飞机电热除冰过程的传热特性及其影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机结冰是导致飞行安全事故的主要隐患之一,飞机的防/除冰系统是提高飞机的安全性能、减少结冰事故的重要装置。由于高效率、低能耗、易控制的优势,电热除冰已成为目前重要的除冰方法之一。针对国内在电热除冰领域的研究才刚刚开始、研究水平远远落后于发达国家的现状,开展飞机电热除冰机理和规律的研究,对于冰防护理论的完善、相关技术的发展和防/除冰系统的研制,从而保障飞机的飞行安全有着至关重要的作用。
     本文采用理论分析、数值计算和实验方法相结合的手段,围绕飞机电热除冰过程中涉及到的相变传热特性、冰壳现象及其影响、热力耦合特性和冰脊形成特征等问题展开研究,以期揭示电热除冰过程的原理和机制、掌握影响电热除冰效率的规律,为现行电热除冰系统的改进和完善,以及新型电热除冰技术的开发提供理论基础和技术支撑。
     全文分六章,各章内容概况如下:
     第一章是引言。阐述了飞机电热除冰研究的重要性,论述了国内外电热除冰研究的概况,分析了存在的问题和国内研究的差距,最后扼要介绍了本文的工作。
     第二章是电热除冰过程中的传热特性研究。采用有限体积法和热焓方法,将传统相变模型应用到飞机电热除冰计算中,系统研究了冰层在电热除冰过程中的相变传热特性,重点研究了加热模式、冷却时间、加热功率、单元间隔对相变传热特性的影响,研究了冰脱落对传热特性的影响。并通过结冰风洞实验验证了电热除冰过程的一些重要的传热规律和特性。研究表明,高功率周期性加热方式比低功率连续性加热方式更经济有效。
     第三章是电热除冰过程中的冰壳及其影响研究。针对机翼前缘结冰的冰壳现象,采用理论分析的方法,建立了前缘冰壳在外力作用下的融化模型,计算研究了外部流场压力和冰自重对冰壳融化特性的影响。采用实验的方法,在结冰风洞中印证了前缘冰壳现象,并对冰壳的滑动现象进行了分析,获得了冰壳对电热除冰的影响规律。研究表明,外部气动力加速了前缘冰壳的融化,但同时却大大延长了冰壳脱落的时间,冰壳将对气动性能造成了恶劣的影响。
     第四章是电热除冰过程中的热力耦合效应研究。采用有限元方法和非结构网格技术,研究了气动力载荷作用下的冰层内部应力分布特性,并在此基础上研究了电加热条件下冰层内部的应力分布特性。研究发现,在低速条件下,气动力对冰脱落的贡献不大。但在电热除冰条件下,热力耦合效应将造成冰层内部应力的显著增加,从而造成冰层内部的破裂,加速冰层的破坏。最后采用实验方法,在结冰风洞中验证了热力耦合特性对除冰过程的影响。
     第五章是电热除冰过程中的冰脊形成机理研究。采用实验方法,在结冰风洞中模拟了电热除冰过程中的冰脊形成过程,研究了结冰环境温度、来流速度和加热功率对冰脊形成和特征的影响。基于实验得到的冰脊形状,计算分析了冰脊的生长规律。研究发现,冰脊是从冰防护区外下游某位置开始产生,逐渐往冰防护区发展。
     第六章是结束语。总结了论文的主要工作、研究成果和创新,指出了下一步的研究内容和方向。
Ice accretion is one of primary hazards to flight safety. Aircraft anti/de-icer is important equipment which can improve airplane safety performance and can reduce flight icing accident. Due to high efficiency, low energy consumption and easy to control, electrothermal deicing is becoming one of the most widely applied techniques of aircraft deicing. The development of ice protection theory and deicing technique is important for flight safety. It is vital to carry out the study of aircraft electrothermal deicing mechanism and law, especially because domestic study of aircraft electrothermal deicing just begins and level of study lags far behind developed countries.
     By means of theoretical analysis, numerical simulation and experiment, phase-change heat transfer characteristic, ice shell phenomenon and its effect, coupled thermo-mechanical characteristic and ice ridge formation characteristic are studied in this thesis. The study focuses on revealing electrothermal deicing mechanism and understanding the influence on deicing efficiency. The research results will not only provide the theoretical basis for the improvement of present electrothermal deicing system, but also provide the technical support for the development of new deicing technique.
