环己酮分子在飞秒泵浦探测下的电离解离过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕多原子分子在单色飞秒激光场中的电离解离进行了研究,通过飞秒泵浦-探测技术试图理解多原子分子电离解离复杂过程。为了进行适当的数值模拟,本文采用了对电离解离过程进行简单分类,归纳为两种基本情况,即中间态直接激发到终态后发生解离和中间态弛豫后激发到终态发生解离。在此基础上建立了数值模拟方法,对泵浦-探测过程产物时间变化进行了模拟计算。实验上使用800 nm飞秒激光泵浦-探测和质谱方法,测量了环己酮(C_6H_(10)O,cyclohexanone)碎片离子强度随泵浦-探测延迟时间变化的规律,并利用建立的模拟方法对随泵浦-探测延迟时间到变化趋势基本相同的两个碎片C_2H_3~+和C_3H_3~+进行了拟合。拟合获得的这两个碎片离子的弛豫时间相同,结果表明它们来自于同一个中间态。本文同时对环己酮分子的碎片化机制和以及C_2H_2~+、C_2H_3~+、C_3H_3~+、C_3H_5~+和C_3H_6~+这几个碎片产生通道进行了分析,认为正电荷中心转移和自由基诱导H转移对环己酮解离起到主要的推动作用。此外,本文还研究了在纳秒355nm和它的三倍频118nm光场中一些多原子分子电离解离过程的相干控制,分别得到了碘代甲烷的碎片产物CH_3~+和I~+,以及丙酮的碎片产物H~+和CH_3~+的调制信号,计算了它们的调制深度。结果表明,通过上述分子的光解离过程相干控制,能够增加特定产物而减少或消除其余的产物,进而实现分子反应的控制。
Resent years, the dynamics molecular ionization / dissociation in intense laser field (I >10~(14) W/cm~2) with ultrashort pulse (<10~(-13)s) duration has been explored widely. Femtosecond (fs) pump-probe technique has been proved to be a useful tool for understanding the dynamics of molecular ionization / dissociation.
     In this thesis, a qualitative analysis method on the observation of ionization / dissociation of polyatomic molecule by means of fs pump-probe method is presented. As an example, we have attempted to illustrate the mechanisms of the different fragments of cyclohexanone (C_6H_(10)O) ionization / dissociation from our measurement in fs pump-probe experiments. According to the feature of moleclular ionization/dissociation in a fs laser field, multiphoton ionization or even field ionization is dominant within one laser pulse duration. We consider that the processes of moleclular ionization/dissociation can be classified into two cases, as the following:
     Case 1: If the relaxation with a time constant ofτ_1 is relatively large, the molecular intermediate (i), produced by the first laser pulse from the ground-state molecule (g), can be excited further by the second laser pulse with a certain delay time to a final state (f), and then the molecule dissociates from the f state into the product D~+ that is observed experimentally.
     Case 2: If the intermediate relaxes fast into another intermediate (j), further excitation by the second laser pulse will be from the j state to the final state f which dissociates finally into the product D~+ observed. The probability of the observed product D~+ in each case is related with the excitation and relaxation of the intermediate.
     Based on this consideration, we propose a numerical simulation model. Using this model we simulate and calculate the variation of the fragments with the delay time between pump and probe beams in cyclohexanone (C6H10O) ionization / dissociation in a fs pump-probe experiment.
     To get the ionization/dissociation mechanism of cylcohexanone under different laser intensity (~10~(144 W/cm~2) and different delay time (-2~3 ps), with the aim of time-of-flight mass spectra, we carry out a series of experimental measurements. Here, the laser wavelength is 800 nm and pulse duration is 90 fs. We analyze the experimental results with the method proposed above. Under different laser intensities, a given fragment comes from different ionization/dissociation source. As far as C_2H_3~+ is concerned, when the laser intensity is weak, case 1 is dominant. With the increase of laser intensity, case 2 makes a more and more important role. At last, when it is very intense, case 2 is overwhelming. Meanwhile, under different laser intensities, even in the same ionization/dissociation case, the time constant of relaxation of i is changeable. Our numerical simulation curves are in good agreement with the experimental data. The time constants of the relaxation obtained for C_2H_3~+ and C_3H_3~+ are roughly the same at a given laser intensity. This similarity indicates that these two fragments most probably come from a same precursor, whose pathways can be complicated (e.g., throughαbond breakage, H transfer, and several sequential dissociating, etc.).
