用户名: 密码: 验证码:
飞秒光脉冲在光子晶体光纤中的非线性传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统光纤相比,光子晶体光纤(photonic crystal fiber, PCF)灵活设计的结构和特殊的导光机制,使其具有许多引人注目的特性,如无截止单模特性、可控的色散特性、极强的非线性效应及高双折射特性等。因此,PCF在非线性光学、光纤通信和光纤传感等领域都有着广泛的应用前景,是目前国内外的研究热点之一。
     本论文的工作集中在飞秒光脉冲在PCF中的非线性传输特性方面,研究了利用PCF实现飞秒脉冲的光谱压缩以及超连续谱的产生,主要内容如下:
     1.介绍了PCF的概念、导光原理以及制作方法,阐述了PCF的优良光学特性,并讨论了PCF光学非线性的应用领域。
     2.根据麦克斯韦方程组推导了超短光脉冲在PCF中传输的广义非线性薛定谔方程,并分析了数值求解该方程的预测校正的对称分布傅立叶算法。基于该算法,运用Matlab语言编写了模拟光脉冲在PCF中传输的相关程序。另外,对超短光脉冲在PCF中传输过程中所涉及到的几种非线性效应进行了简单的分析。
     3.基于广义非线性薛定谔方程,利用预测校正傅立叶方法数值模拟了波长为1550 nm的无初始啁啾飞秒光脉冲在PCF反常色散区中的非线性传输特性,提出了一种飞秒光脉冲谱宽压缩的新方法,数值分析了初始超短光脉冲的峰值功率、中心波长以及光纤长度等参数对谱宽压缩的影响,并讨论了产生谱宽压缩的机制。
     4.利用广义非线性薛定谔方程,数值模拟了飞秒光脉冲在高非线性PCF中超连续谱的产生,系统地讨论了脉冲初始参数,具体包括中心波长、峰值功率、和初始啁啾,以及光纤长度对超连续谱形状和带宽的影响。
     5.采用矢量耦合非线性薛定谔方程,数值模拟了中心波长为1550 nm的超短光脉冲在双折射PCF中超连续谱的产生及其偏振特性,讨论了超短光脉冲在三种不同色散特性的双折射PCF中传输时,高阶色散和非线性效应对脉冲的波形、光谱展宽以及光谱偏振特性的影响。
Since the photonic crystal fiber was firstly demonstrated by J. C. Knight in 1996s, its great flexibility in design and unique optical properties have attracted considerable attention. Compared to conventional fiber, PCFs have many unusual characteristics, such as endless single mode propagation, controllable dispersion properties, strong nonlinear effects and high birefringence, which make PCFs have wide application in the field of nonlinearity optics, optical communication, fiber sense and many other fields. Therefore, PCFs have become one of research interests in the past years.
     This thesis is mainly focused on research of nonlinear propagation of ultra-short femtosecond pulses in PCFs; the main contents are listed below:
     First, contents of the concept, optical properties and preparation of PCFs are introduced detaily. Applications of nonlinear effects of PCFs, as well as theories of fine feather of PCFs, are analyzed.
     Second, generalized nonlinear Schrodinger equation(GNLSE) as model of nonlinear propagation of ultra-short laser pulses in PCFs is found from Maxwell's equation. The predictor-corrector symmetrized split-step Fourier method is proposed for solving the GNLSE, and based on the arithmetic, Matlab is aided for design of computer program, which is used to investigate nonlinear propagation of ultra-short laser pulses in PCFs numerically.
     Third, based on GNLSE, the numerical investigation of nonlinear propagation of chirp-free femtosecond pulses in PCFs with anomalous dispersion is presented. It is found that the compressed spectral width is strongly dependent on the initial peak power, central wavelength and propagation length of the incident pulse. The mechanisms responsible for the spectral compression are discussed.
     Fourth, femtosecond laser pulse propagation and supercontinuum (SC) generation in PCFs are investigated numerically based on GNLSE. The effects of the parameters of the initial laser pulse, peak power, initial chirp and fiber length on spectral properties of SC are analyzed systematically for optimizing SC.