     This thesis is divided into six chapters as follows:
     The first chapter is the introduction. The significance and status of the investigation for aircraft electrothermal deicing, the problems and gaps between home and abroad investigation are reviewed. The present research work of this thesis is also described briefly in this chapter.
     In the second chapter, the study of heat transfer characteristics during aircraft electrothermal deicing process is presented. The traditional phase-change model is applied to the simulation of aircraft electrothermal deicing by using finite volume method based on enthalpy model. The ice phase-change heat transfer characteristics during electrothermal deicing process are studied systemically. The research emphasis is on the effects of heating manner, cooling time, heater power density and heater gap width on phase-change heat transfer characteristics, as well as the effects of ice shedding on heat transfer characteristics. Finally, some important heat transfer characteristics during electrothermal deicing process are confirmed in icing wind tunnel. The study shows that periodic heating manner under high power is superior to continuous heating under low power when reasonable cooling time and heating power density are adopted.
     Chapter 3 presents ice shell phenomenon and its effects on electrothermal deicing on the leading edge of aerofoil. Combined with the effect of external forces, melting model is established by theoretical analysis. Effects on ice shell melting characteristics of aerodynamic pressure and gravity are investigated. Furthermore, Ice shell phenomenon is confirmed in icing wind tunnel. Ice sliding is analyzed theoretically. Ice shell and its effects are obtained in this chapter. The research result shows that aerodynamics pressure increases the melting speed of ice shell and delays the ice shell shedding simultaneously. Ice shell results in severe aerodynamics performance.
     The study of coupled thermo-mechanical characteristics is presented in chapter 4. The effect of aerodynamics on stress distribution characteristics in the ice layer is studied by finite element method based on unstructured mesh. Furthermore, the effect on stress distribution characteristics of electrical heating is studied. The study shows that stresses in the ice layer caused directly from aerodynamic loading are not significant when the flight velocity is low. While coupled thermo-mechanical characteristic leads to remarkable increasing of stresses in the ice under the condition of electrothermal deicing. Consequently, it results in crack in the ice and speeds up ice shedding. Finally, the effects on deicing of coupled thermo-mechanical characteristics are validated in icing wind tunnel.
     Chapter 5 is the investigation of ice ridge formation mechanism during electrothermal deicing process. The ice ridge formation is tested in icing wind tunnel. The effects on ice ridge formation of icing temperature, inflow velocity and heater power density are investigated. Combined with ice ridge formation obtained by experiment, the mechanism and growth of ice ridge formation are further analyzed. The study shows that ice ridge is formed far apart from the ice protection region and grows forward gradually.
     The concluding remarks are given in chapter 6. The summary of current work is presented and expectation for future work is pointed out as well.
引文
[1] Lynch FT, Khodadoust A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8):669-767.
    [2] Kind RJ, Potapczuk MG, Feo A, Golia C and Shah AD. Experimental and computational simulation of in-flight icing phenomena[J], Progress in Aerospace Sciences, 1998, 34:275-345.
    [3] AGARD FDP Worhing Group 20. Ice Accretion Simulation. AGARD-AR-344, North Atlantic Treaty Organization, Dec. 1997.
    [4] Cole J, Sand W. Statistical study of aircraft icing accidents[R]. AIAA Paper 91-0558, 1991.
    [5] Kevin R Petty, Carol DJ Floyd. A statistical review of aviation airframe icing accidents in the U.S[R]. NTSB, Washington, DC.
    [6] Aviation Accident Statistics[R]. National Transportation Safety Board, 2008.
    [7]常士楠,防止飞机结冰,百科知识,2005.12.
    [8]解放军报. 2006年9月8日.
    [9] Bragg MB, Broeren AP, Blumenthal LA. Iced-airfoil aerodynamics[J], Progress in aerospace Sciences, 2005.
    [10] Rodling S. Experience from a propeller icing certification, SAE SUBCOMMITTEE AC-9C Aircraft icing technology Meeting NO.11, 1989.
    [11]裘燮纲,韩凤华.飞机防冰系统(第一版)[M].北京:航空专业教材编审组,1985.
