光子晶体光纤的双零色散和非线性特性的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤中的色散特性和高非线性特性研究是当前光子晶体光纤研究的两个重要领域,而具有双零色散波长的光子晶体光纤的非线性特性研究已成为其研究的重点之一。本文从理论和实验上分别对光子晶体光纤的双零色散特性和非线性特性进行了研究,主要内容如下:
     首先,利用改进的有效折射率法对不同结构光子晶体光纤的色散和非线性系数进行了数值模拟,分析了结构参数对色散和非线性系数的影响,并在此基础上进一步研究了具有两个零色散波长的光子晶体光纤的双零色散和非线性特性,从而为具有双零色散波长的光子晶体光纤的非线性研究提供了理论基础。
     其次,运用多极法通过优化孔节距和包层空气孔半径设计了一种具有双零色散波长的高非线性光子晶体光纤,利用分步傅立叶方法数值模拟超短脉冲在其中传输的情况。发现经过传输,两个零色散波长之间的主要能量被转换至位于正常色散区的两边带峰处,多于99%的光能都被转移至两边平坦的带峰,且两边带峰受波长影响较大,但对脉冲能量和泵浦脉冲的啁啾不敏感,这就产生了高稳定性的谱带,具有广泛的应用前景。
     最后,利用自制的高非线性光子晶体光纤进行了飞秒激光脉冲传输实验,研究了在不同功率、不同输入波长下光子晶体光纤的频率转换现象。分析了输入激光脉冲的中心波长、输入功率分别对光纤产生的反斯托克斯波的中心波长、强度以及频率转换效率的影响。结果显示,输入脉冲的中心波长越接近零色散波长,转换效率越大,当输入脉冲中心波长为760 nm时,产生的反斯托克斯波的中心波长为465 nm,其强度是抽运波剩余强度的8.1倍,转换效率高达90%。
The study of dispersion and nonlinearity of photonic crystal fibers are two important fields in the research of photonic crystal fibers. And the study of nonlinearity of photonic crystal fibers with two zero-dispersion is becoming the most important one of the research of photonic crystal fibers. The two zero-dispersion and nonlinear properties of photonic crystal fibers are investigated respectively. The main results are summarized as follows:
     Firstly, the dispersion and nonlinear coefficients of several different PCFs are numerical simulated by Improved Fully Vectorial Effective Index Method (IFVEIM). The relation between the structure parameters and dispersion, the structure parameters and nonlinear coefficient are analyzed. With the variety rule, the two zero-dispersion and nonlinearity of photonic crystal fibers with two zero-dispersion are investigated.
     Second, a kind of photonic crystal fiber with two zero-dispersion wavelengths is investigated in use of multipole method by tailoring the pitch and the diameter of cladding hole. The slip-step Fourier method is used to numerically simulate the ultrashort pulses’transmission in this fiber. As the result of transmission, the mostly energy between the two zero dispersion wavelength is transformed into the two spectral lobes. The efficiency of pumping is so high that more than 99% energy of input is transferred into the two spectral lobes. The two spectral lobes are very flat, they fluctuate with wavelength and insensitive to pulse energy as well as chirp of pump pulse, thus resulting in the high stability of spectra and making it have wide applications.
     The final, it is demonstrated that femtosecond pulses transmit in a highly nonlinear PCF manufactured by our group. The frequency conversion in abnormal dispersion region of a highly nonlinear PCF at the different power and wavelength are researched by Femtosecond Laser Pulses. Analyze the influence of central wavelength and power of input pulses on the output spectrum. When the central wavelength of input pulses is different, the frequency conversion follows the changes, which is bigger as the central wavelength of input pulse is more near to the zero-dispersion wavelength. Especially when central wavelength of input pulses is 760 nm, the central wavelength of anti-Stokes wave is 465 nm, the intensity of anti-Stokes is eight times more than the intensity of residual pump energy, and the transform-efficiency exceeds 90%.