     The production process of some fragments is also analyzed. The production of fragments is provoked by the carbonyl, positive charge center and free radical center of cyclohexanone parent ion and the transmission of H atom. The main possible dissociating channels of some fragments are presented. The production of C_2H_3~+ and C_3H_3~+ have the same step, that is, a cleavage of bond induced by the charge center of parent ion. And C_2H_2~+ comes through the loss of H from C_2H_3~+. Induced by the radical center, the parent ion dissociates into C_5H_(10)~+, and then this fragment dissociates into C_3H_6~+. C_3H_5~+ comes through the loss of H from C_3H_6~+.
     In addition, coherent control experiments of two polyatomic molecules, CH3I and CH_3COCH_3, in a ns laser field with 355 nm and 118 nm, are also performed. The principle of coherent control experiment is to control the probability of reaction through the coherence of two channels which are competitive. The initial state of reactant is made by two laser beams, and the final state is controlled through varing their relative phase and amplitude. We obtain the modulating curves for some fragments, CH_3~+ and I ~+ from CH3I, H~+ and CH3~+ from CH3COCH3, and calculate their modulation depthes.
     We show that the mechanism of ionization / dissociation of two moleculars, CH3I, and CH3COCH3, as following:
     1. It is possible for CH_3I to occur two dissociation channels:
     (1)
     Then, these two neutral fragments absorb photons again, and ionize therefore:
     That is, it is a process of ionization of neutral fragments。
     (2)The parent molecule ionizes directly, then the the parent ion obsorbs photons and dissociates:
     That is, it is a parent ion ladder.
     2. As for CH_3COCH_3, the fragments CH_3~~+和H~~+, whose yields are modulated, come from the following processes:
     There is a three-photon process in this mechanism, in which the excitation with 3ω1 can be finished throughω3 excitation. Based on this process, CH_3~+ is produced and its yield is modulated. From the modulation curves, it is obvious that the variation of H~+ with the modulating gas (Ar) pressure is as same as that of CH_3~+. Therefore, it is possible that H~+ is attribute to the dissociation of CH3~+.
     These results show that the yield of some given product can be increased and some can be reduced or eliminated, thus the control for the molecular reaction is realized.
引文
[1] A H Zewail. Femtochemistry, Ultrafast Dynamics of the Chemical Bond[M]. Vols. I and II. World Scientific, Singapore, 1994.
    [2] J A Valdmanis, R L Fork, J P Gorden. Generation of optical pulse as short as 27 femtosecond intracavity directly from a laser and balancing self-phase modulation, group- velocity, saturable absorption and saturable gain[J]. Opt. Lett.,1995, 10:131~140.
    [3] J M Liu, R Yen, E P Donovan, N Bloembergen, and R T Hodgson, Lack of importance of ambient gases on picosecond laser-induced phase transitions of silicon. Applied Physics Letters, 1981, 38(8): 617-619.
    [4] D Strickland, G Mourou. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 56(3): 219-221.
    [5] D E Spence, P N Kean, W Sibbett. 60-fsec pulse generation from a self mode-locked Ti:Sapphire laser [J]. Optics Letter, 1991, 16(1): 42-44.
    [6] S Pedersen, J L Herek, and A H Zewail. The validity of the "diradical" hypothesis: direct femtoscond studies of the transition-state structures[J]. Science, 1994, 266(5189): 1359-1364.
    [7] E W -G. Diau, J L Herek, Z H Kim, A H Zewail. Femtosecond activation of reaction and the concept of nonergodic molecules[J]. Science, 1998, 279: 847-851.