    [12] JAR/FAR 25.1419 (Continuously amended), Ice protection, including Appendix C and ACJ 25, 1419.
    [13] Burick RA, Ryan RJ. FAA certification of the Lockheed martin C-130J transport ice protection system[R], AIAA-99-4016, 1999.
    [14] A Vision for 2020, Report of the group of personalities, European Aeronautics, 2001.
    [15] Steering committee for the decadal survey of civil aeronautics, Decadal survey of civil aeronautics: Foundation for the future, Washington, D.C., The national academics press, 2006.
    [16] Wright W B, DeWitt K J, Keith T G Jr. Numerical Simulation of Icing, Deicing, and Shedding[R]. AIAA 91-0655, 1991.
    [17]杨倩.发动机进气道防冰系统设计研究[D],北京航空航天大学, 2002.
    [18] Heinrich A, Ross R, Zumwalt G, Provose J, Padmanabhan V, Thomson J, Riley J. Aircraft Icing Handbook, Conventional Pneumatic Boot Deicing Systems. ChapterШsection 2.0. DOT/FAA/CT-88/8-2. U.S.Department of Transport, 1991.
    [19] Heinrich A, Ross R, Zumwalt G, Provose J, Padmanabhan V, Thomson J, Riley J. Aircraft Icing Handbook, Electro-Impulse Deicing Systems. ChapterШsection 4.0. DOT/FAA/CT-88/8-2. U.S.Department of Transport, 1991.
    [20] Heinrich A, Ross R, Zumwalt G, Provose J, Padmanabhan V, Thomson J, Riley J. Aircraft Icing Handbook, Electrothermal Systems. ChapterШsection 2.0. DOT/FAA/CT-88/8-2. U.S.Department of Transport, 1991.
    [21] Paraschivoiu I, Saeed F. Aircraft Icing. John Wiley & Sons, Inc. 2001.
    [22]于黎明.全电飞机的技术改进及其发展状况[J],飞机设计,1999,第3期.
    [23]朱新宇,彭卫东.多电飞机及其技术应用[J],中国民航飞行学院学报,2007,第6期.
    [24] Stallabrass J R. Thermal Aspects of De-Icer Design[C]. The International Helicopter Icing Conference, Ottawa, Canada, 1972.
    [25] Baliga G. Numerical Simulation of One-dimensional Heat Transfer in Composite Bodies with Phase Change [D]. M.Sc.Thesis, The University of Toledo, Toledo, Ohio, May, 1980.
    [26] Marano J J. Numerical Simulation of an Electrothermal De-Icer Pad [D]. M.Sc.Thesis, The University of Toledo, Toledo, Ohio, May. 1982.
    [27] Roelke R J, Keith T G, Dewitt K J, Wright W B. Efficient Numerical Simulation of a One-Dimensional Electrothermal Deicer Pad[J]. Journal of Aircraft, 1988, 25(12): 1097-1101.
    [28] Chao D F. Numerical Simulation of Two-Dimensional Heat Transfer in Composite Bodies with Application to De-icing of Aircraft Components [D]. PHD Dissertation, University of Toledo, Toledo, Ohio, 1983.
    [29] Leffel K L. A Numerical and Experimental Investigation of Electrothermal Aircraft Deicing [D]. M.S.Thesis, University of Toledo, Jan.1986.
    [30] Masiulaniec KC. A numerical simulation of the full two-dimensional electrothermal de-icer pad [D]. Ph.D. Thesis, University of Toledo, Toledo, Ohio, 1987.
    [31] Wright W B. A Comparison of Numerical Methods for the Prediction of Two-Dimensional Heat Transfer in an Electrothermal Deicer Pad [D]. M.Sc.Thesis, University of Toledo, Toledo, Ohio, Dec.1987.
    [32] Wright W B. A comparison of numerical methods for the prediction of two-dimensional heat transfer in an electrothermal deicer pad[R], NASA-CR-4202, 1988.
    [33] Wright W B, Keith T G, DeWitt K J. Transient two-dimensional heat transfer throught a composite body with application to deicing of aircraft components[R], AIAA-88-0358, 1988.
