reliability, etc.With the penetration of DG technologies, DGs have good application foreground in power systems.Based on the introduction of various types of DGs, a systematic study on planning for grid-connected DG system and its impact on the power system has an important practical significance and theoretical value.
     This dissertation devoted to the research on load flow, power system planning, reliability, and stability studies containing DG (mainly wind and solar energy). The major research work is outlines as follows:
     (1) How to forecast wind speed accurately is a difficult problem to evaluate the status of wind energy resources.The paper takes wind speed as investigative object. Wind speed forecast model is built on the base of Auto-Regressive and Moving Average time series model by virtue of wind speed’s time-sequential and self-correlation. A long autoregressive residual error checking algorithm is applied for estimating parameters and calculating the model's order. Based on an actual wind speed data for testing, the proposed method for wind speed forecast is analyzed to exhibit the effectiveness.
     (2) Wind and solar power are two types of DG most widely used at present. When wind and solar power are integrated into distribution network, it has great effect on load flow.Therefore, it is necessary that wind and solar power be integrated in research in order to enhance the accuracy of the load flow calculation model. The paper presents an AC-DC parallel iteration algorithm of load flow. First of all, the main problems of load flow are concerned when wind turbines and solar battery are integrated into distribution network, and then, the power flow calculation model is built including DG. On the basis of them, the sensitivity analysis method for distribution network is simplified in order to analyze the state of system in fault mode. The effectiveness of the proposed method is verified by the test system calculation analysis.
     (3) On the basis of analysing the influence of network loss when DG access to distribution network, the site and size of DG in distribution network expansion planning is researched.The paper presents a new algorithm to optimize the site and size of DG based on integrating the use of Simulated Annealing (SA) and Particle Swarm optimal (PSO) algorithm.The proposed algorithm adopts Metropolis criterion to search for individual optimum value in the individual optimization process and its result becomes basis for the individual optimal solutions of next-generation groups.With the search for the progressive position, the optimal solution is gradually located in the vicinity of the optimal solution, and can get the optimal solution of the site and size problems of DG quickly.With two numerical examples the superiority of the proposed algorithm is demonstrated in comparison with the genetic algorithms, simulated annealing algorithm. The calculation results show that the feasibility and good searching performance of the proposed algorithm.
     (4) On the basis of considering the time sequence and self-correlation of the wind speed, a reliability evaluation model of wind farms integration in power systems based on the Monte-Carlo simulation approach is proposed in this paper. Basing on these, a new reliability evaluation model in generation and transmission systems containing wind farms is proposed on the premise of the power system safety operation, in which the maximum load supplying capacity of transmission systems is used as the objective function, and the proposed model can be used to assess the influence when wind farms are integrated into transmission systems. Some reliability indices are analyzed and calculated to reflect the effects of wind farms.
     (5) The paper builds a divided island model including DG of distribution network. The breadth-first search technology are used to solve the problem.In addition, the paper presents a new reliability evaluation model considering the DGs, which can handle the influence of DGs on the distribution system through failure mode and effect analysis method and the minimal path method for the calculation of the distribution system with DGs.The calculating results indicate that the distributed generation connected to distribution network can improve the reliability of the distributed system.
     (6) The impact of large scale wind power integration on small signal stability problem is studied. The paper takes the wind generator as investigative object. A mathematical model of wind power generation sets for small signal stability analysis is established, which could consider its shaft and pitch control.With the solution of the eigenvalues, the analysis of oscillation modes, damp ratios are performed when operation parameters change such as the output of wind power, the distance to integration and so on.
引文
[1]吴靖,江昊.分布式发电系统的应用及前景[J].农村电气化, 2003, (7):19-20.
    [2]余贻鑫,董存.美加814大停电过程中的电压崩溃[J].电力自动化设备, 2004, 5(3): 4-7.
    [3]丁明,王敏.分布式发电技术[J].电力自动化设备, 2004, 24(7):31- 36.
    [4]胡学浩.分布式发电技术及其并网问题[J ].电工技术杂志, 2004,(10):1- 5.
    [5]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社, 2003.
    [6]程华,徐政.分布式发电中的储能技术[J].高压电器, 2003,39 (3):53- 56.
    [7] ACkerman T,Anderson G,Seder L. Distributed generation: a definition[J].Electic Power System Research,2001,57(6):195-204.
