发动机复合材料导向叶片防冰性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机在负温云层中飞行时,云层中的过冷水滴撞击到其迎风表面后会冻结而发生结冰现象。飞机结冰会破坏飞机迎风面的气动外形和影响外置传感器的正常工作,是导致飞行事故的主要原因之一。为提高飞机飞行的安全性,需要采取防护措施以应对飞机结冰,因此飞机的结冰机理和防/除冰方法得到了广泛研究。复合材料具有比强度高、重量轻等特点,在现代飞机上得到了广泛应用,由于复合材料和金属材料的物性有较大差异,因此对复合材料部件的防/除冰性能进行研究势在必行。本文采用数值模拟和冰风洞试验的方法对某型复合材料发动机导向叶片的防冰性能进行了研究。
     本文工作主要有以下几个方面:
     1)概述了飞机结冰的原因、危害和防护方法,介绍了飞机结冰、防/除冰研究的方法和现状,分析了复合材料在飞机上的应用及对复合材料部件进行防/除冰性能研究的必要性。2)采用蒸发循环制冷机组和冷却涡轮组联合制冷获得冷却空气,由气/液二流体喷嘴获得小尺寸雾化水滴,建立了研究用小型直流冰风洞系统;讨论了冰风洞模拟的结冰气象条件中各参数的测量方法,结合数值模拟对冰风洞的水滴撞击和结冰进行了运行调试。3)设计制作了复合材料导向叶片的电加热防冰结构,在小型冰风洞中进行了单区加热状态下的防冰试验,根据试验结果分析了不同来流风速、结冰气象条件、防冰方式对电加热防冰结构的防冰性能影响;在相同来流速度和结冰气象条件下,对单区加热和双区加热两种加热方式进行了防冰试验,分析了对复合材料而言两种电加热方式的优缺点;数值模拟了冰风洞试验工况下导向叶片的防冰性能,将计算结果与试验结果进行了对比分析,验证了数值模拟方法的可行性,为设计真实发动机工况下导向叶片的电热防冰结构打下了基础。4)采用数值模拟方法对原发动机导向叶片热气防冰结构内流动与换热以及外部水滴撞击特性进行了分析;在此基础上对导向叶片热气防冰结构进行了改进,采用前缘冲击射流结合微小防冰通道的换热结构提高结冰区的防冰性能,改变防冰排气孔形式以增强排气形成的气膜对溢流水膜和外部过冷水滴的吹袭;对改进前后的热气防冰结构的防冰性能进行了对比分析。5)设计制作了改进后的复合材料导向叶片热气防冰结构,在冰风洞中对其防冰性能和排气气膜对溢流水膜的吹袭效果进行了测试,分析了不同供气参数对热气防冰系统的影响。6)总结了本文的研究工作,对后续的研究工作提出了展望。
When aircraft fly under icing condition, the impingement of super-cooled droplets in the cloudson the exposed surfaces of aircraft may cause ice accretion. Accreted ice on the aircraft has severelyadverse effects on flight safety, like changing the aerodynamic shape of aircraft and causing errors tothe sensors, and has been one of the main reasons of aircraft disasters. Anti-icing or de-icing systemmust be equipped to ensure flying safety. Efforts have been made on the research of theory of aircrafticing and methods of de-icing and anti-icing.
     Composite has been widely used on modern aircraft. Though many differences betweencomposite and metal meterails, there lacks research of composite assembly anti-icing and de-icingsystem where potential damage exists. To evaluate composite engine inlet vane anti-icing system,icing wind tunnel experiments and numerical simulation were carried out in this paper.
     The followings are the the main works in this thesis:1) The cause, hazards of aircraft icing andmethods of protection and the application of composite on aircraft were introduced, the ways ofinvestigation and the state-of-art of icing and anti-,de-cing, and the necessity of research of anti-icingof composite assembly were summarized.2) A small open-circuit icing wind tunnel based on highpressure air source was built, in which the air source is the air compressor sets and the refrigerantsystem is a combination of Freon refrigerator and air turbines. The spray systems were consisted ofair/fluid nozzles. The measurement of the icing condition parameters of the icing wind tunnel wasdiscussed. The running tests of impingment and icing were carried out and the results were vadidatedby numecial simulation.3) Electro-thermal anti-icing structure on a composite engine inlet vane wasdesigned. Anti-icing experiments of the structure were run in the small open-circuit icing wind tunnel.Single zone heating tests were carried out to evaluate the influence of flying and meteorologicconditions and different anti-icing modes. Two-zones heating tests were carried out and comparedwith single zones heating tests to evaluate the influence of heating methods to the temperaturedistribution of vane. Impingement characters of engine inlet vane under small icing wind tunnelcondition were calculated and the influence of flying and meteorologic condition was analized; theanti-icing thermal load under test conditions was calculated. Electro-thermal anti-icing of compositeengine inlet vane under tests conditions was numerical simulated. The results were validated bycompare with the experiment results and indicate the capability of the design of electro-thermalanti-icing system under real engine condition.4) A new hot-air anti-icing structure of composite engine inlet vane was developed after the analysis of original system by numerical simulation of itsinner flow and heat transfer and super-cooled droplets impingement microchannels and jets were usedto enhance the heat transfer characteristics of leading edge.A narrow gap was opened and assigned onthe vane surface at the rear end of the anti-icing tunnels, and the exhaust hot-air was released from thegap to form an air film on the outside surface, which was supposed to prevent the droplets fromimpinging to the surface and sweep the droplets and running back water away. The thermodynamicanalysis of the original and newly developed anti-icing structure was presented to compare the effectsto heat transfer and droplet impingment.5) Experiments of the developed hot-air anti-icing structurewere run in the icing wind tunnel to evaluate the effects of microchannels and jets to anti-icing, andair film to sweep the running back water.6) The work in this theis was summarized and some newideas were presented
引文
[1]裘燮纲,韩凤华.飞机防冰系统[M].航空专业教材编审组,1985.