    [8] A H Zewail. Femtochemistry: Atomic-scale dynamics of the chemical bond[J]. J. Phys. Chem. A, 2000, 104: 5660-5694.
    [9] T Baumert, M Grosser, R Thalweiser, G Gerber. Femtosecond time-resolved molecular multiphoton ionization: The Na2 system[J]. Phys. Rev. Lett., 1991, 67: 3753-3756.
    [10] M Bergt, B Kiefer, G Gerber. Time-resolved dissociation dynamics of the [CpFe(CO)2]2 molecule in the gas phase [J]. J. Molecular Structure, 1999, 207: 480-481.
    [11] W Radloff, T Freudenberg, H H Ritze, V Stert, F Noack, I Hertel. Lifetime of the benzene dimer in the S2 electronic state [J]. Chem. Phys. Lett., 1996, 261(3): 301-306.
    [12] C W Siders, G. Rodriguez, J L Siders, F G Omenetto, A J Taylor. Measurement of ultrafast ionization dynamics of gases by multipulse interferometric frequency-resolved otical gating [J]. Phys. Rev. Lett., 2001, 87: 263002.
    [13] R S Judson, H Rabitz. Teaching lasers to control molecules[J]. Phys. Rev. Lett., 1992, 68, 1500-1503.
    [14] R J Levis, G M Menkir, H Rabitz. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses [J]. Science, 2001, 292: 709-713.
    [15] H Rabitz. Chemistry: shaped laser pulses as reagents [J]. Science, 2003, 299: 525-527.
    [16] S W Benson. Thermochemical kinetics [M]. 2nd ed., New York: Wiley,1976.
    [17] F Fabre, G Petite, P Agostini, M Clement. Multiphoton above-threshold ionization of xenon at 0.53 and 1.06μm[J]. J. Phys. B, 1982, 15(9):1353-1369.
    [18] D A Gobeli, J J Yang, M A El-Sayed. Laser multiphoton ionization-dissociation mass spectrometry[J]. Chemical Reviews, 1985, 85: 529-554.
    [19] N Bloembergen, E Yablonovitch. Infrared-laser-induced unimolecular reactions[J]. Physics Today, 1978, 31 (5): 23-30.
    [20] A Gedanken, M B Robin, N A Kuebler. Nonlinear photochemistry in organic, inorganic, and organometallic systems[J]. J. Phys. Chem., 1982, 86: 4096-4107.
    [21]马兴孝,孔繁敖.激光化学[M].中国科学技术大学出版社, 1990.
    [22] L V Keldysh. Ionization in the field of a strong electrp,agmetic wave[J]. Sov. Phys. JETP, 1965, 20(5):1307-1314.
    [23] M Dantus, M J Rosker, A H Zewail. Real-time femtosecond probing of“transition states”in chemical reactions [J]. J. Chem. Phys., 1987, 87: 2395-2397.
    [24] T J Cornish, T Baer. 2+1 REMPI spectra of cyclic ketones in a cold molecular beam. 1. studies of the n 3s Rydberg transition in unsubstituted rings [J]. J.Am. Chem. Soc., 1987, 109(23): 6915 -6920.
    [25] L Weiler, D Chadwick, D C Frost. Photoelectron spectra of cyclopentanone and cyclopentenones [J]. J. Am. Chem. Soc., 1971, 93(17): 4320-4321.
    [26] J Zhang, W Y Chiang, J Laane. Jet-cooled fluorescence excitation spectra, conformation, and carbonyl wagging potential energy function of cyclopentanone and its deuterated isotopomers in the S1 (n,π*) excited states[J]. J. Chem. Phys., 1993, 98(8): 6129-6137.
    [27] K Furuya, E Yamamoto, Y Jinbou, T Ogawa. Low-energy electron impact investigation of the triplet states of cyclopentanone and cyclohexanone [J]. J. Electron Spectroscopy and Related Phenomena, 1995, 73(1): 59-64.