    [8] N.Hadisaid, J.F.Canard, F.Dumas.Dispersed generation impact on distribution networks[J]. IEEE Transactions on Computer Applications on Power, 1999, 12(2):22-28.
    [9]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J],电力系统自动化, 2005,29(24):90-97.
    [10]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12):71-75.
    [11]赵士杭.新概念的微型燃汽轮机的发展[J].燃气轮机技术, 2001,14(2): 8-13.
    [12]郑健超.电力前沿技术的现状和前景[J].中国电力,1999,32(10):9-12.
    [13] Rahman S.Fuel cell as a distributed generation technology[C].Power Engineering Society Summer Meeting, Vancouver, Canada, July, 2001:551-552.
    [14] T. Petru, T. Thiringer, Modeling of wind turbines for power system studies, IEEE Trans. Power System, 2002, 17(4):1132-1139.
    [15]郑剑,刘克,申金平.分布式供电系统对电网的影响[J].东北电力技术,2006,(4):4-6
    [16]刘传铨.计及分布式电源的配电网供电可靠性评估[D].上海交通大学电气工程系,2008,2.
    [17]王振铭,郁刚.我国热电联产的现状、前景与建议[J].中国电力,2003,36(9):43-49.
    [18] Davis, Murray W. Will distributed resources ultimately replace central station generation serving commercial and residential loads?[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2000: 1670-1673.
    [19]分布式能源的主要特征[EB/OL], http://www.china5e.com/kb/kbshow.aspx? kbid=9111b96 b-6fc4-4c28-83ab-89c75c9d96b3&pageid=1.2006-09-02.
    [20]郑海峰.计及分布式发电的配电系统随机潮流计算[D].天津大学电气与自动化工程学院,2006.
    [21]龙泽强.风力发电:21世纪的绿色能源[J].世界科技研究与发展, 2001, 23(4):32-34.
    [22]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用[J].中国电机工程学报, 2001, 12(21):63-66.
    [23]中国风力发电与国外存在的关距有多少?[EB/OL], http://www.cnwp.org.cn/Article/ ShowArticle.asp?ArticleID=712. 2009-01-17.
    [24] Bossanyi E A. Short-term wind prediction using Kalman filters[J].Wind Engineering,1985, 9(1): 1-8
    [25]李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报, 2005, 25(3):115-119.
    [26]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术的研究[J].中国电机工程学报, 2003 ,23(11): 122-125.
    [27] Poller M. Doubly-fed induction machine models for stability assessment of wind farms[C] . Proceedings of IEEE-Power-Tech Conference, Bologna, Italy, 2003.
    [28] Slootweg, J.G., Kling, W.L. The impact of large scale wind power generation on power system oscillations [J]. Electric Power Systems Research, 2003, 67(1):9-20.
    [29]迟永宁,刘燕华,王伟胜等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81.
    [30]刘其辉.变速恒频风力发电系统运行与控制研究[D].博士论文,浙江大学,2005.
    [31]伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述[J].电力系统自动化,2004,28(23):92-96.
    [32]刘其辉,贺益康,卞松江.变速恒频风力发电机空载并网控制[J].中国电机工程学报,2004,24(3):6-11.
    [33]李建林,高志刚,胡书举等.并联背靠背PWM变流器在直驱型风力发电系统的应用[J].电力系统自动化,2008,32(5):59-62.
    [34] Fukami, Tadashi.,Nakagawa, Kenichi., Kanamaru, Yasunori,et.al. A technique for the steady-state analysis of a grid-connected permanent-magnet induction generator[J]. IEEE Transactions on Energy Conversion, 2004, 19(2):318-324.
    [35]杨解君,赖超超.我国太阳能开发利用的现状及其立法诉求[J].甘肃政法学院学报,2008,97:63-69.
    [36]鲁华永,袁越,陈志飞等.太阳能发电技术的探讨[J].江苏电机工程, 2008, 27(1):81-84.
    [37]冯垛生,宋金莲,赵慧等.太阳能发电原理与应用[M].北京:人民邮电出版社,2007.
    [38]陈闽江.光伏发电系统的蒙特卡罗序贯仿真和可靠性分析[D].硕士论文,合肥工业大学,2004.
    [39] Rahman S. Fuel cell as a distributed generation technology[C]. Power Engineering Society Summer Meeting, Vancouver, Canada, July, 2001:551-552.
    [40]衣宝廉.燃料电池现状与未来[J].电源技术, 1998, 22(5):216-221.