    [2] Jr Harold E.Addy,Andy P. Broeren,Joseph G.Zoeckler,et al. A Wind Tunnel Study of Icing Effects ona Bussiness Jet Airfoil[R]. NASA/TM-2003-212124/AIAA2003-727,2003.
    [3] S.Thimas,Cassoni R,C.MacArthur. Aircraft Anti-Icing and Deicing Techniques and Modeling[R].AIAA-96-0390,1996.
    [4] FAA Technical Center. Aircraft Icing Handbook. Volume1,2,3[R]. DOT/FAA/CT-88/8-1,
    [5] M.B.Bragg, T.Hutchison, J.Merret, et al. Effect of Ice Accretion on Aircraft Flight[R].AIAA-2000-0360,2000.
    [6] Aircraft Icing Handbook[M]. Civil Aviation Authority, Lower Hutt,New Zealand,2000.
    [7] I.Paraschivoiu,F.Saeed. Aircraft Icing[M]. John Wiley&Sons,INC.,
    [8] G.Merritt Preston,Calvin C.Blackman. Effects of Ice Formations on Airplane Performance in LevelCruising Flight[R]. TN1598,1948.
    [9] A.Rodert Lewis,Jackson Richard. A Description of the JU88AirplaneAnti-icing Equipment[R].1942.
    [10] Kamel Al-Khalil. Assessment of Effects of Mixed-Phase Icing Conditions on Thermal Ice ProtectionSystems[R]. DOT/FAA/AR-03/48,2003.
    [11] Advisory Circular91-15A. Federal Aviation Administration,1996.
    [12] Frank T.Lynch,Abdollah Khodadoust. Effects of Ice Accretions on Aircraft Aerodynamics[J].Progress in Aerospace Sciences,2001,37,669-767.
    [13] M. G. Potapczuk,B.M.Berkowitz. Experimental Investigation of Multielement Airfoil Ice Accretionand Resulting Performance Degradation[J]. Journal of Aircraft,1990,27(8),679-691.
    [14] Michael Papadakis,R. Elangonan,Jr G.A.Freund,et al. An Experimental Method for Measuring WaterDroplet Impingement Efficiency on Two-and Three-Dimensional Bodies[R]. NASA-CR-4527,1989.
    [15] A.Albright. A Summaryof NASA's Research on the Fluid Ice Protection System[R]. AIAA-85-0467,1985.
    [16] D.L.Kohlman,W.G.Schiweikhard,Lawrence.Kan,et al. Icing Tunnel Tests of a Glycol-exudingPorous Leading Edge Ice Protection System on a General Aviation Airfoil[R]. AIAA-81--0405,1981.
    [17] Air Safety Foundation. Aircraft Icing[R].2008.
    [18] Robert C. Griffiths. Investigation of Leading Edge Ice Accretion with Cyclical Pneumatic BootInflation[R]. AIAA-93-0007,1993.
    [19] G. W. Zumwalt. Icing Tunnel Tests of Electro-Impulse De-Icing of an Engine Inlet and High-speedWings[R]. AI AA-85-0466,1985.
    [20] J.J.Gerardi,R.B.Ingram,R.A.Catarella. A Shape Memory Alloy Based De-Icing System forAircraft[R]. AIAA95-0454,1995.
    [21] Zdobyslaw Goraj. An Overview of the De-icing and Anti-icing Technologies with Prospects for theFuture[C].24th International Congress of the Aeronautical Sciences,
    [22] Herbert H.Kissling. Aircraft Engine Anti-icing Test and Evaluation Technology[R]. AIAA-76-162,1972.
    [23] C.E.Willbanks,R.J.Schulz. An Analytical Study of Icing Simulation for Turbine Engines in AltitudeTest Cells[R]. AIAA-73-1280,1973.
    [24] S.C. Wong,S.C.Tan,M.Papadakis. Spray Rig Design for Airborne Icing Tankers[R]. AIAA2007-1091,2007.
    [25]李勤红,乔建军. Y7-200A飞机模拟冰型飞行试验[J].飞行力学,1998,16(03),73-77.
    [26] J.J.Idzorek. Observations on the Development of a Natural Refrigeration Icing Wind Tunnel[R].AIAA-1987-175,1987.
    [27] Edward Herman. Goodrich Icing Wind Tunnel Overview, Improvements and Capabilities[R]. AIAA2006-862,2006.
    [28] C.Scott Bartlett. Icing Test Capabilities in the Aeropropulsion System Test Facility at the ArnoldEngineering Development Center[R]. AIAA94-2471,1994.
    [29] G.F.Naterer,N.Popplewell,W.Barrett,et al. Experimental Facility for New Hybrid Ice-Spray FlowTunnel with Laser Based Droplet Measurement[R]. AIAA2002-2867,2002.
    [30] Seetharam H.Chintamani,Dale L.Belter. Design Features and Flow Qualities of the Boeing ResearchAerodynamic Icing Tunnel[R]. AIAA-94-0540,1994.
    [31] Myron M. Oleskiw,Fred H.Hyde,Paul J.Penna. In-Flight Icing Simulation Capabilities of NRC'sAltitude Icing Wind Tunnel[R]. AIAA-2001-0094,2001.
    [32] Uwe H. Von Glahn, Thomas F.Gelder, Jr William H.Smyers. A Dye-Tracer Technique forExperimentally Obtaining Impingement Characteristics of Arbitrary bodies and a Method for DeterminingDroplets Size Distribution[R]. Technical Note3338,1955.
    [33] Jonathan Reichhold,Micheal Bragg,Dave Sweet. Experimental Determination of the DropletImpingement Characteristics of a Propeller[R]. AIAA97-0179,1997.
    [34] L.G Dodge,C.A.Martin. Evaluation of Drop-Sizing Instrumentation for Wind Tunnels with IcingCapabilities[R]. AIAA91-0559,1991.