    [28] L O' Toole, P Brint, C Kosmidis, G. Boulakis, P Tsekeris. Vacuum-ultraviolet absorption spectra of propanone, butanone and the cyclic ketones CnH2n-2O (n = 4, 5, 6, 7) [J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(20): 3343-3351.
    [29] T Baer, A R Potts. Non-statistical chemical reactions: The isomerization over low barriers in methyl and ethyl cyclohexanones[J]. J. Phys. Chem. A, 2000, 104(42): 9397-9402.
    [30] C Y Mok. Photochemistry of cyclopentanone in the gaseous phase[J]. J. Phys. Chem., 1970, 74(7): 1432-1438.
    [31] C Y Wu, Y J Xiong, G J X Wang, F A Kong. Photodissociation of Cycloketones by Ultraintense Femtosecond Laser Pulses [J]. Chin. Chem. Lett., 2000, 11(6): 545-548.
    [32] M Baba, H Shinohara, N Nishi. Multiphoton ionization and fragments of acetone and cyclic ketones: effects of one-photon dissociation[J]. Chem. Phys., 1984, 83:221-233.
    [33] S W North, D A Blank, J D Gezelter, C A Longfellow, Y T Lee. Evidence for stepwise dissociation dynamics in acetone at 248 and 193 nm [J]. J. Chem. Phys., 1995, 102: 4447-4460.
    [34]吴迪.光电离/光解离环酮类分子及其甲基取代物[D].长春:吉林大学,2007.
    [35] K Walter, U Boesl, E W Schlag. Reflectron time-of-flight mass spectrometryand laser excitation for the analysis of neutrals, ionized molecules and secondary fragments [J]. Int. J. Mass Spectrom. Ion Processes, 1992, 112: 121-166.
    [36] W E Stephens. A pulsed mass spectrometer with time dispersion [J]. Physical Review, 1946, 69: 691-691.
    [37] W C Wiley, I H McLaren. Time-of-flight mass spectrometer with improved resolution [J]. Rev. Sci. Instrum., 1955, 26: 1150-1157.
    [38]胡湛.光诱导的丙酮分子及其团簇激发动力学过程研究[D].长春:吉林大学,2002.
    [39] W R Gentry, C F Giese. 10-microsecond pulsed molecular-beam source and a fast ionization edtector [J]. Rev. Sci. Instrum., 1978, 49(5): 595-600.
    [40] J R Klauder, A C Price. et al. The theory and design of chirp radars[J]. Bell sys. Tech. J., 1960, 39: 745-808.
    [41] C P Barty. Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped pulse amplification[J]. Opt. Lett., 1996, 21: 668670.
    [42] G D Reid, K Wynne. Ultrafast laser technology and spectroscopy in encyclopedia of analytical chemistry[M]. John Wiley & Sons Ltd, 2002.
    [43] TSA(Ultrafast Regenerative Amplifiers) User’s Manual. Spectra-Physics.
    [44]尹淑慧.飞秒实时探测技术研究小分子里德堡态动力学[D].大连:大连化学物理研究所,2003.
    [45] D S Kliger. Ultrasensitive laser spectroscopy[M]. Academic Press. First Edition: 233, 1983.
    [46] S L Sorensen, O Bj?rneholm, I Hjelte, T Kihlgren, G O hrwall. S Sundin, S Svensson. S Buil, D Descamps, A L’Huillier, J Norin, C G Wahlstr?m. Femtosecond pump–probe photoelectron spectroscopy of predissociative Rydberg states in acetylene[J]. J. Chem. Phys., 2000, 112(18): 8038-8042.
    [47] J A Davies, J E LeClaire, R E Continetti, C C Hayden. Femtosecond time-resolved photoelectron–photoion coincidence imaging studies of dissociation dynamics [J]. J. Chem. Phys., 1999, 111: 1-4.
    [48] D Wu, Q Wang, X Cheng, M Jin, X Li, Z Hu, D Ding, Effect of cation absorption on ionization/dissociation of cycloketone molecules in afemtosecond laser field[J], J. Phys. Chem. A, 2007, 111(38): 9494-9498.
