BESIII触发快控制系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进行更精确的τ—粲物理实验研究——3-4 GeV能区精确测量和研究J/ψ和ψ′能区内的稀有衰变,并确保中国的高能物理实验装置在这个能区继续保持国际领先地位,科学家们在广泛听取国内外专家意见的基础上,将对北京正负电子对撞机和北京谱仪进行重大升级改造。改建任务是在对撞机现有隧道内新建一个储存环,采用多束团、大交叉角对撞方式,亮度将提高两个数量级,建成后的北京正负电子对撞机(BEPCⅡ)成为当前国际上最先进的双环对撞机。升级后的探测器-北京谱仪Ⅲ(BESⅢ)将大幅度提高探测器的分辨率和粒子识别能力,减少系统误差,以与BEPCⅡ的高亮度提供的高统计精度相匹配。
     本论文主要研究目标是研制BESⅢ触发快控制系统(FCS),它是BESⅢ触发系统的重要组成部分,也是整个谱仪的关键控制部分。它控制着探测器读出电子学系统与触发系统协同运行,使数据获取系统记录有效事例数据。本文作者在高能所触发组的指导下,在充分调研与分析国际上同类装置的快控制系统(或触发定时系统)的基础上,结合BESⅢ实际需要与目前的先进电子技术,设计了触发快控制系统,同时对相关问题作了仔细研究。
     本论文前两章首先阐述了国际高能物理实验装置电子技术的特点与发展,列出了本文的具体研究目标。介绍了北京正负电子对撞机和北京谱仪的升级改造规划、包括各子探测器的功能设计和期望达到的指标。分析了国际上同类装置——BaBar粒子探测器和正在建设的大型强子对撞机LHC的快控制系统,它们的设计给EESⅢ的快控制系统的功能结构设计和信号设置带来很多可借鉴之处。
     在介绍BESⅢ触发快控制系统之前,本文首先对其要使用的光纤高速串行传输技术所进行的详细研究予与介绍。此技术用在BESⅢ中,关心的问题有:传输误码率,线路抗干扰性,错误报告及同步恢复,延时离散度,相位稳定性和辐照损伤特性等。本文选用TI的TLK1501作为串并转换器,Agilent的HFBR-5921L作为光收发器组成了一套完整的测试环境,对以上问题进行详细研究,得出了此传输线路特性的完整资料;同时针对一些问题提出了同步自动恢复方法,延迟晃动消除方法等解决方案,为光纤串行传输技术在FCS中的正确应用打下了基础。同时,还介绍了适用于高能物理装置使用的其它串并转换芯片如Agilent 103xA-,CERN(?)等,并测试了它们的部分性能,比较了各种组合的优缺点。
     BESⅢ触发快控制系统的主要任务一方面是将触发系统的快控制信号通过光纤或差分电缆下传到子探测器电子学系统和触发系统;另一方面收集子探测器电子学和触发系统上传的读出状态信号并进行处理;同时扇出BESⅢ时钟系统给出的与束团同步的41.65MHz系统时钟信号。本文详细介绍了触发快控制系统的结构和各个插件的功能。对作者的主要研制对象,也是FCS的核心——快控制主板进行了详细描述,包括电路设计、器件选择、FPGA内部的逻辑设计以及它与快控制子板的连接等。最后对快控制系统的小系统调试结果进行了介绍。
     为了保证时钟系统的时钟与束团同步,作者研究了时钟同步信号产生方案,
The thesis describes the Research and Devolopment work of the Trigger Fast Control System (FCS) of Beijing Spectrometer III (BESIII), which is being built as one part of the Beijing Electron Positron Collider II (BEPCII) upgrade project. The BEPCII and BESIII will be completed in 2007 and continue contributing to the tau-Charm physics studies after BEPC and BESII.