    [35] W.Olsen,D.Takeuchi,K.Adams. Experimental Comparison of Icing Cloud Instruments[R]. AIAA83-0026,1983.
    [36] Robert F.Ide. Comparison of Liquid Water Content Measurement Techniques in an Icing WindTunnel[R]. NASA/TM-1999-209643,1999.
    [37] Robert F.Ide. Liquid Water Content and Droplet Size Calibration of the NASA Lewis Icing ResearchTunnel[R]. AIAA-90-0669,1990.
    [38] A.J.Bilanin. Proposed Modifications to Ice Accretion/Icing Scaling Theory[R]. AIAA-88-0203,1988.
    [39] Gray A.Ruff,David N.Anderson. Quantification of Ice Accretions for Icing Scaling Evaluations[R].AIAA-98-0195,1998.
    [40] David N.Anderson. Accerptable Tolerances for Matching Icing Similarity Parameters inScalingApplication[R]. AIAA-2001-0832,2001.
    [41] G.A.Ruff. Verification and Application of the Icing Scaling Equations[R]. AIAA-86-0481,1986.
    [42] David N.Anderson. Rime-,Mixed-and Glaze-Ice Evaluations of Three Scaling Laws[R].AIAA-94-0718,1994.
    [43] David N.Anderson. Further Evaluation of Traditional Icing Scaling Methods[R]. AIAA-96-0633,1996.
    [44] David N.Anderson. Methods for Scaling Icing Test Conditions[R]. AIAA-95-0540,1995.
    [45] David N.Anderson,Gary A.Ruff. Evaluation of Methods to Select Scale Velocities in Icing ScalingTests[R]. AIAA-99-0244,1999.
    [46] David N.Anderson. Effect of Velocity in Icing Scaling Tests[R]. AIAA-2000-0236,2000.
    [47] R.J.Kind. Scaling of Icing Tests--A Review of Recent Progress[R]. AIAA2003-1216,2003.
    [48] Richard J.kind,Myron M.Oleskiw. Experimental Assessment of a Water-Film-Thickness WeberNumber for Scaling of Glaze Icing[R]. AIAA2001-0836,2001.
    [49] Jen-Ching Tsao,Richard E.Kreeger,Alejandro Feo. Evaluation of the Water Film Weber Number inGlaze Icing Scaling[R]. AIAA2009-4129,2009.
    [50] Rinaldo J. Brun,Helen M.Gallagher,Dorothea E.Vogt. Impingement of Water Droplets on NACA65(1)-208and65(1)-212Airfoils at4Degrees Angle of Attack[R]. NACA TN2952,1953.
    [51] Michael Papadakis,E.Hung Kuohsing,Giao T.Vu,et al. Experimental Investigation of Water DropletImpingement on Airfoils, Finite Wings, and an S-Duct Engine Inlet[R]. NASA/TM--2002-211700,2002.
    [52] Michael Papadakis. Experimental Investigation of Water Impingement on Single and Multi-elementAirfoils[R]. AIAA-2000-0100,2000.
    [53] Michael Papadakis,Giao T.Vu,Eric K.Hung,et al. Progress in Measuring Water ImpingementCharacteristics on Aircraft Surfaces[R]. AIAA-98-0488,1998.
    [54] Michael Papadakis,Arif Rachman,See-Cheuk Wong,et al. Water Impingement Experiments on aNACA23012Airfoil with Simulated Glaze Ice Shapes[R]. AIAA2004-565,2004.
    [55] S.C. Tan,Michael Papadakis,D.Miller,et al. Experimental Study of Large Droplet Splashing andBreakup[R]. AIAA2007-904,2007.
    [56] R. John Hansman Jr,Stephen R.Turnock. Investigation of Surface Water Behavior During Glaze IceAccretion[J]. Journal of Aircraft,1989,26(2),140-147.
    [57] Jr Harold E.Addy,Mark G.Potapczuk,David W.Sheldon. Modern Airfoil Ice Accretions[R].AIAA-97-0174/NASA-TM-107423,1997.
    [58] Jr Harold E.Addy. Ice Accretions and Icing Effects for Modern Airfoils[R]. NASA/TP-2000-210031,2000.
    [59] A.D.Reich. Ice Property/Structure Variations Across the Glaze/Rime Transition[R]. AIAA92-0296,1992.
    [60] F.Tezok,M.T.Brahimi,I.Paraschivoiu. Investigation of the Physical Processes Underlying the IceAccretion Phenomena[R]. AIAA-1998-0484,1998.
    [61] Edward A.Whalen,Andy P.Broeren,Michael B.Bragg,et al. Characteristics of Runback IceAccretions on Airfoils and their Aerodynamics Effects[R]. AIAA-2005-1065,2005.
    [62] Kamel Al-Khalil,Eddie Irani. Mixed Phase Icing Simulation and Testing at the Cox Icing WindTunnle[R]. AIAA-2003-0903,2003.
    [63] Edward B. White,Michael J. Oliver. Experiments on Surface Roughness Effects in Ice Accretion[R].AIAA2005-5190,2005.
    [64] Michael Papadakis. Effects of Roughness on the Aerodynamic Performance of a Business Jet Tail[R].AIAA2002-0242,2002.
    [65] R. John Hansman Jr,Keiko Yamaguchi,Brian Berkowitz,et al. Modeling of Surface RoughnessEffects on Glaze Ice Accretion[J]. Journal of Thermophysics and Heat Transfer,1991,5(1),54-60.
    [66] Nihad Dukhan. Experimental Frossling Numbers for Ice-Roughened NACA0012Airfoils[J]. Journalof Aircraft,2003,40(6),1161-1167.
    [67] Sam Lee,Michael B.Bragg. Experimental Investigation of Simulated Large-Droplet Ice Shapes onAirfoil Aerodynamic[J]. Journal of Aircraft,1999,36(5),844-850.
    [68] M.B.Bragg,M.F.Kerho,M.J.Cummings. Airfoil Boundary Layer due to Large Leading-edgeRoughness[R]. AIAA-95-0536,1995.