    [41]毕道治.中国燃料电池的发展[J].电源技术, 2000, 24(2):103-107.
    [42]赵士杭.新概念微型燃汽轮机的发展[J].燃气轮机技术, 2001,14(2):8-13.
    [43]曹稳根,段红.我国生物质能资源及其利用现状[J].安徽农业科学, 2008,36(14): 6001-6003.
    [44]邓隐北,熊雯.海洋能的开发与利用[J].可再生能源, 2004, 3(115):70-72.
    [45]杨素萍,赵永亮,栾凤奎,于静冉.分布式发电技术及其在国外的发展状况[J].电力需求侧管理, 2006,(2):57-60.
    [46]王成山,高菲,李鹏等.可再生能源与分布式发电接入技术欧盟研究项目述评[J].南方电网技术, 2008, 2(6):1-6.
    [47]梁振锋,杨晓萍,张娉.分布式发电技术及其在中国的发展[J].西北水电,2006,(1):51-53.
    [48]梁志鹏,谢正武.中国分布式发电的机遇和挑战[J].节能与环保,2004,(11):11-13.
    [49]刘丽红,袁益超,刘聿拯.分布式供能的现状与发展[J].热力发电,2006,(8):4-7.
    [50]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[EB/OL], 2007-09-28. http://www.sdpc.gov.cn/zcfb/zcfbtz/2007tongzhi/W020070904607346044110.pdf.
    [51]江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42(3):345-359.
    [52]白明,许敏,崔新雨.基于可再生能源的分布式发电技术的应用与前景[J].可再生能源, 2008,2:20-22.
    [53]杨培宏,刘文颖.分布式发电的种类与前景[J].农村电气化, 2007, 3:54-56.
    [54] EI- Khattam W, Hegazy Y.G, Salama M.M.A. Stochastic Power Flow Analysis of Electrical Distributed Generation Systems[C].2003 IEEE Power Engineering Society General Meeting, 2003,2:1141-1144.
    [55] Zhu Y.,Tomsovic K. Adaptive Power Flow Method for Distribution Systems With Dispersed Generation[J]. IEEE Transactions on Power Delivery, 2002, 17(3):822-827.
    [56] Naka Shigenori, Genji Takamu, Fukuyama Yoshikazu. Practical equipment models for fast distribution power flow considering interconnection of distributed generators[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2001, 2:1007-1012.
    [57]王成山,郑海峰,谢莹华,陈恺.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44.
    [58]吴义纯,丁明,张立军.含风电场的电力系统潮流计算[J].中国电机工程学报,2005,25(4):36-39.
    [59]王海超,周双喜,鲁宗相等.含风电场的电力系统潮流计算的联合迭代方法及应用[J].电网技术,2005,29(18):59-62.
    [60] Nara Koichi, Hayashi Yasuhiro, Ikeda Kazushige, et al. Ashizawa. Application of tabu search to optimal placement of distributed generators[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2001, 2:918-923.
    [61] Celli G, Pilo F. Optimal Distributed Generation Allocation in MV Distribution Networks[C]. Proceedings of Transmission and Distribution Conference and Exposition, 2001, 2:622-627.
    [62] Celli G, Pilo F. MV network planning under uncertainties on distributed generation penetration[C]. IEEE Power Engineering Society Summer Meeting, 2001, 1:485-490.
    [63] Waltencir S.Andrade, Carmen L.T.Borges. Modeling Reliability Aspects of Distributed Generation Connected to Distributed Systems[C]. IEEE Power Engineering Society Summer Meeting, 2006, 1-6.
    [64]栗文义,张保会,巴根.风能大规模利用对电力系统可靠性的影响[J].中国电机工程学报,2008,28(1):100-105.
    [65] Hegazy Y.G, Salama M.M.A, Chikhani A.Y. Adequacy assessment of distributed generation systems using Monte Carlo Simulation[J]. IEEE Transactions on Power Systems, 2003, 18(1):48-52.
    [66]马立克,王成山.计及风能/光能混合发电系统的配电系统可靠性分析[J].电力系统自动化, 2005, 29(23):33-38.
    [67] Castro Rui M G,Ferreira Luis A F M.A comparison between chronological and probabilistic methods to estimate wind power capacity credit[J].IEEE Transactions on Power Systems, 2001, 16(4):904-909.