引文
1 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding,Optics Letters,1996,21(19):1547-1549
    2 T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett.,1997,22(13):961-963
    3 J. C. Knight, J. Broeng, T. A. Birks, et. al., Photonic band gap guidance in optical fibers, Science,1998, 282(5393):1476-1478
    4 R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode Photonic Band Gap Guidance of Light in Air. Science,1999,285(5433):1537-1539
    5 P. Russell. Photonic Crystal Fibers. Science,2003,299(5605):358-362
    6 A. Bjarklev, J. Broeng, A. S. Bjarklev. Photonic Crystal Fibres. Boston:Kluwer Academic Publishers,2003:103-161
    7吴琼.光子晶体光纤及其非线性特性的研究.中国科技信息,2006,2: 56-56
    8 F. Druon, P. Georges. Pulse-Compression down to 20 fs Using a Photonic Crystal Fiber Seeded by a Diode-Pumped Yb:SYS Laser at 1070 nm. Optics Express, 2004,12(15):3383-3396
    9胡明列.飞秒激光脉冲在光子晶体光纤中传输特性的研究. [天津大学博士学位论文].2004:23-36
    10 S. T. Cundiff, J. Ye. Colloquium: Femtosecond Optical Frequency Combs. Reviews of Modern Physics,2003,75(1):325-342
    11 Eiichi Takahashi, Susumu Kato, Yuji Matsumoto, et al. Ultra Broadband UV Generation by Stimulated Raman Scattering of Two-color KrF Laser in Deuterium Confined in a Hollow Fiber[J]. Optics Express,2007,15(5):2535-2540
    12 E. Yablonocitch. Inhibited Spontaneous Emission in Solid-state Physics and Electronics. Phys. Rev. Lett.,1987,58(20):2059-2062
    13 S. John. Strong Localization of Photons in Certain Disordered Dielectric SupperLattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    14 J. Broeng, D. Mogilevstev, S. E. Barkou, et al. Photonic Crystal Fibers a New Class of Optical Waveguides. Optical Fiber Technology,1999,5(3):305-330
    15 J. K. Ranka Optical Properties of High-Delta Air-Silica Micro-Structure Optical Fibers. Optics Letters,2000,25:796-799
    16池灏,曾庆济,姜淳.光子晶体光纤的原理应用和研究进展.光电子·激光, 2002,13(5):534-537
    17 Sigang Yang, Yejin Zhang, Lina He, et al. Broadband Dispersion-Compensating Photonic Crystal Fiber. Optics Letters,2006,31(19):2830-2832
    18 A. Goel, R. K. Shevgonkar. Wide-band Dispersion Compensating Optical Fiber. IEEE Photonics Technology Letters,1996,8(12):1668-1670
    19 N. G. R. Brodenck, T. M. Monro, P. J. Bennell. Nonliearity in Holey Optical Fibers: Measurement and Future Opportunities. Optics Letters,1999,24(20):1395~1397
    20王清月,胡明列.光子晶体光纤非线性光学研究新进展.中国激光, 2006,33(1):57-63
    21 A. Zheltikov. Special Issue on Supercontinuum Generation. Applied Physics B, 2003,77(2-3):143-376
    22 A. M. Zheltikov. Microstructure-Fiber Frequency Converters. Laser Physics Letters, 2004,1(5):220-233
    23 W. J. Wadsworth, J. C. Knight, A. Ortigosa Blanch, et al. Soliton Effects in Photonic Crystal Fibres at 850 nm. Electronics Letters,2000,36(1):53-55
    24 T. P. Hansen, J. Broeng, S. E. B. Libori, et al. Highly Birefringent Index-Guiding Photonic Crystal Fibers, IEEE Photon. Technol .Lett,2001,13(6):588-590
    25 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly Birefringent Photonic Crystal Fibers, Opt.Lett.,2000,25(18):1325-1327
    26 D. Mogilevtsev, J. Broeng, S. Ebarkou, et al. Design of Polarization Preserving Photonic Crystal Fibres with Elliptical Pores, Appl.Opt.,2001,3:S141–S143
    27 P. R. Chaudhuri, V. Paulose, C. l Zhao, et al. Near-Elliptic Core Polarization Maintaining Photonic Crystal Fiber: Modeling Birefringence Characteristics andRealization, IEEE Photon. Technol .Lett,2004,16(5):1301-1303
    28 K. Suzuki, H. Kubota, S. Kawanishi, et al. Optical Properties of a Low-Loss Polarization-Maintaining Photonic Crystal Fiber , Opt .Express,2001,9(16):676-680
    29 M. Antkowiak, R. Kotynski, T. Nasilowski, et al. Phase and Group Modal Birefringence of Triple-defect Photonic Crystal Fibres, J. Opt. A:Pure Appl. Opt.2005,7:763–766
    30 A. Blanch, A. Díez, M. Delgado-Pinar, et al. Ultrahigh Birefringent Nonlinear Microstructured Fiber, IEEE Photon. Technol .Lett,2004,16, (7)1667-1669