    [49] M Murakami, R Mizoguchi, Y Shimada, T Yatsuhashi, N Nakashima. Ionization and fragmentation of anthracene with an intense femtosecond laser pulse at 1.4μm[J]. Chem. Phys. Lett., 2005, 403: 238-241.
    [50] L Robson, K W D Ledingham, A D Tasker, P McKenna, T McCanny, C Kosmidis, D A Jaroszynski, D R Jones, R C Issac, S Jamieson. Ionisation and fragmentation of polycyclic aromatic hydrocarbons by femtosecond laser pulses at wavelengths resonant with cation transitions[J]. Chem. Phys. Lett., 2002, 360(3-4): 382-389.
    [51] S A Trushin, W Fuss, W E Schmid. Dissociative ionization at high laser intensities: importance of resonances and relaxation for fragmentation[J]. J. Phys. B, 2004, 37: 3987-4011.
    [52] S Augst, D Meyerhofer, D Strickland, S L Chin. Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B, 1991, 8(4): 858-867.
    [53] T Auguste, P Monot, L A Lompre, G. Mainfray, C Manus. Multiply charged ions produced in noble gases by a 1 ps laser pulse atλ= 1053 nm. J. Phys. B, 1992, 25(20): 4181-4194.
    [54] J P Marangos. Molecules in a strong laser field[C], Conference Proceedings-Italian Physical Society, 2004.
    [55]王光辉,熊少祥.《有机质谱解析》[M].化学工业出版社,2005.
    [56] F W McLafferty. Interpretation of Mass Spectra [M]. 3rd ed., California: University Science Books, 1980.
    [57] Robert M Silverstein, G. Claytone Bassler, Terence C Morrill. Spectrometric identification of organic compounds [M]. 3rd ed., New York: John Wiley & Sons Inc , 1974.
    [58] National Institute of Standards and Technoligy: http://webbook.nist.gov/cgi/cbook.cgi?Name=cyclohexanone&Units=SI&cMS=on; C T Peng, S F Ding, R L Hua and Z C Yang. Prediction of retention indexes:I. Structure—retention index relationship on apolar columns[J]. Journal of Chromatography A, 1988, 436: 137-172.
    [59] Q Q Wang, D Wu, M X Jin, F C Liu, F F Hu, X H Cheng, H Liu, Z Hu, D JDing, H Mineo, Y A Dyakov, A M Mebel, S D Chao, S H Lin. Experimental and theoretical investigations of ionization/dissociation of cyclopentanone molecule in a femtosecond laser field[J]. J. Chem. Phys., 2008, 129, in print.
    [60] D R Nesselrodt, T Baer. Cyclic ketone mixture analysis using 2 + 1 resonance-enhanced multiphoton ionization mass spectrometry[J]. Analytical Chemistry, 1994. 66(15): 2497-2504.
    [61] C Kosmidis, G Philis, P Tzallas. Laser induced ionisation/dissociation of cyclopentanone in the 320-370 nm region[J]. Physical Chemistry Chemical Physics, 1999. 1(12): 2945-2948.
    [62] P Brumer, M Shapiro. Coherence chemistry: controlling chemical reactions with lasers[J]. Acc. Chem. Res., 1989, 22: 407-413.
    [63] X B Wang, R Bersohn. Phase control of absorption in large polyatomic molecules [J], J. Chem. Phys., 1996, 105: 2992-2997.
    [64] A Tonomura., J Endo, T Matsuda, T Kawasaki. Demonstration of single-electron buildup of an interference pattern[J]. Am. J. Phys. 1989, 57: 117-120.
    [65] M Shapiro, J W Hepburn, P Brumer. Simplified laser control of unimolecular reactions: simultaneous (ω1,ω1) excitation [J]. Chem. Phys. Lett., 1988, 149: 451-454.
    [66] R J Gordon, L C Zhu. Coherent control of chemical reactions [J], Acc. Chem. Res., 1999, 32: 1007–1016.