    [34] Keith T G, DeWitt K .J, Wright W B. Overview of numerical codes developed for predicted electrothermal de-icing of aircraft blades[R], AIAA-88-0288, 1988.
    [35] Wright W B, Keith T G, DeWitt K J. Numerical analysis of a thermal deicer[R], AIAA-92-0527, 1992.
    [36] Yaslik A.D, DeWitt K J, Keith T G. Further developments in three-dimensional numerical simulation of electrothermal deicing systems[R], AIAA-92-0528, 1992.
    [37] Huang J R, Keith T G., DeWitt K J. An efficient finite element method for aircraft de-icing problems[R], AIAA-92-0532, 1992.
    [38] Huang J R. Numerical Simulation of an Electrothermally De-Iced Aircraft Surface Using the Finite Element Method [D]. Ph.D. Thesis, University of Toledo, Toledo, Ohio, 1993.
    [39] Huang J R, Keith T G., DeWitt K J. Investigation of an electrothermal de-icer pad using a three-dimensional finite element simulation[R], AIAA-93-0397, 1993.
    [40] Huang J R, Keith T G, Dewitt K J. Effect of Curvature in the Numerical Simulation of an Electrothermal De-Icer Pad [J]. Journal of Aircraft, 1995, 32(1): 84-91.
    [41] Scavuzzo R.J, Chu M L, Olsen W A. Structural properties of impact ices accreted on aircraft structures[R], NASA-CR-179580, 1987.
    [42] Denis A. Lynch III, Damian R. Ludwiczak. Shear strength analysis of the aluminum/ice adhesive bond[R], NASA-CR-107162, 1996.
    [43] Scavuzzo R J, Chu M L, Kellackey C J. Structural analysis and properties of impact ices accreted on aircraft structures[R], NASA-CR-198473, 1996.
    [44] Wright W B, DeWitt K J, Keith T G Jr. Numerical Simulation of Icing, Deicing, and Shedding[R]. AIAA 91-0655, 1991.
    [45] Henry R. Development of an Electrothermal De-icing/Anti-Icing Model[R]. AIAA Paper 92-0526, Jan.1992.
    [46] Guy Fortin, Adrian Ilinca, Jean-Louis Laforte, Vincenzo Brandi. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling[R], AIAA-2003-1076, 2003.
    [47] Tan SC, Papadakis M. Simulation of SLD impingement on a high-lift airfoil[R], AIAA-2006-463, 2006.
    [48] Roger WG, James MF, Richard JM. Results from supercooled large droplet mass loss tests in the ACTLUTON icing wind tunnel[R], AIAA-2003-389, 2003.
    [49] Michaelides EE. Review-the transient equation of motion for particles, bubbles and droplets[J], J.Fluids Engr., 1997,119(6):233-246.
    [50] Marchioli C, Soldati A. Mechanism for particle transfer and segregation in a turbulent boundary layer[J], J.Fluid Mech., 2002.
    [51] Lee S, Bragg MB. Experimental investigation of simulated large-droplet ice shapes on airfoil aerodynamics[J], Journal of Aircraft, 1999.
    [52] Lee S, Bragg MB. The effect of ridge-ice location and the role of airfoil geometry[R], AIAA-01-2481, 2001.
    [53] Lee S. Effect of supercooled large droplet icing on airfoil aerodynamics[D], Univ. of Illinois, Urbana, IL, 2001.
    [54] Calay RK, Holdo AE, Mayman P. Experimental simulation of runback ice[J], Journal of aircraft, 1997.
    [55] Edward AW, Andy PB, Michael BB. Characteristics of runback ice accretions on airfoils and their aerodynamic effects[R], AIAA-2005-1065, 2005.
    [56] Al-Khalil KM, Keith TG, De Witt KJ. New concept in runback water modeling foranti-iced aircraft surfaces[J], Journal of aircraft, 1993.
    [57] Al-Khalil KM, Keith TG, De Witt KJ. Development of an improved model for runback water on aircraft surfaces[J], Journal of aircraft, 1994.
    [58] Al-Khalil KM, Miller D, Wright W. Validation of thermal ice protection computer codes: Parts-the validation[R], AIAA-97-0051, 1997.
    [59] Morency F, Brahimi MT, Tezok F, Parachivoiu. Hot air anti-icing system modelization in the ice prediction code CANICE[R], AIAA-98-0192, 1998.