     Fifth, the coupled nonlinear Schrodinger equations (CNLSE) are adopted to describe the evolution of ultra-short laser pulse propagation in bierfringent photonic crystal fibers, and solved with the symmetrized split-step Fourier method. It has been investigated of generation and polarization properties of the supercontinuum by ultra-short pulse in bierfringent photonic crystal fibers with different dispersion profiles in the 1550-nm window by numerical stimulation. The impact of high-order dispersion and nonlinear effects is analyzed with different dispersion profiles.
引文
[1]Yablonovitche. Inhibited spontaneous emission in solid-state physics and electronic. Phys. Rev. Lett.,1987,58:2059-2062
    [2]Johns. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett.,1987,58(23):2486-2489
    [3]E.Yablonovitch and T. J. Gmitter. Photonic band structure:The face-centered-cubic case. Phys. Rev. Lett.,1989,63(18):1590-1593
    [4]P. St. J. Russell, J. C. Knight, T. A. Birks, et al. Recent Progress in Photonic Crystal Fibres. OFC2000,3:998-1004
    [5]J. C. Knight, T. A. Birks, P. St. J. Russell et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett.,1996,21(19):1547-1549
    [6]R. Cregan, B. Mangan, J. Knight et al. Single-mode photonic bandgap guidance of light in air. Science,1999,285(5433):1537-1539
    [7]D. Fitt, K. Furusawa, T. Monro et al. Modeling the fabrication of hollow fibers:capillary drawing. Opt. Lett.,2001,19(12):1924-1931
    [8]B. Temelkuran, S. D. Hart, G Benoit et al.. Wavelength scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission. Nature,2002,420(6916):650-653
    [9]P. Falkenstein, C. D. Merritt, B. L. Justus. Fused performs for the fabrication of photonic crystal fibers. Opt. Lett.,2004,29(16):1858-1860
    [10]T. A. Birks, J. C. Knight, P. St. J. Russel. Endlessly single-mode photonic crystal fiber. Opt. Lett.,1997,22(13):961-963
    [11]Ranka J. K. Optical properties of high-delta microstructure optical fibers. Opt. Lett.,2000, 25(13):796-798
    [12]Agrawal G P. Nonlinear Fiber Optics (San Diego:Academic Press),1995
    [13]Y. L. Hoo, W. Jin, H. L. Hu, et al. Design of photonic crystal fibers with ultra-flattened, near-zero chromatic dispersion. Opt. Communication,2004,242(4):327-332
    [14]K. Saitoh, M. Koshiba, T. Hasegawa, et al. Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion. Opt. Express,2003, 11(8):843-852
    [15]W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, et al. Soliton effects in photonic crystal fibers at 850 nm. Electronics Letter,2000,36:53-55
    [16]A. B. Jarklev, T. Rasmussen. Optimal design of single-cladded dispersion compensation optical fibers. Opt. Lett.,1994,19:457
    [17]A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, et al. Designing a photonic crystal fiber with flattened chromatic dispersion. Electron. Letter,1999,35:325-327
    [18]W. H. Reeves, J. C. Knight, P. St. J. Russel. Dispersion-flattened photonic crystal fiber at 1550 nm. OPC,2003,2:696-670
    [19]Petropouls P, Ebendorff H E, Finazzi V F, et al. Highly nonlinear and anomalously dispersion lead silicate glass holey fibers. Opt. Express,2003,11(8):3568-3673
    [20]J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructured optics with anomalous dispersion at 800 nm. Opt. Lett.,2000,25:25-27
    [21]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fibers. Opt. Lett.,2002,25(18):1325-1327
    [22]Hansen T P, Broeng J, Libori S E B, et al. Highly birefringent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett.,2001,13(6):588-590
