光子晶体光纤超连续谱的产生及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤最引人注目的一个特点是可以具有很强非线性特性,很容易发生各种非线性效应,尤其是超连续谱的产生。本文设计出具有较高非线性的光子晶体光纤,并且利用多极法对有效模面积、非线性系数进行了研究;利用分步傅里叶方法求解广义非线性薛定谔方程,对设计的高非线性光子晶体光纤超连续谱的产生进行了研究,主要研究内容如下:
     首先,利用多极法对光子晶体光纤的有效模面积和非线性系数进行了数值模拟,分析发现,通过改变光子晶体光纤包层空气孔间距和空气孔直径,可以有效地调节非线性的大小。
     其次,利用分步傅里叶方法对广义非线性薛定谔方程进行了数值求解,数值模拟了超短脉冲在自行设计的具有较高非线性的光子晶体光纤中传输的情况,发现在光纤的不同色散区,初始啁啾系数C、脉冲的初始宽度T0、脉冲的峰值功率P0、脉冲的中心波长对脉冲的传输特性影响是不同的。要想获得最优的超连续谱,既要选择合适结构参数的光子晶体光纤,又要合理的选择输入脉冲的参数。
     然后,对本课题组自行拉制出的光子晶体光纤进行了实验研究,实验所选的光纤为外包层空气孔直径大小各异,但结构周期有序的单纤芯光子晶体光纤,并从两个方面对其产生的超连续谱进行了研究,一是泵浦功率不同,二是入射脉冲的中心波长不同。实验研究发现产生的超连续谱无论是光谱宽度,还是脉冲形状都不同。
     最后,对实验室仅有的多芯光子晶体光纤进行了实验研究,做出了比较好的超连续谱,光谱展宽范围都达到了2000 nm以上,此项研究,为不加任何非线性材料的仅依靠光子晶体光纤的结构产生范围更宽的超连续谱提供了一种新的研究方向。
The most striking feature of photonic crystal fiber is highly nonlinear characteristic, it is prone to a variety of nonlinear effects, especially supercontinuum generation. In this text, I designed a photonic crystal fiber with high nonlinear, studied the effective area and nonlinear coefficient by multipole method. Supercontinuum generation of the photonic crystal fiber has been studied using split-step Fourier method for generalized nonlinear Schrodinger equation. The main contents are described as follows:
     First of all, numerical simulated the effective area and nonlinear coefficient of photonic crystal fiber using multipole method. The analysis shows that the size of nonlinear can be effectively regulated by changing the air hole pitch and air hole diameter of photonic crystal fiber.
     Secondly, numerical simulated the transmission of ultrashort pulses in self-designed highly nonlinear photonic crystal fiber, using split-step Fourier method for generalized nonlinear Schrodinger equation.It is found that the influence of initial durations T0, peak powers P0, initial chirp C and center wavelength on laser pulses evolution is different in PCF’different dispersion regions. If we want to obtain optimization supercontinuum,we not only choose the PCF with suit parameter but also choose fit pulse parameters.
     Then, I experimented the photonic crystal fiber which drawn by our group.The single core fiber which I choosed was different air hole diameter,but orderly structure.I studied the supercontinuum generation from two aspects, different pump power and center wavelength. It is found that not only spectral width but also pulse shapes different of supercontinuum generation.
     Finally, I experimented the only multi-core photonic crystal fiber.The spectral broadening scope over 2000 nm, this study provides a new research direction on wider range of supercontinuum without any non-linear material only rely on the structure of PCF.