    [68] Leite Da Silva Armando M, Manso Luiz Ant?nio F, Sales Warlley S, et al.Application of Monte Carlo simulation to generating system well-being analysis considering renewable sources[J]. European Transactions on Electrical Power, 2007, 17(4):387-400.
    [69] Karki Rajesh, Hu Po, Billinton Roy. A simplified wind power generation model for reliability evaluation [J]. IEEE Transactions on Energy Conversion, 2006, 21(2):533-540.
    [70] Rajesh Karki, Po Hu. Wind power simulation model for reliability evaluation[C]. Canadian Conference on Electrical and Computer Engineering, 2005:541-544.
    [71]王志群,朱守真,周双喜等.分布式发电对配电网电压分布的影响[J].电力系统自动化, 2004, 28(16):56-60.
    [72] Chiradeja Pathomthat, Ramakumar R. An approach to quantify the technical benefits of distributed generation[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 764-773.
    [73]陈海焱,段献忠,陈金富.分布式发电对配网静态电压稳定性的影响[J].电网技术, 2006,30(19):27-30.
    [74]葛清,应康,夏翔等.分布式发电对电压跌落及失电损失分摊的影响[J].华东电力,2007,35(4):308-310.
    [75] Salman S K.The impact of embedded generation on voltage regulation and losses of distribution networks[C]. IEE Colloquium on the Impact of Embedded Generation on Distribution Networks, 1996, 2/1-2/5.
    [76] Scott N C,Atkinson D J,Morrell J E.Use of load control to regulate voltage on distribution networks with embedded generation[J].IEEE Transactions on Power Systems,2002,17(2):510-515.
    [77] Alshamali M,Fox B.Unsymmetrical faults and their potential for nuisance tripping of embedded generators[C]. Seventh International Conference on Developments in Power System Protection, 2001:238-241.
    [78] Jenkins N, Strbac G, Jenkins. Impact of embedded generation on distribution system voltage stability[C].IEE Colloquium on Voltage Collapse, 1997: 9/1-9/4.
    [79] Craig L M, Jenkins N. Performance of a wind turbine connected to a weak rural network [J]. Wind Engineering,1995, 19(3):27-30.
    [80] Salman S K, Jiang F. Impact of embedded wind farms on voltage control and losses of distribution networks[C]. International Conference on Electric Power Engineering, 1999,43.
    [81] Surender Dahiya, Jain D.K, Kumar Ashok. Power quality issues of embedded generation[C]. 2006 IEEE Power India Conference, 2005, 128-131.
    [82] Ake Larsson. Flicker Emission of Wind Turbines During Continuous Operation[J]. IEEE Trans. Energy Conversion,2002, 17(1):114-118.
    [83] McDermottT E, Dugan R C. Distributed generation impact on reliability and power quality indices[C]. Rural Electric Power Conference, 2002: D3-D3_7.
    [84]吴学光.风电场并网运行的数学建模及遗传算法模型优化研究[D].武汉:武汉大学, 2000.
    [85] Jenkins N, Strbac G. Effects of small embedded generation on power quality[C]. IEE Colloquium on Issues in Power Quality, 1995, 6/1-6/4.
    [86]曹发彦,吴丹岳,陈树棠.风力发电对电网的影响及对策[J].福建电力与电工,2006,(2):35-37.
    [87] Muller H, Rudolf A, AUMAYR G. Studies of distributed energy supply systems using an innovative energy management system[C]. Proceedings of 2001 IEEE power engineering society meeting. 2001,87-90.
    [88]孙涛,王伟胜,戴慧珠等.风力发电引起的电压波动和闪变[J].电网技术, 2003, (12):62-66.
    [89]吴汕,梅天华,龚建荣等.分布式发电引起的电压波动和闪变[J].能源工程, 2006, (4):54-58.
    [90]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算[J].电力系统自动化, 2007,31(3):19-23.
    [91] Dai Min, Marwali Mohammad N, Jung Jin-Woo,et al. Power flow control of a single distributed generation unit with nonlinear local load[C]. IEEE PES Power Systems Conference and Exposition, 2004, 398-403.
    [92] Liu Zhengyi, Zeng Xiangjun, Tan Shuntao, et al. A novel scheme of stability control for distributed generation systems[C]. 2004 International Conference on Power System Technology, POWERCON 2004, 2: 1528-1531.
    [93]韦钢,吴伟力,胡丹云等.分布式电源及其并网时对电网的影响[J].高电压技术, 2007, 33(1): 36-40.
