新型双包层光子晶体光纤及激光玻璃的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的进步,光纤通信网络正在向高速率、大容量发展,实际应用对光纤性能提出了越来越高的要求。双包层光子晶体光纤作为大功率激光器的传输载体,它的特性越来越受到人们的关注。此外,掺镱玻璃也是制作大功率激光器不可缺少的激光介质,人们开始试图将掺镱玻璃介质与光子晶体光纤相结合,制备超大功率的掺镱光子晶体光纤激光器。
     本论文从理论上分别对新型双包层光子晶体光纤的色散特性和掺镱激光玻璃的光谱特性进行了分析。并且,采用坩埚高温熔融法制备了几种不同组份的掺镱激光玻璃,为制备大功率激光器奠定了基础。论文主要内容包括:
     首先,以多极法理论为基础,设计了一种新型双包层结构的光子晶体光纤。通过改变其五层空气孔的三个结构参数(内层空气孔直径,外层空气孔直径,八边形孔间距),理论上实现了色散绝对值在1.32~1.7μm的波段内变化仅为1.55 ps/km/nm的平坦色散特性。并且在此基础上对其限制损耗进行了数值模拟。
     其次,采用坩埚高温熔融法制备了一系列的掺镱硅酸盐激光玻璃,测试了硅酸盐玻璃的各项性能参数,分析了稀土离子掺杂浓度和玻璃组份变化对激光玻璃光谱特性的影响。
     最后,对制备出的五种不同组份的掺镱硅酸盐激光玻璃的荧光光谱和吸收光谱进行了分析,从而获得了最佳玻璃组份和工艺条件,对今后的实验具有一定的指导意义。
With the development of information technology, The optical fiber communication network is evolving towards high speed and large capacity and the practical application proposed higher and higher request to the fiber performance. The double-cladding Photonic Crystal Fiber (PCF) which contacts with high-power laser is a important field investigated. Besides, Yb3+doped laser glass is also an indispensable medium of the high-power laser. With the birth of photonic crystal fiber, people start trying to make combination of Yb3+doped glass medium with Photonic Crystal Fiber because of its superior optical properties, which will be the ideal medium for the preparation of ultra-high-power lasers.
     The dispersion characteristic of a new double-cladding Photonic Crystal Fiber and the characteristics of Yb3+doped laser glass are investigated respectively in this paper. Moreover, Yb3+doped glass is prepared by high-temperature crucible melting method and. has laid the foundation for the preparation of high-power laser .The main results are summarized as follows:
     Firstly, based on multi-pole method, a kind of new double-cladding Photonic Crystal Fiber is put forward. It has been shown theoretically that it is possible to obtain ?attened dispersion within the wave band of 1.32 to 1.7μm by altering three parameters of the five-ring double-cladding PCF (the diameter of the inner ring holes, the diameter of the outer four rings holes, the pitch of the octagon), and the absolute value of dispersion coefficient merely changes 1.55 ps/km/nm. Moreover, simulation results show that this PCF can assume low confinement losses near the1550 nm wavelength range.
     Secondly, a series of Yb3+doped silicate laser glass were prepared by high-temperature crucible melting method, the fluorescence spectra parameters such as spectral properties were tested. The impact of rare earth ions doping concentration and glass composition changes on the glass spectrum were analyzed.
     Finally, The fluorescence spectrum and the absorption spectrum of five ingredients different mixed the Yb3+doped silicate laser glass have carried on the analysis, obtained an ingredient allocated which has the best data, laid the foundation for further experiment.