    The Fast Control System is an important part of Trigger System, and is also a key part of BESIII.It is the backbone of Data Acquire System, Trigger System and the Front-End electroncs (FEE) of subdetectors for collecting useful event data.The FCS is designed for meeting the actual needs of BESIII and based on advanced and new electroncal technologies. The Fast Control System (or Timing,Trigger and Control System) of other spectrometers like BaBar, Cleo III, Belle and LHC have been studied for reference in design of the one of BESIII.
    High-speed Serial optical fiber transmission technology will be used to transfer fast control signals between the detector FEEs and the FCS, and it may be used in other parts of BESIII. This technology has the advantages of cutting off the ground loops between the systems, improving the system immunity to electro-magnetic interference and lengthening the transfer distance. Some important aspects of this technology are carefully studied, such as the bit-error-rate, error report ,synchronization recovery, latency skew of channels and phase stability. After research and test, scheme for link self-synchronizing recovery is given, which makes the system more robust. The lantency skew is as large as half a period, and the approach to minimize it is to adjust the front edge of the sampling clock falling at the middle of the stable half period of all deserialized data in the receiver side. Estimation and some beam testing for radiation effects on optical fiber link in hard radiation condition have been made. Some tests in using Agilent 103xA as Serializer/Deserializer have been made.
    The FCS of BESIII will send trigger pass and control signals such as L1, CHK to and receive read-out state signals such as FULL, REER from FEEs and trigger subsystems. It also receives 41.65MHz system clock and fans it out. FCS is composed of Clock Fan-out Board, Fast Control Board, Fast Control Daughter Board, Fast Control Signal Fan-out Board, Trigger Readout Control Board based on VME bus.
引文
[1] S. Cittolin. Overview of Data Acqusition for LHC. CERN School of Computing. CERN95-01, 1994
    [2] http://www.slac.stanford.edu/BFROOT/www/Detector/Operations/lumirecords.html
    [3] http://belle.kek.jp/bdocs/lum_record.html
    [4] http://www.desy.de/pr-info/desyhome/html/presse/hginfos/tesla/zahlen.en.html
    [5] 丁慧良等.北京谱仪.高能物理与核物理,Vol.16,No.9 1992:P769-P789
    [6] BES Collabration. BESⅢ Technical Design Report. Ver 1. Institute of High Energy Physics, 2001: P3-92~P3-111
    [7] ALICE, Addendum to the Technical Design Report of the Time of Flight System(TOF), CERN/LHCC 2002-016, April, 24,2002
    [8] 过雅南,新一代高能物理实验中的计算机技术,核电子学和探测技术.Vol.15 1999,No.1:P42-52
    [9] 郑志鹏等,北京谱仪正负电子物理.第一版.广西科学技术出版社,1998:16-25
    [10] BEPCⅡ初步设计报告,中国科学院高能物理研究所,2002.7
    [11] 北京正负电子对撞机重大改造工程简介,http://www.ihep.ac.cn/BEPCⅡ/index.htm
    [12] 北京正负电子对撞机初步设计(BESⅢ探测器,新),中国科学院高能物理研究所,2005
    [13] LIU Zhen’An,Trigger System,BESⅢ国际评审会,2002年9月17日。
    [14] 北京正负电子对撞机初步设计(触发判选系统,新),中国科学院高能物理研究所,2005
    [15] LIU Zhen' An, Suggestion for Fast Control System in BES Ⅲ(For discussion),高能所“电子学/触发/DAQ工作会议,2001.11.27
    [16] P. Grosso, G. Haller, R. Hamilton, M. Hu_er, C. O' Grady, L. Sapozhnikov, I. Scott. The BaBar Fast Control System. CHEP'98 (Computer in High Energy Physics).1998. 9
    [17] S. Baron et al. Timing, Trigger and Control (TTC) Systems for the LHC.http://ttc.web.cern.ch/ttc/,227,2006.