    [69] Kamel M.Al-Khalil,Thomas W.Ferguson,Dennis M.Phillips. A Hybrid Anti-icing Ice ProtectionSystem[R]. AIAA-97-0302,1997.
    [70] Galdermir C.Botura,M.S,Dave Sweet. Concept Development of Low Power Electrothermal De-icingSystem[R]. AIAA-2006-8642006.
    [71] M.S Galdemir C.Botura,Dave Sweet,David Flosdorf. Development and Demonstration of LowPower Electrothermal De-icing System[R]. AIAA2005-1460,2005.
    [72] P.Perkins, O.Hastings, William Rieke. Thin,Lightweight,Electrothermal Ice Protection-NewTechnology Supplementing Existing Ice Protection[R]. AIAA-96-0391,1996.
    [73] Brian Burkett,Milian Mitrovic,Keith Brown,et al. Development and Test Results on a HighEfficiency Ice Protection System [R]. AIAA2006-863,2006.
    [74] S.W. Ciardullo,S.C. Mitchell,R Zerkle, D. Evaluation of Capillary Reinforced Composites forAnti-Icing[R]. AIAA-87-0023,1987.
    [75] Ph.Planquart,G.Vanden Borre,J.M.Buchlin. Experimental and Numerical Optimization of a WingLeading Edge Hot Air Anti-icing System[R]. AIAA2005-1277,2005.
    [76] Michael Papadakis,See-Ho J. Wong. Parametric Investigation of a Bleed Air Ice Protection System[R].AIAA-2006-1013,2006.
    [77] Thomas F.Gelder. Droplet Impingement and Ingestion by Supersonic Nose Inlet in Subsonic TunnelConditions[R]. NACA TN4268,1958.
    [78] Maddalena Fanaeli, W.B.Wright, K.Cyril Masiulaniec, et al. Experimental and NumericalInvestigation of Anti-Icing Phenomena on a NACA0012Assembly[R]. AIAA92-0531,1992.
    [79] Farooq Saeed,Corentin Brette,Mathiey Fregeau,et al. A Three-Dimensional Water Droplet Trajectoryand Impingement Analysis Program[R]. AIAA-2005-4838,2005.
    [80] Steven C.Caruso. Three-Dimensional Unstructured Mesh Procedure for Iced Wing Flowfield andDroplet Trajectory Calculations[R]. AIAA-94-0486,1994.
    [81] Yves Bourgault,Wagdi G.Habashi,J.Dompierre,et al. An Eulerian Approach to Supercooled DropletsImpingement Calculations[R]. AIAA-97-0176,1997.
    [82] Yves Bourgault,Wagdi G. Habashi,Julien Dompierre,et al. A Finite Element Method Study ofEulerian Droplets Impingement Models[J]. International Journal for Numerical Methods in Fluids,1999,29(4),429-449.
    [83] Yves Bourgault,Ziad Boutanios,Wagdi G.Habashi. Three-Dimensional Eulerian Approach to DropletImpingement Simulaiton Using FENSAP-ICE,Part1Model Algorithm and Validation[J]. Journal ofAircraft,2000,37(1),95-103.
    [84] Ziad Boutanios,Yves Bourgault,Wagdi G.Habashi.3D Droplet Impingement Analysis aroundAircraft's Nose and Cockpit Using FENSAP-ICE[R]. AIAA-98-16109,1997.
    [85] Francois Morency,Heloise Beaugendre,Wagdi G.Habashi. FENSAP-ICE: A Study of the Effect of IceShapes on Droplet Impingement[R]. AIAA2003-1223,2003.
    [86] S.C. Tan,M.Papadakis. General Effects of Large Droplet Dynamics on Ice Accretion Modeling[R].AIAA2003-392,2003.
    [87] S.C.Tan,M.Papadakis. Droplet Breakup, Splashing and Re-Impingement on An Iced Airfoil[R]. AIAA2005-5185,2005.
    [88] Raimund Honsek,Wagdi G. Habashi. FENSAP-ICE: Eulerian Modeling of Droplet Impingement inthe SLD Regime of Aircraft Icing[R]. AIAA-2006-465,2006.
    [89] Raimund Honsek,Wagdi G.Habashi,Martin S.Aube. Eulerian Modeling of In-Flight Icing Due toSupercooled Large Droplets[J]. Journal of Aircraft,2008,45(4),1290-1296.
    [90] William B. Wright,Mark G. Potapczuk. Semi-Empirical Modeling of SLD Physics[R]. AIAA2004-412,2004.
    [91] A.Gamed,K.Das,D.Basu. Numerical Simulation of Ice Droplet Trajectories and Collection Efficiencyon Aeroengine Rotating Machinery[R]. AIAA-2005-1248,2005.
    [92] K. Das,A.Hamed,D.Basu. Ice Shape Prediction For Turbofan Rotating Blades[R]. AIAA-2006-0209,2006.
    [93] S.L.Wells,M.B.Bragg. A Computational Method for Calculating Droplet Trajectories Including theEffects of Wind Tunnel Walls[R]. AIAA-92-0642,1992.
    [94] Brian C. DeAngelis,Eric.Loth,Dennis Lankford,et al. Simulations of Turbulent Droplet Dispersionin Wind-Tunnel Icing Clouds[J]. Journal of Aircraft,1997,34(2),213-219.
    [95] Charles D.MacArthur,John L.Keller,James K.Luers. Mathematical Modeling of Ice Accretion onAirfoils[R]. AIAA82-0284,1982.
    [96] Y.-X.Tao,J.Jiang. Densification Model for Ice Layer Growth on Icing Surfaces of Aircraft[R].AIAA-99-0098,1999.
    [97] C.S.Bidwell,Jr S.B.Mohler. Collection Efficiency and Ice Accretion Calculations for a Sphere,aSwept MS(1)-317Wing,a Swept NACA-0012Wing Tip,an Axisymmetric Inlet,and a Boeing737-300Inlet[R]. AIAA-95-0755,1995.