    [60] Morency F, Tezok F, Paraschivoiu I. Heat and mass transfer in the case of an anti-icing system modelisation[R], AIAA-99-0623, 1999.
    [61] Rothmayer AP, Tsao JC. Water film runback on an airfoil surface[R], AIAA-2000-0237, 2000.
    [62]王新炜,张军,王胜国.中国飞机积冰的气候特征[J].气象科学,2002,22(3).
    [63]熊贤鹏,韩凤华.风挡防冰表面温度场计算[J],北京航空航天大学学报, 1997.
    [64]韩凤华,常士楠,王长和,王安良.某型飞机天线罩防冰装置的性能验证[J],航空学报, 1999,Vol.20(增刊).
    [65]常士楠,韩凤华.飞机发动机进气道前缘热气防冰器性能分析[J],北京航空航天大学学报,1999,Vol.25(2).
    [66]徐国跃,谢治国,肖军,马立新.飞机电热防冰用BaTiO3热敏陶瓷力学性能的改进[J],南京航空航天大学学报,1999,Vol.31(1).
    [67]艾剑波,邓景辉,刘达经.直升机旋翼浆叶除冰结构设计[J],直升机技术,2005年第2期.
    [68]常士楠,刘达经,袁修干.直升机旋翼浆叶防/除冰系统防护范围研究[J],航空动力学报,2007, Vol.22(3): 360-364.
    [69]常士楠,候雅琴,袁修干.周期电加热控制律对除冰表面温度的影响[J],航空动力学报,2007, Vol.22(8): 1247-1251.
    [70] Lee S, Kim H S, Bragg M B. Investigation of factors that influence iced-airfoil aerodynamics[R], AIAA-2000-0099, 2000.
    [71] Cebeci T, Kafyeke F. Aircraft icing, Annu[J], Rev. Fluid Mech, 2003.
    [72] Aircraft Icing Handbook (version I), civil aviation authority, New Zealand 2000.
    [73] Thomas S, Cassoni R, MacArthur C. Aircraft anti-icing and deicing techniques and modeling[R], AIAA-96-0390, 1996.
    [74] Voller V R, Cross M. Accurate solutions of moving boundary problems using the enthalpy method[J], International Journal of Heat and Mass Transfer, 1981, 24(3): 545-556.
    [75] Voller V R, Prakash C. A fixed grid numerical modeling methodology for convection/diffusion mushy phase change problems[J], International Journal of Heat and Mass Transfer, 1987, 30(9):1709-1719.
    [76] Voller V R, Swaminathan C R. Generalized Source-Based Method for Solidification Phase Change[J], Numer. Heat Transfer B, 1991, 19(2):175-189.
    [77] Kirby M S, Hansman R J. Experimental measurement of heat transfer from an iced surface during artificial and natural cloud icing conditions[R], AIAA-86-1352, 1986.
    [78] Arimilli R V, Keshock E G.. Measurements of local convective heat transfer coefficients on ice accretion shapes[R], AIAA-84-0018, 1984.
    [79] Bragg M B, Cummings M J, Lee S. Henze C.M, Boundary-layer and heat-transfer measurements on an airfoil with simulated ice roughness[R], AIAA-96-0866, 1996.
    [80] Dukhan Nihad, James G Van Fossen, Masiulaniec K Cyril, DeWitt Kenneth J. Convective heat transfer coefficients from various types of ice roughened surfaces in parallel and accelerated flow[R], AIAA-96-0867, 1996.
    [81] Sherif S A, Pasumarthi N. Local heat transfer and ice accretion in high speed subsonic flow over an airfoil[R], AIAA-95-2104, 1995.
    [82] Robert C, Henry, Didier Guffond, Sndre Bouveret, Gerard Gardette. Heat transfer coefficient measurement on iced airfoil in a small icing wind tunnel[R], AIAA-99-0372, 1999.