    [94]王健,康龙云,曹秉刚.可再生能源分布式发电系统能量互补控制的研究[J].西安交通大学学报,2005,39(7):766-770.
    [95] Bollen M.H.J, Sannino A. Voltage control with inverter-based distributed generation[J]. IEEE Transactions on Power Delivery,2005, 20(1):519-520.
    [96] Kumpulainen Lauri Kumpulainen,Kauhaniemi Kimmo T. Analysis of the impact of distributed generation on automatic reclosing[C]. 2004 IEEE PES Power Systems Conference and Exposition, 2004, 603-608.
    [97] Dugan R C,McDermott T E. Operating conflicts for distributed generation on distribution systems[C]. Rural Electric Power Conference, 2001, a3/1-a3/6.
    [98] Salman S K, Rida I M. Investigating the impact of embedded generation on relay settings of utilities electrical feeders[J]. IEEE Transactions on Power Delivery,2001, 16(2):246-251.
    [99] Girgis A, Brahma S. Effect of distributed generation on protective device coordination in distribution system[C]. 2001 Large Engineering Systems Conference on Power Engineering, 2001, 115-119.
    [100] Redfern M A, Barrett J I, Usta O et al. A new microprocessor based loss of grid protection for embedded generation[C]. Advances in Power System Control, Operation and Management, 1993, (1):373-378.
    [101] Redfern M A, Usta O, Fielding G et al. Power based algorithm to provide loss of grid protection for embedded generation[C]. IEE Proceedings of Generation,Transmission and Distribution, 1994, 141(6): 640-646.
    [102] Ault G.W, McDonald J.R, Burt G.M. Strategic analysis framework for evaluating distributed generation and utility strategies[J]. IEE Proceedings: Generation, Transmission and Distribution, 2003, 150(4): 475-481.
    [103] Edwards F V, Dudgeon G J W, McDonald J R, et al. Dynamics of distribution networks with distributed generation[C]. IEEE Power Engineering Society Summer Meeting, 2000, (2):1032-1037.
    [104] Engel M V. Markets for distributed generation[C]. IEEE Power Engineering Society SummerMeeting, 2000,(1):52-53.
    [105] Coles L, Beck R W. Distributed generation can provide an appropriate customer price response to help fix wholesale price volatility[C]. IEEE Power Engineering Society Winter Meeting, 2001,(1):141-143.
    [106] Karki Rajesh, Hu Po, Billinton Roy. A simplified wind power generation model for reliability evaluation[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 533-540.
    [107] D'Annunzio C, Santoso S. Wind power generation reliability analysis and modeling[C]. IEEE Power Engineering Society General Meeting, 2005, 35-39.
    [108] Divya K.C, Rao P.S. Nagendra. Models for wind turbine generating systems and their application in load flow studies[J]. Electric Power Systems Research, 2006, 76(9): 844-856.
    [109]丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备, 2005,25(8):32-34.
    [110] Alexiadis M, Dokopoulos P, Sahsamanoglou H et al. Short term forecasting of wind speed and related electrical power [J]. Solar Energy, 1998,63(1):61-68.
    [111]吴兴华,周晖,黄梅.基于模式识别的风电场风速和发电功率预测[J].继电器, 2008,36(1):27-32.
    [112] Bossanyi E A. Short-term wind prediction using Kalman filters[J].Wind Engineering, 1985,9(1):1-8.
    [113]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [114] Wang P, Billinton R. Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply [J]. IEE Proceedings: Generation, Transmission and Distribution, 2001, 148(4): 355-360.
    [115]杨叔子,吴雅,王治藩等.时间序列分析的工程应用[M].武汉:华中科技大学出版社, 1991.
    [116] Billinton R, Chen H, Ghajar R. Time-series models for reliability evaluation of power systems including wind energy[J]. Microelectronics and Reliability, 1996, 36(9):1253–1261.
    [117]杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业学院出版社, 1986.
    [118] Sinqh R.K, Goswami S.K. Optimum siting and sizing of distributed generations in radial and networked systems [J].Electric Power Components and Systems, 2009,37(2):127-145.
    [119] Feijoo Andres E., Cidras Jose. Modeling of wind farms in the load flow analysis[J]. IEEE Transactions on Power Systems, 2000, 15(1):110-115.
    [120]王海超,周双喜,鲁宗相等.含风电场的电力系统潮流计算的联合迭代方法及应用[J].电网技术,2005,29(18):59-62.