引文
1 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-state Physics and Electronics. Phys. Rev. Lett,1987,58(20):2059-2062
    2 S. John. Strong Localization of Photons in Certain Disordered Dielectric Supper Lattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    3 E. Yablonovitch, T. J. Gmitter. Photonic Band Structure: the Face-centered-cubic Case. Phys. Rev. Lett.,1989,63(18):1950-1953
    4 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Optics Letters,1996,21(19):1547-1549
    5 P. Russell. Photonic Crystal Fibers. Science,2003,299(5605):358-362
    6 J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic Band Gap Guidance in Optical Fibers. Science,1998,282:1476-1478
    7 T. A. J. Broeng, S. E. Barkou, T. Sondergaard. Analysis of Air-Guiding Photonic Band- gap Fibers. Optics Letters,2000,25(2):96-98
    8 A. Aguirre, N. Nishizawa, J. Fujimoto, et al. Continuum Generation in a Novel Photonic Crystal Fiber for Ultrahigh Resolution Optical Coherence Tomography at 800 nm and 1300 nm. Optics Express,2006,14(3):1145-1160
    9 J. C. Knight. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters,1996,21(19):1547-1549
    10 T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Optics Letters,1997,22(13):961-963
    11 J. C. Knight. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters,2000,12(7):807-809
    12 A. Fernando. Nearly zero ultra-flattened dispersion in photonic crystal fibers. Optics Letters,2000,25(11):790-792
    13 N. G. R. Broderick. Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters,1999,24(20):1395-1397
    14 N. A. Mortensen. Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters,2003,28(6):393-395
    15 A. Ortigosa Blanch. Highly birefringent photonic crystal fibers. Optics Letters,2000,25(18):1325-1327
    16 B. J. Mangan. Experimental study of dual-core photonic crystal fiber. Electronics Letters,2000,36(16):1358-1359
    17 J. Y. Y. Leong. High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1um pumped supercontinuum generation. Journal of Lightwave Technology, 2006,24(1):183-190
    18 J. C. Zhao, J. Bao, T. A. Birks, et al. Photonic band gap guidance in fibers. Science,2006,282(5393):1276-1278
    19 J. Snitzer, J. Broeng, T. A. Birks, et al.Double-cladding Photonic Crastal Fibers. Science,1988,282(5393):1476-1478
    20 J. Wang, Chun Jiang, Weisheng Hu, et al. Modified design of photonic crystal fibers with flattened dispersion. Opt. Laser Technol,2006,38(3):169-172
    21 T. Fujisawa, Kunimasa Saitoh, Keisuke Wada, et al. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Opt. Express,2006,14(2):893-900
    22 H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, et al. Bismuth glass holey fibers with high nonlinearity. Opt. Express,2004,12(21):5082-5087
    23 J. Riis Folkenberg, Niels Asger Mortensen, Kim P. Hansen, et al. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Opt. Lett. , 2003,28(20):1882-1884
    24 K. Saitoh, Masanori K. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Opt. Express, 2004,12(10):2027-2032
    25 V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al. Extruded soft glass photonic crystal fiber or ultrabroad supercontinuum generation. Opt. Express, 2002,10(25):1520–1525
    26 B. Kuhlmey, G. Renversez, D. Maystre. Chromatic Dispersion and Losses of Microstructured Optical Fibers. Appl. Opt,2003,42(4):634-639
    27 J. Chen, J. Arriaga, T. A. Birks, et al. Dispersion in Photonic Crystal Fiber. IEEE Photon. Technol .Lett,2003,12(7):802-803
    28 M. Moenster, Günter Steinmeyer, Rumen Iliew, et al. Analytical Relation Between Effective Mode Field Area and Waveguide Dispersion in Microstructure Fibers. OpticsLetters,2006,31(22):3249-3251
    29 K. Saitoh, M. Koshiba, T. Hasegawa, et al. Chromatic Dispersion Control in Photonic Crystal Fibers: Application to Ultra-flattened Dispersion. Opt. Express, 2003, 11(8):843-852
    30 A. Cucinotta, S. Selleri, L. Vincetti, et al. Perturbation Analysis of Dispersion Properties in Photonic Crystal Fibers Through the Finite Element Method. J. Lightwave Technol.,2002,20(8):1433-1422
    31 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly Birefringent Photonic Crystal Fibers, Opt.Lett.,2000,25(18): 1325-1327
    32 D. Mogilevtsev, J. Broeng, S. Ebarkou, et al. Design of Polarization Preserving Photonic Crystal Fibers with Elliptical Pores, Appl.Opt.,2001,3:S141–S143