    [98] Colin S. Bidwell. Icing Calculations for a3D, High-Lift Wing Configuration[R]. AIAA2005-1244,2005.
    [99] A.P. Rothmayer,B.D.Matheis,S.N.Tomoshin. Thin Liquid Films Flowing over External AerodynamicSurfaces[J]. Journal of Engineering Mathematics,2002,42,341-357.
    [100] Guilherme Araujo Lima da Silva,Otavio de Mattos Silvares,Euryale Jorge Godoy de Jesus Zerbini,et al. Differential Boundary-Layer Analysis and Runback Water Flow Model Applied to Flow AroundAirfoils with Thermal Anti-ice[R]. AIAA2009-3967,2009.
    [101] Tim G. Myers,Chris P.Thompson. Modeling the Flow of Water on Aircraft in Icing Conditions[J].AIAA Journal,1998,36(6),1010-1013.
    [102] Ouahid Harireche,Partrick Verdin,Chris P.Thompson,et al. Explicit Finite Volume Modeling ofAircraft Anti-Icing and De-Icing[J]. Journal of Aircraft,2008,45(6),1924-1936.
    [103] Kamel Al-Khalil,Theo G.Keith Jr,Kenneth J.De Witt. New Concept in Runback Water Modeling forAnti-Iced Aircraft Surfaces[J]. Journal of Aircraft,1993,30(1),41-49.
    [104] Guilherme Araújo Lima da Silva,Otávio de Mattos Silvares,Euryale Jorge de Godoy Jesus Zerbini.Water Film Breakdown and Rivulets Formation Effects[R]. AIAA-2006-3785,2006.
    [105] K.M.AI-Khalil. Development of an Improved Model for Runback Water on Aircraft Surfaces[R].AIAA92-0042,1992.
    [106] K.M.AI-Khalil,Jr T.G.Keith,K.J.deWitt. Development of an Anti-Icing Runback Model[R].AIAA-90-0759,1990.
    [107] Y.Bourgault,H.Beaugendre,W.G.Habashi. Development of a Shallow-Water Icing Model inFENSAP-ICE[J]. JOURNAL OF AIRCRAFT,2000,37(4),640-646.
    [108] Abdelkader Baggag,Mondher Chekki,Wagdi G.Habashi,et al. Parallelization of a Finite VolumeScheme Applied to Ice Accretion[R]. AIAA2006-3728,2006.
    [109] Jr. R. John Hansman. Analysis of Surface Roughness Generation in Aircraft Ice Accretion[R]. AIAA-92-0298,1992.
    [110] Robert D.Kirchner. Water Bead Formation in Glaze Icing Conditions[R]. AIAA95-0539,1995.
    [111] K.Yamaguchi,R.J.Hansman. Deterministic Multi-Zone Ice Accretion Modeling[R]. AIAA-91-0265,1991.
    [112] Heloise Beaugendre, Francois Morency, Wagdi G.Habashi. Roughness Implementation inFENSAP-ICE Model Calibration and Influence on Ice shapes[J]. Journal of Aircraft,2003,40(6),1212-1215.
    [113] Guy Fortin,Ilinca Adrian,Jean-Louis Laforte,et al. New Roughness Computation Method andGeometric Accretion Model for Airfoil Icing[J]. Journal of Aircraft,2004,41(1),119-127.
    [114] Richard E. Kreeger,William B.Wright. The Influence of Viscous Effects on Ice Accretion Predictionand Airfoil Performance Predictions[R]. AIAA2005-1373,2005.
    [115] R.J.Roelke,Jr T.G.Keith,K.J.deWitt,et al. Efficient Numerical Simulation of a One-DimensionalElectrothermal Deicer Pad[J]. Journal of Aircraft,1988,25(12),1097-1105.
    [116] K.C. Masiulaniec, Jr T.G.Keith, K.J.DeWitt. Full Two-Dimensional Transient Solutions ofElectrothermal Aircraft Blade Deicing[R]. AIAA-85-0413,1985.
    [117] R.Henry. Development of an Electrothermal De-icing/Anti-icing model[R]. AIAA-92-0526,1992.
    [118] Alan D.Yaslik,Kenneth J.De Witt,Theo G.Keith Jr,et al. Three-Dimensional Simulation ofElectrothermal Deicing Systems[J]. Journal of Aircraft,1992,29(6),1035-1042.
    [119] Hugh H. T. Liu,Jun Hua. Three-Dimensional Integrated Thermodynamic Simulation for WingAnti-Icing System[J]. Journal of Aircraft,2004,41(6),1291-1297.
    [120] Guilherme Araújo Lima da Silva,Otavio de Mattos Silvares,Euryale Jorge Godoy de Jesus Zerbini.Numerical Simulation of Airfoil Thermal Anti-Ice Operation Part1:Mathematical Modeling[J]. Journal ofAircraft,2007,44(2),627-634.
    [121] Guilherme Araújo Lima da Silva,Otavio de Mattos Silvares,Euryale Jorge Godoy de Jesus Zerbini.Numerical Simulation of Airfoil Thermal Anti-Ice Operation Part2: Implementation and Results[J].Journal of Aircraft,2007,44(2),635-641.
    [122] G.A.L. da Silva,O.M.Silvares,E.J.G.J.Zerbini. Airfoil Anti-Ice System Modeling and Simulation[R].AIAA-2003-734,2003.
    [123] K.J.deWitt,Jr T.G.Keith,D.F.Chao,et al. Numerical Simulation of Electrothermal DeicingSystems[R]. AIAA83-0114,1983.
    [124] J.R.Huang,Jr T.G.Keith,K.J.DeWitt. An Efficient FiniteElement Method for Aircraft De-icingProblems[R]. AIAA-92-0532,1992.
    [125] K.M.Al-Khalil,Jr T.G.Keith,K.J.deWitt. Further Development of an Anti-icing Runback Model[R].AIAA91-0266,1991.