    [67] R J Gordon, J A Fiss, L Zhu, T Seideman. Coherent phase control of photoionization and photodissociation. In coherent control in atoms, molecules, and Semiconductors [M], Kluwer: Dordrecht, pp 39-49, 1999.
    [68] A H Kung, J F Young, S E Harris. Generation of 1182 ? radiation in phase-matched mixture of inert gases [J]. Appl. Phys. Lett., 1973, 22: 301-302.
    [69] R A Ganeev, T Usmanov. Frequency conversion of picosecond radiation in ultraviolet (338-366 nm) and vacuum ultraviolet (113.5-117.0 nm) ranges [J], Journal of Optical A, 2000, 2: 550-554.
    [70] A H Kung. Generation of tunable picosecond VUV radiation [J]. Appl. Phys. Lett., 1974, 25: 653-654.
    [71] P Mertens, P Bogen. Densities and velocity distributions of atomic hydrogen and carbon measured by laser-induced fluorescence with frequency tripling into the vacuum UV [J]. Applied Physics A, 1987, 43: 197-204.
    [72] J Kutaner, H Zacharias. VUV generation by frequency tripling the third harmonic of a picosecond kHz Nd:YLF laser in Xenon and mercury vapour [J]. Applied Physics B, 1998, 66: 571-577.
    [73] M P McCann, C H Chen, M G Payne. Two-photon (vacuum ultraviolet visble) spectroscopy of argon, krypon, xeonon and molecular hydrogen [J]. J. Chem. Phys., 1988, 89: 5429-5441.
    [74]胡湛,金明星,许雪松,刘航,丁大军.丙酮团簇的多光子电离解离与结构计算[J],高等学校化学学报,2003, 4:112-115.
    [75] G Q Xing, X B Wang, X Huang, R Bersohn, B Katz. Modulation of resonant multiphoton ionization of CH3I by laser phase variation [J], J. Chem. Phys., 1996, 104 (3): 826-831.
    [76] V D Kleiman, L Zhu, J Allen, R J Gordon. Coherent control over the photodissociation of CH3I [J], J. Chem. Phys., 1995, 103(24): 10800-10803.
    [77]朱起鹤,黄寿令. CH3I分子束激光裂解产物的分布[J].物理化学学报,1985, 1: 211-212.
    [78] D M Szaflarski, R van den Berg, M A El-Sayed. Velocity distributions of iodide cations as a monitor of the mechanism of laser multiphoton dissociation Ionization of Iodo Compounds [J]. J. Phys. Chem., 1989, 93: 6700-6704.
    [79] A Gedanken, M B Robin, Y Yafet. The methyl iodide multiphoton ionization spectrum with intermediate resonance in the A-band region [J]. J. Chem. Phys., 1982, 76: 4798-4808.
    [80] C E Moore. Ionization potentials and ionization limits derived from the analyses of optical spectra[M], Natl. Stand. Ref. Data Ser., (U.S. Natl. Bur. Stand.), 1970, 34:1.
    [81] A Strobel, I Fischer, A Lochschmidt, K M Dethlefs, V E Bondybey. Photodissociation dynamics of CH3I and CD3I probed by zero kinetic energy photoelectron spectroscopy [J]. J. Phys. Chem., 1994, 98: 2024-2032.
    [82] D H Parker, R B Bernsteln. Multlphoton ionization-fragmentati on patterns ofalkyl iodides [J]. J. Phys. Chem., 1982, 86: 60-66.
    [83]赵新丽.激光相干控制CH3I单分子反应的实验研究[D].长春:吉林大学,2004.
    [84] K Ch Young, M K Young, K-W Jung. Multiphoton ionization and ragmentation processes of methyl iodide clusters at 266nm and 355nm. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 127: 1-5.
    [85] J H Arps, C H Chen, M P McCann, I Datskou. Ionization of organic molecules using coherent vacuum ultraviolet light [J]. Applied Spectroscopy, 1989, 43: 1211-1214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700