    31李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式和色散特性研究.物理学报, 2003,52(11):2811-2817
    32李曙光,刘晓东,侯蓝田.一种光子晶体光纤基模色散特性的矢量法分析.物理学报, 2004,53(6):1873-1879
    33 S.G. Li, G.Y. Zhou L.T. Hou, et al. Influence of Interstitial Air Holes in Index-Guiding Photonic Crystal Fibers on Their Basic Properties. Applied Physics B, 2006,82(12):1056-1061
    34 Z.L. Liu, X.D. Liu, S.G. Li, et al. A Broadband Ultra Flattened Chromatic Dispersion Microstructured Fiber for Optical Communications. Optics Communication, 2007,272(1): 92-96
    35 M. L. Hu, C.Y. Wang, Y. F. Li, et al. An Anti-Stokes-Shifted Doublet of Guided Modes in a Photonic-Crystal Fiber Selectively Generated and Controlled with Orthogonal Polarizations of the Pump Field. Applied Physics B,2004,79(7):805-809
    36李启成.光子晶体光纤研究进展及应用前景.云南大学学报,2005,27(5A):552-555
    37 A. Hassani, M. Skorobogatiy, Design of the Microstructured Optical Fiber-based Surface Plasmon Resonance Sensors with Enhanced Microfluidics. Optics Express, 2006,14(24):11616-11621
    38 M.B. Cordeiro, Eliane M. dos Santos, C.H. Brito Cruz, et al. Lateral access to the Holes of Photonic Crystal Fibers Selective Filling and Sensing Applications. Optics Express, 2006,14(18):8403-8412
    39 Hae Young Choi, Myoung Jin Kim, Byeong Ha Lee. All-fiber Mach-Zehnder Type Interferometers Formed in Photonic Crystal Fiber. Optics Express,2007,15(9):5711-5720
    40 L. Kornaszewski, N. Gayraud, J. M. Stone, et al. Mid-infrared Methane Detection in a Photonic Bandgap Fiber Using a Broadband Optical Parametric Oscillator. Optics Express,2007,15(18):11219-11224
    41 Kazuhide Nakajima, Jian Zhou, Katsusuke Tajima, et al. Ultrawide-Band Single-Mode Transmission Performance in a Low-Loss Photonic Crystal Fiber. J. Lightwave Technol. 2005,23(1):7-12
    42 Ling Fu, Ankur Jain, Huikai Xie, et al. Nonlinear Optical Endoscopy Based on a double clad Photonic Crystal Fiber and a MEMS Mirror. Optics Express,2006,14(3):1027-1032
    43 V. Ravi Kanth Kumar, A. K. George, W.H. Reeves, et al. Extruded Soft Glass Photonic Crystal Fiber for Ultrabroad Supercontinuum Generation. Optics Express, 2002,10(25):1520-1525
    44 Xian Feng, A. K. Mairaj, D. W. Hewak, et al. Nonsilica Glasses for Holey Fibers. Journal of Lightwave Technology,2005,23(6):2046-2054
    45 Zhou Guiyao, Hou Zhiyun, et al. Fabrication of Glass Photonic Crystal Fibers with a Die-cast Process. Applied Optics,2006,45(18):4433-4436
    46 A. D. Fitt, K. Furusawa, T. M. Monro. Modelling the Fabrication of Hollow Fibers: Capillary Drawing. Journal of Lightwave Technolgy,2001,19(12):1924-1931
    47 G. Y. Zhou, Z. Y. Hou, L.T. Hou. Fabrication of Glass Photonic Crystal Fibers with a Die-Cast Process. Applied Optics,2006,45(18):1-4
    48 K. Tajima, L. Nakajima, K. Kurokawa. Low-Loss Photonic Crystal Fibers. OFC,2002:523-524
    49 Y. M. Wang, Y. H. Zhao, J. S. Nelson, et al. Ultrahigh-Resolution Optical Coherence Tomography by Broadband Continuum Generation from a Photonic Crystal Fiber. Optics Letters,2003,28(3):182-184
    50赵兴涛,侯蓝田,刘兆伦,等.改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.物理学报,2007,56(5):2275-2279
    51 Y. F. Li, C. Y. Wang, M. L. Hu. A Fully Vectorial Effective Index Method for Photonic Crystal Fibers: Application to Dispersion Calculation. Optics Communications,2004,238(1-3):29-33
    52 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. Properties of Photonic Crystal Fiber and the Effective Index Model. J. of Opt. Society of America A,1998,15(3): 748-752
    53 T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al. Multipole Method for Microstructured Optical Fibers I: Formulaition. Journal of the Optical Society of America B,2002,19(10):2322-2330
    54 B. T. Kuhlmey, T. P. White, G. Renversez, et al. Multipole Method for Microstructured Optical Fibers II: Implementation and results. Journal of the Optical Society of America B,2002,19(10):2331-2340