    [23]娄淑琴,王志,任国斌等.折射率导模高双折射光子晶体光纤.光学学报,2004,24(10):1310-1315
    [24]张亚妮,任立勇,王丽莉等.高折射保偏光子晶体光纤研究进展.量子电子学报,2006,23(5):577-582
    [25]B. J. Mangan, L. Farr, A. Langford, et al. Low loss(1.7dB/km)hollow core photonic bandgap fiber. Proc. OFC,2004,24
    [26]Zheng Y, Zhang Y P, Huang X J et al. Supercontinuum generation with 15 fs pump pulses in a microstructured fiber with combination random and core distributions. Chinese Physics Lett.,2004, 21(4):750-753
    [27]Ravi V V, Kumar K, George A K, et al. Extruded soft glass photonic crystal fiber for ultra-broad supercontinuum generation. Opt. Express,2002,10(25):1520-1525
    [28]S. Coen, A. H. L. Chau, R. Leonhardt, et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett.,2001,26(17):1356-1358
    [29]Cumberland B A, Travers J C, Popov S V, et al.29 W high power CW supercontinuum source. Opt. Express,2008,16(8):5954
    [30]Kim J H, Chen M K, Yang C E, et al. Broadband IR supercontinuum generation using single crytal sapphire fibers. Opt. Express,2008,16(8):4085
    [31]Domachuk P, Wolchover N A, Cronin-Golombl M, et al. Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs. Opt. Express,2008,16(10):7161
    [32]Chang G Q, Norris T B, Winful H G. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression. Opt. Lett.,2003,28(7):546-548
    [33]Abedin, K. S., Kubota. F. Sub-300-fs soliton pulse generation at 10-GHz repetition rate with tenability over 1560-1677 nm by using a photonic crystal fiber. CLEO,2003, (88):2103-2104
    [34]Raja. R. V. J, Porsezian, K. Numerical investigation of soliton pulse propagation in photonic crystal fiber. Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, 2008
    [35]A. B. Fedotov, A. A. Voronin, I. V. Fedotov, et al. Spectral compression of frequency-shifting solitons in a photonic-crystal fiber. Opt. Lett.,2009,34(5):662-664
    [36]S.E. Sharping, M. Fiorentino, A. Coker et al. Four-wave mixing in microstructure fiber. Optics Lett.,2001,26(14):1048-1050
    [37]M. L. Hu, C. Y. Wang et al. Frequency-tunable anti-Stokes Line emission by eigemnodes of a birefringent microstructure fiber. Optics Express,2004,12(9):1932-1937
    [38]F. G. Omenetto, A. J. Taylor et al. Simultaneous generation of spectrally distinct harmonics in a photonic crystal fiber. Optics Lett.,2001,26(15):1158-1160
    [39]A. Efimov, A. J. Taylor et al. Phase-matched third harmonc generation in microstructured fibers. Optics Express,2003, 11(20):2567-2576
    [40]Y. Fujii, B. S. Kawasaki, K. O. Hill et al. Sum-frequency light generation in optical fibers. Optics Lett.,1980,5(2):48-50
    [41]R. L. MacDonald, N. M. Lawandy. Efficient second-harmonic generation into the UV by using optically encoded silicate glasses. Optics Lett.,1993,18(8):595-597
    [42]J. K. Ranka, R. S. Windeler, A. J. Stentz. Optical properties of high-delta air-silica microstru-cture optical fibers. Optics Lett.,2000,25(11):796-798
    [43]Konorov S O., Akimov D A., Naunov A. N., et al.Coherent anti-Stokes Raman scattering in hollow planar periodic corrugated waveguide:A role of photon band gap. Lzvestya Aksdemii Nauk. Ser. Fizicheskaya,2002,66(8):1078-1085
    [44]杨广强,张霞,任晓敏等.基于光子晶体光纤的全光开关实验研究.中国激光,2005,32(12):1650-1653
    [45]刘建国,开桂云,薛力芳等.基于高非线性光子晶体光纤Sagnac环形镜的全光开关.物 理学报,2007,56(2):941-945
    [46]Petropoulos P, Monor T M, Belardi W, et al.2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Opt. Lett.,2001,26:1233-1235