    [126] Guilherme Araújo Lima da Silva,Otávio de Mattos Silvares,Euryale Jorge G. J. Zerbini. Simulationof an Airfoil Electro-Thermal Anti-Ice System Operating in Running Wet Regime[R]. AIAA-2005-1374,2005.
    [127] Thomas Andrew Turk. Aircraft Wing Anti-icing System Modelling,Integration,and Validation[D].Master, University of Toronto, Toronto,2003.
    [128] R Elangovan,E.Hung Kuohsing. Minimum Heating Energy Requirements of Piccolo Tube JetImpingement Thermal Anti-icing System[C]. ASME-JSME Thermal Engineering Summer Heat TransferConference,
    [129] Gilulio Croce,Wagdi G.Habbashi,Grant Guevremont,et al.3D Thermal Analysis of an Anti-IcingDevice Using FENSAP-ICE[R]. AIAA98-0193,1997.
    [130] G.Croce, H.Beaugendre, W.G.Habashi. CHT3D:FENSAP-ICE Conjugate Heat TransferComputations with Droplet Impingement and Runback Effects[R]. AIAA-2--2-13756,2002.
    [131] M.P.C.Pellissier,W.G.Habashi,A.Peueyo. Optimization via FENSAP-ICE of Aircraft Hot-AirAnti-Icing Systems[J]. Journal of Aircraft,2011,48(1),265-276.
    [132] Mathieu Pellissier,Wagdi G.Habashi,Alberto Pueyo. Design Optimization of Hot-Air Anti-IcingSystems by FENSAP-ICE[R]. AIAA-2010-1238,2010.
    [133] F.Morency,M.T.Brahimi,F.Tezok,et al. Hot Air Anti-Icing system Modelization in the IcePrediction Code Canice[R]. AIAA-98-1092,1998.
    [134] F. Morency,F.Tezok,I.Paraschivoiu. Heat and Mass Transfer in the Case of an Anti-icing SystemModelisation[R]. AIAA-99-0623,1999.
    [135] Francois Morency,Fatih Tezok,Ion paraschivo. Anti-Icing System Simulation Using CANICE[J].Journal of Aircraft,1999,36(6),999-1006.
    [136] F.Saeed,F.Morency,Ion.Paraschivoiu. Numerical Simulation of a Hot-Air Anti-Icing System[R].AIAA-2000-0630,2000.
    [137] R. Ross,Sedgwick. Analysis of an Airplane Windshield Anti-icing System[R]. AIAA-82-1372,1982.
    [138] William B.Wright. LWEICE2.2Capabilities and Thermal Validation[R]. AIAA-2002-0383,2002.
    [139] William B. Wright. An Evaluation of Jet Impingement Heat Transfer Correlations for Piccolo TubeApplication[R]. AIAA-2004-62,2004.
    [140] Kamel Al-Khalil,R.Hitzigrath,O.Philippi,et al. Icing Analysis and Test of a Business Jet EngineInlet Duct[R]. AIAA2000-1040,2000.
    [141] K.Yamaguchi,R.J.Hansman. Heat Transfer On Accreting Ice Surfaces[R]. AIAA-90-0200,1990.
    [142] Mathieu Fregeau,F.Saeed,I.Paraschivoiu. Numerical Heat Transfer Correlation for Array of Ht-AirJets Impinging on3-Dimensional Concave Surface[J]. Journal of Aircraft,2005,42(3),665-670.
    [143] K.M.AI-Khalil,M.G.Potapczuk. Numerical Modeling of Anti-Icing Systems and Comparison to TestResults on a NACA0012Airfoil[R]. AIAA-93-0170,1993.
    [144] Farooq Saeed. Numerical Simulation of Surface Heat Transfer from an Array of Hot-Air Jets[J].Journal of Aircraft,2008,45(2),700-714.
    [145] David L.Rigby. Numerical Investigation of Hole Pattern Effect on Piccolo Tube Anti-icing[R].AIAA-2006-1012,2006.
    [146] Farooq Saeed,Ion Paraschivoiu. Optimization of a Hot-Air Anti-Icing System[R]. AIAA-2003-0733,2003.
    [147] P.Tran,M.T.Brahimi,L.N.Sankar,et al. Ice Accretion Prediction on single and Multi-ElementAirfoils and the Resulting Performance Degradation[R]. AIAA-1997-178,1997.
    [148] X.Chi,B.Zhu,T.I-P.Shih,et al. CFD Analysis of the Aerodynamics of a Bussiness-Jet withLeading-Edge Ice Accretion[R]. AIAA-2004-560,2004.
    [149] J.N.Scott,W.L.Hankey,F.J.Giessler,et al. Navier-Stokes Solution to the Flowfield Over IceAccretion Shapes[J]. Journal of Aircraft,1988,28(8),710-716.
    [150] Michael B.Bragg,Andy P.Broeren,Jr Harold E.Addy,et al. Airfoil Ice-Accretion AerodynamicsSimulation[R]. NASA/TM-2008-214830/AIAA-2007-0085,2008.
    [151] D.Pokhariyal,M.B.Bragg,T.Hutchison,et al. Aircraft Flight Dynamics with Simulated IceAccretion[R]. AIAA-2001-0541,2001.
    [152] J.Dompierre,D.J.Cronin,Yves Bourgault,et al. Numerical Simulation of Performance Degradationof Ice Contaminated Airfoils[R]. AIAA-97-2235,1997.
    [153] S.Kumar, E.Loth. Aerodynamic Simulation of Airfoils with Large-Droplet Ice-Shapes[R].AIAA-2000-0238,2000.
    [154] M.B.Bragg. Aerodynamics of Supercooled-large-droplet Ice Accretions and the Effect on AircraftControl[R]. DOT/FAA/AR-96/81,1996.
    [155] M.B.Bragg. Aircraft Aerodynamic Effects due to Large Droplet Ice Accretions[R]. AIAA-96-0932,1996.