    [121]郑超,周孝信,李若梅等. VSC-HVDC稳态特性与潮流算法的研究[J].中国电机工程学报,2005,25(6):1-5.
    [122]陈海焱,陈金富,段献忠.含分布式电源的配电网潮流计算[J].电力系统自动化,2006,30(1):35-40.
    [123] LI Geng-yin, ZHOU Ming, HE Jie, el al. Power flow calculation of power systems incorporating VSC-HVDC [C]. International Conference on Power System Technology, 2004, 2:1562-1566.
    [124]王锡凡.现代电力系统分析[M].北京:科学出版社,2003.
    [125]王锡凡,王秀丽.实用电力系统静态安全分析[J].西安交通大学学报, 1988, 22(1):25-36.
    [126] ZHU Y, Tomsovic K. Adaptive power flow method for distribution systems with dispersed generation[J]. IEEE Transactions on Power Delivery, 2002, 17(3):822-827.
    [127]张奇.配电网规划中分布式电源的选址和定容[D].山东:山东大学硕士论文,2008.
    [128] Mantaway A.H., Abdel-Magid Y.L., Selim S.Z. A simulated annealing algorithm for unit commitment[J]. IEEE Trans. on Power Systems, 1998, 13 (1): 197-204.
    [129] Juste K.A., Kita H., Tanaka E., et al. An evolutionary programming to the unit commitment problem[J]. IEEE Trans. on Power Systems, 1999, 14, (4):1452-1459.
    [130]陈烨,赵国波,刘俊勇.用于机组组合优化的蚁群粒子群混合算法[J].电网技术, 2008,32(6):52-56.
    [131]张旭辉,张礼勇,梁宵.基于改进粒子群优化算法的电力线通信多径传输模型参数辨识[J].电网技术,2009,33(1):75-79.
    [132] Carpinelli G, Celli G, Pilo F, et al. Distributed generation siting and sizing under uncertainty[C].IEEE Porto Power Tech Conference,2001,7.
    [133] Narayan S.Rau,Yih-heui.M. Optimum Location of Resource in Distributed Planning[J]. IEEE Trans.on Power System,1994,9(4):2014-2020.
    [134] M.Gandomkar, M. Vakilian, M.Ehsan. A Genetic-Based Tabu Search Algorithm for Optimal DG Allocation in Distribution Networks[J]. Electric Power Components and Systems,2005, 33:1351-1362.
    [135] J.O.Kim,S.K.Park, K.W.Park, et al. Dispersed Generation Planning Using Improved Hereford Ranch Algorithm[J]. Electric Power System Research,1997, 47:47-55.
    [136] M.Gandomkar, M. Vakilian, M.Ehsan. A Combination of Genetic Algorithm and Simulated Annealing for Optimal DG Allocation in Distribution networks[C]. Electrical and Computer Engineering, Canadian Conference on.2005:645-648.
    [137]王成山,陈恺,谢莹华,郑海峰.配电网扩展规划中分布式电源的选址和定容[J].电力系统及其自动化,2006,30(3):38-43.
    [138] Rutenbar, R.A. Simulated annealing algorithms: An overview[J]. IEEE Trans on Circuits and Devices Magazine, 1989, 5(1):19-26.
    [139]刘涌,侯志俭,蒋传文.求解机组组合问题的改进离散粒子群算法[J].电力系统自动化, 2006, 30(4): 35-39.
    [140]金义雄,程浩忠,严健勇等.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报, 2005, 25(4):46-50.
    [141]孙力勇.电力市场环境下发电公司的短期经济运行研究[D].上海:上海交通大学博士学位论文, 2007.
    [142] Li Junjun, Wang Xihuai. A Modified Particle Swarm Optimization Algorithm [J]. Intelligent Control and Automation, 2004, 1:354-356.
    [143]侯云鹤,鲁丽娟,熊信艮等.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100.
    [144] Narayan S.Rau, Yih-heui.M. Optimum Location of Resource in Distributed Planning [J]. IEEE Trans.on Power System, 1994, 9(4):2014-2020.
    [145] VALLEE Francois, LOBRY Jacques, DEBLECKER Olivier. Impact of the wind geographical correlation level for reliability studies[J].. IEEE Transactions on Power Systems, 2007, 22(4): 2232-2239.