    55 A. Ferrando, E. Silvestre, J.J. Miret, et al. Full-Vector Analysis of a Realistic Photonic Crystal Fiber. Optics Letters,1999,24(5):276-278
    56栗岩锋,刘博文,王子涵,等.光子晶体光纤色散的有限差分法研究.中国激光, 2004,31(10):1257-1260
    57 S. Guo, F. Wu, S. Albin, et al. Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method. Optics Express,2004,12(15):3341-3352
    58 F. Brechet, J. Marcou, D. Pagnoux, et al. Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers by the Finite Elementmethod. Optical Fiber Technology,2000,6(2):181-191
    59吴重庆.光波导理论.北京.清华大学出版社,2000:1-66
    60 E. Centeno, D. Felbacq. Rigorous Vector Diffraction of Electromagnetic Waves by Bidimensional Photonic Crystals. Journal of the Optical Society of America A,2000,17(2):320-327
    61 M. J. Steel, T. P. White, C. Martjin de Sterke, et al. Symmetry and Degeneracy in Microstructuerd Optical Fibers. Optics Letters,2001,26(8):488-490
    62 W. Wijngaaxd. Guided Normal Modes of Two Parallel Circular Dielectric Rods. Journal of the Optical Society of America,1973,63:944-949
    63廖廷彪.光纤光学.北京.清华大学出版社,2000:56-67
    64贾东方,余震虹,等译.非线性光纤光学原理及应用.北京.电子工业出版社,2002:4-36
    65 J. C. Knight, P. St. J. Russell. New Ways to Guide Light. Science, 2002,296(5566):276-277
    66 A. Ferrando, E. Silvestre, J. J. Miret, et al. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett.1999,24(5):276-278
    67 W. H. Reeves, J. C. Knight, P. St. J. Russell, et al. Demonstration of Ultra Flattened Dispersion in Photonic Crystal Fibers. Optics Express,2002,10(14):609-613
    68 J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous Dispersion in Photonic Crystal Fiber. IEEE Photonics Technology Letters,2000,12(7):807-809
    69 K. M. Hilligs?e, T. V. Andersen, H. N. Paulsen, et al. Supercontinuum Generation in a Photonic Crystal Fiber with Two Zero Dispersion Wavelengths. Optics Express, 2004,12(6):1045-1054
    70 T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse, J Opt Soc Am B,2009,21(5):1969-1980
    71 A. V. Husakou, and J. Herrmann, Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers, Physical Review Letters,2008,72(26):203-901
    72 S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J Opt Soc Am B, 2007,19(12):753-764
    73 S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers, J Opt Soc Am B, 2008,18(7):753-764
    74 M. H. Frosz, P. Falk, and O. Bang, The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength, Optics Express ,2009,13(8):6181-6192
    75 Karen Marie Hilligse, Thomas Vestergaard Andersen, Henrik Nrgaard Paulsen et al.. Supercontinuum generation in a photonic crystal fiber with two zero dispersionwavelengths. Opt. Expess,2008,12(6):1045-1054
    76 Hua Zhang, Song Yu, Jie Zhanget al..Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths. Opt. Express,2007,15(3):1147-1154
    77李曙光,冀玉领,周桂耀,等.多孔微结构光纤中飞秒激光脉冲超连续谱的产生.物理学报,2004,53(2):478-483
    78胡明列,王清月,栗岩锋,等.飞秒激光在大空气比微结构光纤中增强的非线性光谱展宽.中国激光,2004,31(12):1429-1432
    79 M. Hu, Q. Y. Wang, Y. Liet al. An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field. Appl. Phys. B,2004,79(9):805-809
    80 Minglie Hu, Ching-yue Wang, Lu Chaiet al. Birefringence-controlled anti-Stokes line emission from a microstructure fiber. Laser Phys. Lett,2004,1(6):299-302.
    81 Minglie Hu, Ching-yue Wang, Lu Chaiet al. Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber. Opt. Express,2004,12 (9):1932-1937
    82 Pierre-Alain Champert, Vincent Couderc, Philippe Leproux et al. White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Opt. Express,2004,12(19):4366-4371
    83李曙光,刘晓东,侯蓝田.接近于零色散的色散平坦光子晶体光纤的数值模拟与分析.中国激光,2004,31(6):713-17
    84程同蕾,李曙光,周桂耀,等.空芯光子晶体光纤纤芯中的功率分数及其带隙特性.中国激光,2007,34(2):249-25
    85苑金辉,侯蓝田,周桂耀,等.光子晶体光纤中反斯托克斯现象的研究.中国激光,2008,12(35):1935-1939

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700