引文
1 D. Milam, M. J. Weber. J. Appl. Phys, 1976:2497
    2王清明,栗岩锋.飞秒激光脉冲在多孔光纤中传输特性的研究.激光与光电子进展,2002,39(12):9-13
    3 A. Ortigosa Blanch. Highly birefringent photonic crystal fibers. Optics Letters, 2000,25(18):1325-1327
    4 J. Limpert, A. Liem, M. Reich, et al. Low-nonlinearity Single-transverse-mode ytterbium-doped photonic crystal fiber amplifier. Opt. Express.,2004,12(7):1313-1319
    5 M. D. Nielsen, J.R. Folkenberg and N.A. Mortensen. Singlemode photonic crystal fiber with effective area of 600-μm2 and low bending loss. Electron. Lett.,2003,39(25):1802-1803
    6 L. Li, A. Schülzgen, V. L. Temyanko, et al. Short-length microstructured phosphate glass fiber lasers with large mode areas. Opt. Lett.,2005,30(10):1141-1143
    7 J. C. Knight, T. A. Birks, R. F. Cregan, et al. Large mode area photonic crystal fiber. IEEE Electron. Lett.,1998,34(13):1347-1348
    8 N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters,2003,28(6):393-395
    9 W. S. Wong, X. Peng, J. M. McLaughlin. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. Optics Letters, 2005,30(21):2855-2857
    10 Yukihiro Tsuchida, Kunimasa Saitoh, Masanori Koshiba. Design of single-mode holey fibers with large-mode-area and low bending losses: The significance of the ring-core region. Opt. Express,2007,15(4):1794-1803
    11闫培光,阮双琛,赵焕东,等.飞秒脉冲作用下光子晶体光纤超连续谱的产生.光子学报,2003,32(11):1299-1301
    12 B. Kuhlmey, G. Renversez, D. Maystre. Chromatic dispersion and losses ofmicrostructured optical fibers. Appl. Opt,2003,42(4):634-639
    13 J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersion in photonic crystal fiber. IEEE Photon. Technol. Lett,2000,12(7):807-809
    14 Mathias Moenster, Günter Steinmeyer, Rumen Iliew, et al. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers. Optics Letters,2006,31(22):3249-3251
    15 K. Saitoh, M. Koshiba, T. Hasegawa, et al. Chromatic Dispersion control in photonic crystal fibers: Application to Ultra-flattened dispersion. Opt. Express, 2003, 11(8):843-852
    16 A. Cucinotta, S. Selleri, L. Vincetti, et al. Perturbation Analysis of dispersion properties in photonic crystal fibers through the finite element method. J. Lightwave Technol.,2002,20(8):1433-1422
    17杨鹏.高非线性光子晶体光纤的研制.光通信技术,2010,1:53-55
    18 K. Saitoh, M. K. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Opt. Express, 2004,12(10):2027-2032
    19李春雷,盛秋琴,开桂云等.光子晶体光纤的非线性特性研究.光电子技术,2005,25(2):85-89
    20李进延,彭景刚,将作文等.高非线性光子晶体光纤的研究及应用.2008,4:1-2
    21 F. Poli, A. Cucinotta, S. Selleri, et al. Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photon. Technol. Lett.,2004,16(4):1065-1067
    22李曙光,周桂耀,邢光龙等.微结构光纤中超短激光脉冲传输的数值模拟.物理学报,2005,54(04):1600-1605
    23闫培光,阮双琛,吕可诚.纳秒激光通过光子晶体光纤的光谱特性.光子学报,2003,32(7):1
    24 S. Coen, A. H. L. Chau, R. Leonhardt, et al. White-light supercontinuum generation with 60-ps pulses in a photonic crystal fiber. Optics Letters,2001,26:1356-1358
    25 John M. Dudley,Goery Genty, Stephane Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys,2006,78:1135
    26 J. Herrmann, U. Griebner, N. Zhavoronkov, et al. Experimental evidence for supercontinuum generation by fission of Higher-Order soliyons in photonic fibers. Phys. Rev. Lett,2002,88(17):173901.1-173901.4
    27 Ortigosa-Blanch A, Knight J C, Russell P. Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers. J. Opt. Soc. Am. B,2002,19:2567-2572
    28 T. Yamamoto, H. Kubota, S. Kawanishi. Supercontinuum generation at 1.55-μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express,2003,11(13):1537-1540