    [146] EHSANI A, FOTUNI M, ABBASPOUR A, et al. An analytical method for the reliability evaluationof wind energy systems[C]. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2007, 1-7.
    [147]吴义纯,丁明.风电场可靠性评估[J].中国电力,2004,37(5):81-84.
    [148] BARBERIS N N, HOLMSTROM Ole, BAK-JENSEN Birgitte, et al. Aspects of relevance in offshore wind farm reliability assessment [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 159-166.
    [149] BILLINTON R, GUANG Bai. Generating capacity adequacy associated with wind energy [J]. IEEE Transactions on Energy Conversion, 2004, 19(3):641-646.
    [150] Wang P, BILLINTON R. Reliability benefit analysis of adding WTG to a distribution system[J]. IEEE Transactions on Energy Conversion, 2001, 16(2):134-139.
    [151]郭永基.电力系统可靠性原理和应用[M].北京:清华大学出版社,1986.
    [152]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.
    [153] Wang P, BILLINTON R. Reliability benefit analysis of adding WTG to a distribution system[J].. IEEE Transactions on Energy Conversion, 2001, 16(2):134-139.
    [154]吴义纯.含风电场的电力系统可靠性与规划问题的研究[D].合肥:合肥工业大学博士论文,2006.
    [155]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用[M].水利电力出版社,1986.
    [156]徐钟济.蒙特卡罗方法[M]..上海科技出版社,1985.
    [157] Giorsetto P, Utsurogik F. Development of a new procedure for reliability modeling of wind turbine generators[J]. IEEE Transactions on Power Apparatus and System.1982, 102(1):134-143.
    [158]杨莳百.发电系统可靠性分析原理和方法[M].水利电力出版社,1985.
    [159]申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算[J].电网技术, 2002, 26(8):8-11.
    [160]李春兰.风电系统故障分析—并网型风力发电机接入点故障分析[D].大连:大连理工大学, 2003.
    [161] IEEE Reliability Test System -1996 -a report prepared by the reliability test system task force of the application of probability methods subcommittee [J]. IEEE Trans on power systems, 1999, 14(3): 1010-1018.
    [162] Duttagupta Suchismita S, Singh Chanan. A reliability assessment methodology for distribution systems with distributed generation[C]. IEEE Power Engineering Society General Meeting, 2006, 1-7.
    [163] Bollen M.H.J, Sun Y, et al. Reliability of distribution networks with DER including intentional islanding[C]. International Conference on Future Power Systems, 2005, 1-6.
    [164]别朝红,王秀丽,王锡凡.复杂配电网的可靠性评估[J].西安交通大学学报, 2000, 34(8): 9-13.
    [165]陈文高.配电系统可靠性实用基础[M].北京:中国电力出版社,1998.
    [166]胡蓉,张焰,范超等.配电网规划后评估指标体系的研究[J].华东电力, 2007,35(8):70-74.
    [167]刘传铨.计及分布式电源的配电网供电可靠性评估[D].上海:上海交通大学硕士论文, 2008.
    [168] Fotuhi-Firuzabad, Mahmud, Rajabi-Ghahnavie, Abbas. An Analytical Method to Consider DG Impacts on Distribution System Reliability[C]. IEEE Transmission and Distribution Conference&Exhibition, 2005,1-6.
    [169]李明东,别朝红,王锡凡.实用配电网可靠性评估方法的研究[J].西北电力技术, 1999,2:1-6.
    [170] R.Billinton, S. Kumar. A reliability test system for educational purposes-basic results [J].IEEE transactions Power Systems, 1990, 5(1):319-325.
    [171]王承煦,张源.风力发电[M].北京:中国电力出版社, 2003.
    [172] J.G. Slootweg. Wind Power: Modeling and Impact on Power System Dynamics [D], Delft University of Technology, 2003.
    [173]雷亚洲.与风电并网相关的研究课题[J].电力系统自动化. 2003, 27(8):84-89.
    [174]马幼捷,张继东.风电场的稳定问题[J].可再生能源. 2006, (3):37-39.
    [175]汤宏,吴俊玲,周双喜.包含风电场电力系统的小干扰稳定分析建模和仿真[J].电网技术, 2004, 28(1):38-41.
    [176] Xianqi Li, Zhiyuan Zeng, Jianzhong Zhou, etc. Small signal stability analysis of large scale variable speed wind turbines integration [C]. Electrical Machines and Systems, ICEMS 2008. International Conference , 2008,2526-2530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700