    [156] Sam Lee,Tim Dunn etc. An Experimental and Computational Investigation of Spanwise-step-iceShapes on Airfoil Aerodynamics[R].1997.
    [157] Dean Miller,Thomas Bond,David Sheldon,et al. Validation of NASA Thermal Ice ProtectionComputer Codes. I-Program Overview[R]. AIAA97-0049,1997.
    [158] William B.Wright,Kamel Al-Khalil,Dean Miller. Validation of NASA thermal ice protectioncomputer codes. II-LEWICE Thermal[R]. AIAA97-0050,1997.
    [159] Kamel M.Al-Khalil,Charles Horvath,Dean R.Miller,et al. Validation of NASA Thermal IceProtection Computer Codes. III-The Validation of ANTICE[R]. AIAA-97-0051,1997.
    [160] William B. Wright. Further Refinement of the LEWICE SLD Model[R]. AIAA2006-464,2006.
    [161] William B.Wright,Colin S.Bidwell. Additional Improvements to the NASA Lewis Ice AccretionCode LEWICE[R]. AIAA-95-0752,1995.
    [162] Colin S.Bidwell,David Pinella,Peter Garrison. Ice Accretion Calculations for a CommercialTransport Using the LEWlCE3D, ICEGRID3D and CMARC Programs[R]. AIAA-99-0250NASA/TM-1999-208896,1999.
    [163] Gary A. Ruff,Brian M.Berkowitz. Users Manual for the NASA Lewis Ice Accretion Prediction Code(LEWICE)[R]. NASA CR185129,1990.
    [164] William B. Wright. Update to the NASA Lewis Ice Accretion Code LEWICE[R]. NASA CR-195387,1994.
    [165] Eugene G. Hill. Overview of Federal Aviation Administration Aviation Safety Research for AircraftIcing[R]. AIAA-2006-81,2006.
    [166] Kamel Al-Khalil. Numerical Simulation of an Aircraft Anti-Icing System Incorporating a RivuletModel for the Runback Water[D]. Doctor, The University of Toledo,1991.
    [167]彭又新,郑莉,林贵平.全静压受感器冰风洞试验技术研究[J].中国工程科学,2009,11(11),51-55.
    [168]王波,董葳,崔浩.防冰状态下涡轴发动机零级导叶壁面温度场的计算[J].能源技术,2007,28(03),129-132.
    [169]贾明.某发动机进气道导流隔板防冰系统性能研究[D].硕士,南京航空航天大学,南京,2008.
    [170]陆景松.发动机进气道前缘防冰腔性能研究[D].硕士硕士,南京航空航天大学,南京,2008.
    [171]顾锡莲.发动机导向叶片电热防冰系统研究[D].硕士,南京航空航天大学,南京,2009.
    [172]王宗衍.冰风洞与结冰动力学[J].制冷学报,1999,(04),15-17.
    [173]邢玉明,盛强,常士楠.大型开式冰风洞的模拟技术研究[C].中国航空学会2007年学术年会,
    [174]李明,陈洪,李军.0.3米×0.2米结冰风洞建设与试验研究[C].中国航空学会2007年学术年会,
    [175]易贤,朱国林,桂业伟.结冰风洞高度模拟能力评估[J].科技导报,2009,29(09),65-68.
    [176]刘政崇,彭强,肖斌.3m×2m结冰风洞设计总体初步方案[C].中国航空学会2007年学术年会,
    [177]李勤红,乔建军,陈增江. Y7-200A飞机自然结冰飞行试验[J].飞行力学,1999,17(02),64-69.
    [178]周艳萍. Y7-200A的防冰除冰试飞[J].国际航空,1998,(08),78.
    [179]李勤红. Y7-200A型飞机适航试飞综述与分析[J].航空科学技术,1999,(02),9-12.
    [180]韩凤华,左颜声,李东亮.飞机风挡防冰热载荷计算[J].航空学报,1995,16(01),33-37.
    [181]常士楠,王长和,韩凤华.飞机天线罩结冰情况研究[J].航空学报,1997,18(04),423-426.
    [182]杨倩,常士楠,袁修干.发动机进气道水滴撞击特性分析[J].北京航空航天大学学报,2002,28(03),362-365.
    [183]杨倩,常士楠,袁修干.水滴撞击特性的数值计算方法研究[J].航空学报,2002,23(02),173-176.
    [184]易贤,朱国林,王开春.翼型积冰的数值模拟[J].空气动力学学报,2002,20(04),428-433.
    [185]易贤.飞机积冰的数值计算与积冰试验相似准则研究[D].博士,中国空气动力研究与发展中心,2007.
    [186]蒋胜矩,李凤蔚.基于N-S方程的翼型结冰数值模拟[J].西北工业大学学报,2004,22(5),559-562.
    [187]张强,胡利,曹义华.过冷水滴撞击三维机翼的数值模拟[J].航空动力学报,2009,24(06),1345-1350.
    [188]刘春生,刘沛清,赵岳鹏.过冷水滴撞击螺旋桨桨叶表面的数值模拟[J].计算力学学报,2008,25(Sup),95-98.
    [189]陈维建.飞机机翼结冰的数值模拟研究[D].博士,南京航空航天大学,南京,2007.
    [190]陈维建,张大林.瘤状冰结冰过程的数值模拟[J].航空动力学报,2005,20(03),472-476.
    [191]张大林,陈维建.飞机机翼表面霜状冰结冰过程的数值模拟[J].航空动力学报,2004,1,137-141.
    [192]张大林,杨曦,昂海松.过冷水滴撞击结冰表面的数值模拟[J].航空动力学报,2003,18(01),87-91.
    [193] Chen Weijian,Zhang Dalin. Prediction of Rime Ice Accretion and Resulting Effect on a AirfoilPerformance[J]. Transactions of Nanjing University of Aeronautics&Astronautics,2005,22(1),9-15.