    29 Z. Zhu, T. G. Brown. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber. Opt. Express,2004,12:791-796
    30 Holger Hundermark, Dietmar Kracht, Dieter Wandt, et al. Supercintinuum generation with 200-pJ laser pulses in an extruded SF6 fiber at 1560 nm. Optics Express,2003,11(24):3196-3201
    31 Nikola I. Nikolov, Thorkid Sorensen. Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing. Opt. Soc,2003,11(20):2329-2337
    32 Xiaojun Fang. Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber. IEEE Photonics Technology Letters,2003,15(2):233-235
    33 T. Schreiber, J. Limpert, H. Zellmer. High average power supercontinuum generation in photonic crystal fibers. Optics Communications,2003,228:71-78
    34 Mark Kimmel, Aparna P. Shreenath, et al. Experimental studies of the coherence of microstructure-fiber supercontinuum. Optics Express,2003,11(21):2697-2703
    35 N. R. Newbury, K. L. Corwin, et al. Amplitude noise on supercontinuum generated in microstructure fiber measurements and simulations. IEEE,2003:47-48
    36 V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al. Extruded soft glass photonic crystal fiber for ultra-broad supercontinuum generation. Optics Express,2002,10(25):1520-1525
    37 Zhinan Zeng, Ya Cheng, Xiaohong Song,et al. Generation of an extreme ultravioletsupercontinuum in a two-color laser field.Phys. Rev. Lett. 2007,98:203901
    38 Guoqing Chang, Theodore B. Norris, Herbert G. Winful. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression. Optics Letters,2003,28(7):546-548
    39张明辉,竺子民.光子晶体光纤中超连续谱宽与波长关系的研究.光学仪器,2007,29(3):43
    40陈泳竹,李玉忠,屈圭,等.反常色散平坦光纤产生平坦宽带超连续谱的数值研究.2006,55(2):721
    41 J. H. V. Price, W. Belardi, T. M. Monro, et al. Soliton transmission and supercontinuum generation in holey fiber using a diode pumped Ytterbium fiber source. Optics Express,2002,10(8):382-387
    42 Chow K K, Shu C, Lin Chinlon, et al. Polariaztion-insensitive widely tunable wavelength converter based on four-ware mixing in a dispersion-flattened nonlinear photonic crystal fiber[J].IEEE Photon.Technol. Lett.,2005,17(3):624-626
    43 Fiorenzo G. Omenetto, Anatoly Efimov, Antoinette J. Taylor. Polarization dependent harmonic generation in microstructured fibers. Optics Express,2003,11(1):61-67
    44刘卫华,宋啸中,王屹山等.飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究.物理学报,2008,57(2):918-921
    45王晶,时延梅.光子晶体光纤中高阶非线性效应所致啁啾的研究.物理学报,2006,55(6):2820
    46 Xiaojun Fang, Muneyuko Adachi. Experimental and theoretical investigation on nonlinear 4.5-optical-cycle-puse propagation in photonic crystal fibers. CLEO,2002,454-455
    47 A. B. fedotov, P. Zhou, A. N. Aumov, et al. Spectral broadening of 40-fs Ti: sapphire laser pulses in photonic-molecule modes of a cobweb-microstructure fiber. Appl. Phys. B,2002,75(22):621-627
    48李晓青,张书敏,等.光子晶体光纤中超连续谱的理论与实验研究.光子学报,2008,37(9):1805-1809
    49贾东方,余震虹等译.非线性光纤光学原理及应用.北京:电子工业出版社,2002,2-188
    50 J. C. Dung, S. Chi, S. Wen. Opt. Lett, 1995:1862
    51 M. Suzuki, N. Edagawa, H. Tanaka, et al. Electron. Lett, 1994:1083
    52 A. L. J. Teixeira, G.P.Agrawal, J. R. E da Rocha. Electron. Lett,1996:1995
    53 A. Mecozzi, Opt. Lett. 1995:1859
    54 Z. Zhu, T. G. Brown. Effect of frequency chirping on supercontinuum generation in photonic crystal fibers. Opt. Express,2004,12(4):689-694
    55于永芹,阮双琛,曾剑春,等.泵浦波长对光子晶体光纤产生超连续谱的影响.光子学报,2005,34(9):1295
    56贾亚青,严培光,吕可诚,等.高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析.物理学报,2006,55(4):1809-1811
    57周冰,姜永亮,陈晓伟,等.超短激光脉冲在不同色散参量光子晶体光纤中传输的数值模拟.光学学报,2007,27(2):325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700