    33 P. R. Chaudhuri, V. Paulose, C. L. Zhao, et al. Near-Elliptic Core Polarization Maintaining Photonic Crystal Fiber: Modeling Birefringence Characteristics and Realization, IEEE Photon. Techno. Lett.,2004,16(5):1301-1303
    34 K. Suzuki, H. Kubota, S. Kawanishi, et al. Optical Properties of a Low-Loss Polarization-Maintaining Photonic Crystal Fiber. Opt .Express,2001,9(16):676-680
    35 A. O. Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly Birefringence Photonic Crystal Fibers. Optics Letters,2000,25(18):1325-1327
    36 B. Andersen, T. Tokle, Y. Geng, et al. Wavelength Conversion of a 40-Gb/s RZ-DPSK Signal Using Four-Wave Mixing in a Dispersion-Flattened Highly Nonlinear Photonic Crystal Fiber. IEEE Photonics Technology Letters,2005,17(9):1908-1910
    37李曙光,冀玉领,周桂耀等.多孔微结构光纤中飞秒激光脉冲超连续谱的产生.物理学报,2004,53(2):478-483
    38 S. V. Smirnov, J. D. Castanon. Optical Spectral Broadening and Supercontinuum Generation in Telecom Applications. Optical Fiber Technology,2006,12(56):122-147
    39 F. Brechet, J. Marcou, D. Pagnoux, et al. Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers by the Finite Element Method. Optical Fiber Technology,2000,6(2):181-191
    40李曙光,刘晓东,侯蓝田.一种光子晶体光纤基模色散特性的矢量法分析.物理学报, 2004,53(6):1873-1879
    41 X. T. Zhao, L. T. Hou, Liu Zhaolun, et al. Improved fully vectorial effective index method in photonic crystal fiber. Applied Optic,2007,46(19):4052-4056
    42栗岩锋,刘博文,王子涵,等.光子晶体光纤色散的有限差分法研究.中国激光, 2004,31(10):1257-1260
    43 S. Guo, F. Wu, S. Albin, et al. Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method. Optics Express,2004,12(15):3341-3352
    44 Z. Wang, G.B. Ren, S.Q. Lou. A Novel Supercell Overlapping Method for Different Photonic Crystal Fibers. Journal of Lightwave Technology,2004,2(3):903-916
    45 T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al. Multipole Method For Microstructured Optical Fibers. Journal of the Optical Society of America B,2002, 19(10):2322-2330
    46 B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole Method for Microstructured Optical Fibers. II. Implementation and results. Journal of the Optical Society of America B,2002,19(10):2331-2340
    47 A. Ferrando, E. Silvestre, J.J. Miret, et al. Full-Vector Analysis of a Realistic Photonic Crystal Fiber. Optics Letters,1999,24(5):276-278
    48 L. Rayleigh The influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag,1982,6(11):1327-1340
    49 W.. Wijnggaard. Guided normal modes of two parallel circular dielectric rods. J. Opt. Soc. Am, 1973,63(8):944-949
    50 L. K. Mary, M. R Chen, Bassett I M, et al. An electromagnetic theory of dielectric waveguides with multiple embedded cylinders. IEEE J. Lightwave Technol.,1984,12(3): 396-410
    51 T. P.White, Kuhlmey B T, Mcphedran R C, et al. Multipole method for microstructured optical fibers. J.Opt.Soc. Am,2002,19(10):2322-2330
    52卢卫民,张立勇.掺镱双包层光子晶体光纤的制备.电子技术,2007,28(2):123-126
    53 W. Wei, L. T. Hou, G. Y. zhou Design of Low Loss Nearly Zero Dispersion Flattened Photonic Crystal Fiber with Double Cladding[J].Chinese Physics Letters, 2009,26(5): 054204-1~054204-3
    54 T. P. White, MePhedran R C, et alMultipole method form icrostructured optical fiber formulation[J].Opt Soc Am. 2001, 9(13):721-7325
    55 J. C. Knight, Birks T A ,Russel P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996 ,21 (19):1547-1549
    56 A. Argyros, T. A. Birks, S. G. Leon-Saval, et al. Photonic bandgap with an index step ofone percent. Optics Express,2005,13(1):309-314
    57杜海龙,郑毅.光子晶体光纤的多级法研究.激光与红外,2008,38(2):161-164
    58陈雨金.稀土硼酸铋玻璃的制备和光谱性质.[中国科学院福建物质结构研究所硕士学位论文].2004:25-28
    59王培铭.无机非金属材料学.上海:同济大学出版社,1999:105-112
    60王玉芬,刘连城.石英玻璃.北京:化学工业出版社,2006:72-73
    61刘树江.掺Yb3+激光玻璃的组成-结构-性能相关研究.[中南大学工学博士论文].2006:1-70
    62李玮楠,丁广雷,陆敏,等.掺Yb3+激光玻璃光谱特性研究.光谱学与光谱分析,2006,26(10):1781-1784
    63李玮楠,邹快盛,陆敏,等.Yb3+掺杂硅酸盐玻璃的制备及光谱性质.光谱学与光谱分析,2006,26(6):983-986
    64 X.L.Zou,H.Toratani. Evaluation of Spectroscopic of Yb3+-Doped Glasses. Phys. Rev.B, 1995,52(22):15889-15896
    65刘树江,卢安贤,唐晓东,等.掺Yb3+硅酸盐和磷酸盐激光玻璃的光谱性质.中南大学学报(自然科学版),2006,37(3):433-437
    66 V. Petrov, U. Griebnur, D. Ehrt, et al. Femtosecond Self Mode Locking of Yb: Fluoride Phosphate Glass Laser. Opt. Lett.,1997, 22(6):408-410
    67 B. Peng, T. Lzulnitani. Next Generation Laser of Nucleur Fusion. The Review of laser Engineering, 1993,21(12):1234-1238
    68 R. Koeh, J. Grieboer, Sehueunagel, et al. Efficieney Room Temperature cw Yb3+:Glass Laser Pumped by a 946 nm Nd:YAG Laser. Opt.Comm.,1997,134(l-6):175-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700