    [83]Frank P Incropera,David P Dewitt,葛新石原理[M],中国大学m版社,1985,[841奥齐西兜,俞昌铭译,热传导[M],北京:
    [85]Zemansky M w,Dittman R,H,刘皇风等译版社,1987,义方,郭宽良等译传热的基本高等教育出版社,1983,热学和热力学[N],:ILgz:科学出
    [86]Christopher P Rahaim,Ruben J Cavalleri,John G McCarthy,Alain J Kassab Computational code for conjugate heat transfer problems:an expefimentaI validation effort[R],AIAA一97-2487,1 997,[871 Shanmugasundaram V Leland J,E,Ponnappan R,A numerical study of conjugate heal transfer from discrete heat sources[R],AIAA一96,1 909,l 996,
    [88]Christopher P Rahaim,Dr Robe~J Cavalleri,User friendly analysis code for conjugate heat transfer problems[R],AIAA-96-005 l,1 996
    [89]s11aIlII]ugasulldaram V Ponnappan R,Lcland J E,Beam JE,ConJugate heat transl~r f11 a vcnture-type cooling system:numerical and experimental results[R], AIAA一95-21 14,1995,
    [90]刘儒勋,王志峰数值模拟方法和运动界面追踪[M],rl中国科技大学出版社, 2001,
    [91]CameronA,Basiclubricationtheory[M],机械工业山版社,1980[921周桂如,马骥,全永昕,流体润滑理论[M],浙江大学出版社,1990,
    [93]陈史:振,程尚模,矩形腔内相变材料接触融化的分析…,太阳能学报,1993, 1 4(3):203-207,
    [94]杜雁霞相变材料蓄冷机理及应用研宄[D],中国人民解放军理工人学,2007 "1-5月,
    [95]方振平陈万春,张曙光,肌空飞行器飞行动力学[M],北航空航天大学出版社,2005,
    [96]钱杏芳,林瑞雄,赵亚男,导弹飞行力学[M],北京理工大学出版社,2006,
    [97]袁长生,宋笔锋,微型飞机降低重心位置稳定性的影Ⅱ向…,航空学报,2006, 27(2),
    [98]张涵信,冉政,『超,周伟江,关丁飞船的动态稳定问题…,空气动力学报, 1999,V01,17(2),
    [99]张涵信,袁先旭,谢昱飞,叶友达,关于建立非定常非线性动态稳定系统的问题[c],2003空气动力学前沿研究论文集,中国宇航出版社2003年10月
    [100]袁先旭,非定常流动数值模拟及飞行器动态特性分析研究[D],中国空气动力研宄与发展中心,2002年4月,[1011张汹信,袁先旭,叶友达,谢昱飞,飞船返回舱俯仰振荡的动态稳定性研究[J]空气动力学学报,2002,笫3期,
    [102]张涵信,袁先旭,谢昱飞,叶友达.不带稳定翼飞船返回舱俯仰动稳定定性研究[J],空气动力学学报,2004,第2期.[1 03]Aircraft Icing Handbook(version I),civil aviation authority,New Zealand 2000[1 04]Scavuzzo R J,Chu M L,Ananthaswamy V.Influence of aerodynamic fbrccs in ice shedding[J],Journal ofAircraft,1994,31(3):526-530
    [105]易贤.飞机积冰的数值计算与积冰试验相似准则研究[D],中国空气动力研究与发展中心,2007.
    [106]王勋成,邵敏.有限单元法基本原理和数值方法(第二版)[M],清华大学出版社,1997.
    [107]王章建.有限元法模拟二维类前缘结构的瞬态热响应和热应力[D],中国空气动力研宄与发展中心,2002.[10S]黄谦.多层材料防热结构二维简化模型瞬态热响应和热应力的计算研究[D],中国空气动力研究与发展中心,2005.
    [109]竹内洋一郎著.郭廷纬,李安定泽.热心力[M],科学Hj版社,1977.
    [110]苏翼林.材料力学(上册)[M],人民教育出版社,1979.[11 1]王梓旭关于飞机结冰的水滴撞击特性计算与结冰相似准则研究[D],中国空气动力研究与发展中心,2008.[1 12]崔因文.表面与界面[M],清华大学出版社,1990.
    [113]AW、亚当森著,顾惕人译.表面得物珲化学,科学出版社,1984
    [114]Clark George Wiberg.Numerical Simulation of freezing driven riVUlcts usill£an enthalpy method formulation[D].Ph.D.Thesis,University of Temlessee, Knoxville,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700