    [47]Yee K S. Numercial solution of initial boundary value problems involving Mexwell equations in isotropic media. IEEE Trans. Antennas Propagat.,1966, AP-14(3):302-307
    [48]Wang Zhi, Ren Guobin, Lou Shuqin. A Novel Supercell Overlapping Method for Different Photonic Crystal Fibers. Lightwave Technol.,2004,22(3):903-916
    [49]Min-Chen Ho, Katsumi Uesaka,Michel Marhic et al..200-nm-bandwidth fiber optical amplifier combining parametric and Raman Gain. IEEE. Lightwave Technol.,2001,19(7):977-981
    [50]R. Tang, J. Lasri, P. Devgan, et al. Microstructure-fibre-based optical parametric amplify with gain slope of-200 dB/W/km in the telecom range. Electronics Letters,2003,39(2):195-196
    [51]陈婉,董淑福,赵宇波等.光纤参量放大器的最新进展.光通信,2007,44(10):54-60
    [52]邵潇杰,杨冬晓,耿丹.光子晶体光纤中的四波混频实验研究.半导体光电,2008,29(3):652-655
    [53]王秋国,张虎,张霞等.基于光子晶体光纤四波混频效应的波长转换研究.光子学报,2009,38(3):415-417
    [54]张岚,杨伯君,王秋国等.基于光子晶体光纤的全光波长变换研究.光子学报,2008,37(11):2203-2205
    [55]Z. Yusoff, J. Lee, W. Belardi, et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation. Optics Letters,2002,27(6):424-426
    [56]S. Varshney, T. Fujinsawa, K. Saitoh, et al. Novel design of in herently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express,2005,13(23):9516-9526
    [57]D. Pristinski and H. Du. Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. Optics Letters,2006,31(22):3246-3248
    [58]Liu Xueming, Byoungho Lee. A fast method for nonlinear Schrodinger equation. IEEE Photon. Technol. Lett.,2003,15(11):1549-1551.
    [59]X. M. Liu, H. Y. Zhang, Y. L. Guo. A novel method for Raman amplifier propagation. IEEE. Photon. Techonl. Lett.,2003,15:392-294
    [60]Nishitani, T., Konishi, T., Itoh, K.. Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression. IEEE J. Sel. Topics Quantum Electron.,2008,14:724-732
    [61]Andresen, E. R., Birkedal, V., Thogersen, J. et al. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift. Opt. Lett., 2006,31:1328-1330
    [62]Pestov, D., Murawski, R. K., Ariunbold, G. O., et al. Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science,2007,316:265-268
    [63]Oberthaler, M., Hopfel, R. A.. Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers. Appl. Phys. Lett.,1993,63,1017-1019
    [64]Planas, S. A., Pires Mansur, N. L., Brito Cruz, et al. Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett.,1993,18:699-701
    [65]Washburn, B. R., Buck, J. A. et al. Transform-limited spectral compression due to self-phase modulation in fibers. Opt. Lett.,2000,25:445-447
    [66]Andresen, E. R., Thφgersen, J., Keiding, S. R.. Spectral compression of femtosecond pulses in photonic crystal fibers. Opt. Lett.,2005,30:2025-2027
    [67]Rusu, M., Okhotnikov, O. G. All-fiber picosecond laser source based on nonlinear spectral compression. Appl. Phys. Lett.,2006,89:091118:1-3
    [68]Rui Liang, Xiaojun Zhou, Zhiyao Zhang, et al. Spectral Compression of Femtosecond Soliton in a Dispersion-increasing Fiber. SOPO,2009
    [69]Inoue, T., Namiki, S. Pulse compression techniques using highly nonlinear fibers. Laser & Photon. Rev.,2008,2:83-99
    [70]Li, H. P., Wu, X. L., Liao, J. K., et al. Soliton self-frequency shift and spectral compression in highly nonlinear fibers for resolution improvement of all-optical ADC. Proceedings of the 22nd Annual Meeting of IEEE Lasers and Electro-Optics Society, Paper No. TuFF5
    [71]李晓青,张书敏,李丹等.光子晶体光纤中超连续谱产生的理论与实验研究.光子学报,2008,37(9):1085-1089
    [72]S. Coen, A. H. L. Chau, R. Leonhardt, et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett.,2001,26(17):1356-1358