    [194]常士楠,苏新明,邱义芬.三维机翼结冰模拟[J].航空学报,2011,32(2),212-222.
    [195]易贤,桂业伟,朱国林.飞机三维结冰模型及其数值求解方法[J].航空学报,2010,31(11),2152-2158.
    [196]杜雁霞,桂业伟,肖春华.飞机结冰过程的传热研究[J].工程热物理学报,2009,30(11),1923-1925.
    [197]杜雁霞,桂业伟,肖春华.飞机结冰过程的液/固相变传热研究[J].航空动力学报,2009,24(08),1824-1830.
    [198]易贤,王开春,桂业伟.结冰面水滴收集率欧拉计算方法研究及应用[J].空气动力学学报,2010,28(05),596-601.
    [199]卜雪琴,林贵平,彭又新.防冰热载荷计算的一种新方法[J].航空学报,2006,27(02),208-212.
    [200]卜雪琴,林贵平.基于CFD的水收集系数及防冰表面温度预测[J].北京航空航天大学学报,2007,33(10),1182-1185.
    [201]卜雪琴,林贵平,郁嘉.三维内外热耦合计算热气防冰系统表面温度[J].航空动力学报,2009,24(11),2495-2500.
    [202]卜雪琴,林贵平,郁嘉.机翼电加热防冰表面内外传热的耦合计算[J].航空动力学报,2010,25(07),1491-1496.
    [203]卜雪琴,郁嘉,林贵平.一种热气防冰系统的数值仿真[J].计算机仿真,2010,27(09),40-43.
    [204]卜雪琴,郁嘉,林贵平.机翼热气防冰系统设计[J].北京航空航天大学学报,2010,36(08),927-930.
    [205]盛强,邢玉明,何超.基于CFD的机翼结冰过程分析[J].航空计算技术,2009,39(02),37-40.
    [206]杨乃宾,章怡宁.复合材料飞机结构设计[M].航空工业出版社,北京,2002.
    [207]马宏林.航空航天用树脂基复合材料[J].宇航材料工艺,1996,(2),36-39.
    [208]夏德顺.国外编织复合材料的发展和应用[J].国外导弹和航天运载器,1992,(1),51-57.
    [209]纪双英,王晋,邢军.国外航空发动机风扇包容机匣研究进展[J].航空制造技术,2010,(14),44-47.
    [210]苏云洪,刘秀娟,杨永志.复合材料在航空航天中的应用[J].工程与试验,2008,(4),36-38.
    [211]沈军,谢怀勤.先进复合材料在航空航天领域的研发与应用[J].材料科学与工艺,2008,16(5),737-740.
    [212]傅恒志.未来航空发动机材料面临的挑战与发展趋势[J].航空材料学报,1998,18(4),52-61.
    [213] NASA,"Airplane Parts Definitions and Function," http://www.grc.nasa.gov.
    [214]黄泽梓,马枚.推重比15-20军用发动机的新材料[C].中国航空学会第九届航空发动机结构强度振动学术会议,
    [215]李爱兰,曾燮榕,曹腊梅.航空发动机高温材料的研究现状[J].材料导报,2003,2(17),26-28.
    [216]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1),1-12.
    [217]张和善.复合材料与未来航空发动机[J].航空制造工程,1995,(9),6-8.
    [218]陈伟明,王成忠,周同悦.高性能T800碳纤维复合材料树脂基体[J].复合材料学报,2006,23(4),29-35.
    [219]余治国,杨胜春,宋笔锋. T700和T300碳纤维增强环氧树脂基复合材料耐湿热老化性能的对比[J].机械工程材料,2009,33(6),48-51.
    [220]张建明,陈跃良.飞机结构复合材料加速腐蚀老化行为[J].科学技术与工程,2008,8(23),6338-6343.
    [221] R.Ross. Application of Electro-Impulse De-icing to the NASA Lewis Altitude Wind Tunnel(AWT)Turning Vanes[R]. AIAA-86-0548,1986.
    [222] Messinger BL. Equilibrium Temperature of an Unheated Icing Surface as a Function of Airspeed[J].Journal of Aeronautical Sciences,1953,20(1),29-42.
    [223] Richard J.Kind. Assessment of Importance of Water-Film Parameters for Scaling of Glaze Icing[R].AIAA-2001-0835,2001.
    [224] David N.Anderson. Evaluation of Constant-Weber-Number Scaling for Icing Tests[R].AIAA-96-0636,1996.
    [225]贾明,张大林.冰风洞试验研究[J].江苏航空,2008,(S1),70-73.
    [226] Mathieu Fregeau,F. Saeed,I. Paraschivo. Surface Heat Transfer Study for Ice Accretion andAnti-Icing Prediction in Three Dimension[R]. AIAA-2004-63,2004.
    [227] R.H. Domingos,L.C. de C. Santos etc. Analysis of a CFD Procedure for Water Collection[R].AIAA-2006-1269,2006.
    [228] Weimin Sang,Shengju Jiang,Fengwei Li. Icing Research for Airfoil and Multi-element Airfoil[R].AIAA2006-3647,2006.
    [229] William B. Wright. Validation Results for LEWICE3.0[R]. AIAA-2005-1243,2005.
    [230] J. Brown,J.K.Watterson,S.Raghunathan,et al. Heat Transfer Correlation For De-icing Systems[R].AIAA2001-0837,2001.
    [231]裘燮刚,余小章.微引射防冰腔热力计算[J].航空学报,1994,15(9),1110~1113.
    [232]常士楠,艾素霄,毕文明.飞机发动机进气道防冰系统的设计计算[J].北京航空航天大学学报,2007,33(06),649-652.
    [233]常士楠,韩凤华.飞机发动机进气道前缘热气防冰器性能分析[J].北京航空航天大学学报,1999,25(02),201-203.
    [234]潘旭云.某型飞机防冰系统机翼防冰腔性能研究[D].硕士硕士,南京航空航天大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700