    [73]J. Herrmamm, U. Griebner, N. Zhavoronkov, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett.,2002,88(17): 17390-1-173901-4
    [74]A. V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett.,2002,88(17):203901-1-203901-4
    [75]成纯富,王晓芳,鲁波等.飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报,2004,53(6):1826-1830
    [76]Genty G, Lehtonen M, Ludvigsen H, et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. Opt. Express,2002,10(20):1083-1098
    [77]Gaeta A L. Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett.,2002,27(11):924-926
    [78]Zhu Z M, Brown T G Effect of frequency chirping on supercontinuum generation in photonic crystal fibers. Opt. Express,2004,12(4):689-694
    [79]See http://www.crystal-fibre.com
    [80]Lehtonen M, Genty G, Ludvigsen H. Supercontinuum generation in a highly birefringent microstructured fiber. Appl Phys Lett,2003,82(14):2197-2199
    [81]刘卫华,宋啸中,王屹山等.飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究.物理学报,2008,57(2):917-921
    [82]Sho-Ichiro Oda, Akihiro Maruta. A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion. IEEE Photon. Technol. Lett.,2005,17(2): 465-467
    [83]R. Pasqualotto, A. Alfier. Thomson scattering calibration with ultrabright supercontinuum light source. Review of Scientific Instruments,2006,77:10E502-1-10E502-4
    [84]Liu Hairong, Huang Yuanyuan, Liu Deming, et al. Analysis and fabrication of highly nonlinear photonic crystal fiber. Proc. SPIE,2009,7278:727807-1-727807-8
    [85]Wang Zhanxin, Liu Jiangsheng, Li Ruxin, et al. Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations. Opt. Express,2009,17(16):13841-13851
    [86]Cai Wangyang, Zhang Hua, Lei Dajun, et al. Supercontinuum generation in photonic crystal fibers with different dispersion profiles. Proc. SPIE,2008,7136:71362N-1-71362N-8
    [87]Zhang Hua, Yu Song, Zhang Jie, et al. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths. Opt. Express,2007, 15(3):1147-1155
    [88]周广涛,张晓光,沈昱等.10 Gb/s光通信传输系统中一阶PMD自适应补偿实验.光子学报,2004,33(4):448-451
    [89]Hazem Awad, Ahmad Atieh, Trevor J Hall. Polarization-dependent gain and state of polarization effects on line width of semiconductor fiber ring lasers. Microwave Opt. Technol. Lett., 2007,50(1):31-34
    [90]Sergey V Sergeyev, Sergei Popov, Ari T Friberg. Polarization-dependent gain and gain fluctuations in a fiber Raman amplifier. J. Opt. A,2007,9(12):1119-1122
    [91]Yuan Zheng, Xiaoguang Zhang, Yu Shen, et al. Automatic polarization-mode dispersion compensation by a particle-swarm optimization method and adaptive dithering algorithm. J. Opt. Soc. Am. B,2005,22(2):336-346
    [92]Zhaoming Zhu, Thomas G Brown. Polarization properties of supercontinuum spectra generated in birefrigent photonic crystal fibers. J. Opt. Soc. Am. B,2004,21(2):249-257
    [93]Zhaoming Zhu, Thomas G Brown. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber. Opt. Express,2004,12(5):791-796
    [94]C. Xiong, W. J. Wadsworth. Polarized supercontinuum generation in a birefringent photonic crystal fiber pumped by a 1064nm microchip laser. Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS,2007,816-817
    [95]Leonardo De Boni, Carlos Toro, Florencio E. Hernandez, et al. Pump polarization-state preservation of picosecond generated white-light surpercontinuum. Opt. Express,2008, 16(2):957-965
    [96]Reeves W H, Skryabin D V, Biancalana F, et al. Transformation and control of ultra short pulses in dispersion engineered photonic crystal fibres. Nature,2003,424(6948):511-515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700