    [18] P. Moreira et al. TTCrx Reference Manual, Version 3.11. CERNEP/MIC, December 2005: P10
    [19] Moreira P., Toifl T., Kluge A., et al. Nuclear Science Symposium Conference Record, 2000 IEEE, 2: 9/6-9/9
    [20] Sasaki O., Andresen J., Gonzalez H., et al. IEEE Transaction on Nuclear Science, 1995, 42(4): 882-886
    [21] Sasaki O., Nagasaka Y., Yasu Y., et al. Nuclear Science Symposium Conference Record, 1996 IEEE, 1: 452-456
    [22] 王科等.BESⅢ中触发数据并串结合传送方法的研究.强激光与粒子束,第17卷 第1期2005年1月:P1-2
    [23] Texas Instruments Inc. TI TLK1501 DATASHEET[EB/OL].http://www.ti.com,2002.
    [24] T. Shaw. XFT Stereo Finder Hardware Status, FNAL, December 8, 2004: 9
    [25] P. Baudrenghien et al. LHC RFEMC aspects. EMC Workshop, LHC RF. November 25th, 2004
    [26] Francois Vasey et al. CMS ECAL Data Links Sub-Project Specification. 2002. 9. 5.
    [27] Agilent Technologies, Inc. Agilent HDMP-1032A/1034A Transmitter/ Receiver Chip Set Data Sheet. Http://www.semiconductor.agilent.com.August 16, 2001
    [28] J. Castelo, TileCal ROD HW Specific Requirements to Use the New LArg Motherboard, http://ific.uv.es/tical/rod/doc,January 2004:5
    [29] S. Boose, et al. Conceptual Design Report for the PHENIX Nosecone Calorimeter, BNL internal report, December 2005: 88
    [30] Adams N., Matveev M., Padley P., Nussbaum T. Optical Data Transmission from the CMS Cathode Strip Chamber Peripheral Trigger Electronics to Sector Processor Crate. ftp://cmsdoc.cern.ch/documents/1.
    [31] Xilinx, Inc. Virtex-Ⅱ Pro Platform FPGA Handbook. Http://www.xilinx.com,October 14, 2002
    [32] P. Moreira et al.. GOL Reference Manual (PRELIMINARY).http://www.cern.ch/proj-gol.October 2005
    [33] Agilent Technologies, Inc. Agilent HFBR-5921L/HFBR-5923L Fibre channel 2.125/1.0625 GBd 850 nm Small Form Factor Pin Through Hole (PTH) Low Voltage (3.3 V) Optical Transceiver Data Sheet. http://www.agilent.com/semiconductors.2002
    [34] Xilinx, Inc. Spartan-Ⅱ 2.5V FPGA Family:Introduction and Ordering Information. Http://www.xilinx.com,November 1, 2001
    [35] Xilinx, Inc. http://www.xilinx-china.com/ise/logic_design_prod/foundation.htm
    [36] 王科等.基于FPGA中FIFO的误码率软硬件测试方法.电子测量技术,2004年第二期:P5
    [37] 罗卫兵 孙桦 张捷.SystemView动态系统分析及通信系统仿真设计.西安电子科技大学出版社,2001-08:124-126
    [38] Jean, LFSR testbench 1.20 Beta,http://www.logiccell.com/~jean/LFSR 05 11,2001
    [39] Jian Song. Test Report of Optical Transfer Test Board. Fast Electronics Lab, USTC. October 30, 2003
    [40] Gerd Kerser,光纤通信(第三版),电子工业出版社,2002,7:73-74.
    [41] 阴泽杰,吴孝义,盛锦华,黄环.抗辐射光纤在强γ场中的辐射损伤研究.核电子学与探测技术,1996,16(2):81.
    [42] C. Da Via, J. Feyt, P. Nappey, et al. Optoelectronic Analogue Signal Transfer for LHC Detectors. CERN/DRDC, 1993,93(35):33.
    [43] A. Fernandez Fernandez, F. Berghmansa, B. Bricharda, et al. Radiation hardness of passive fibre optic components for the future thermonuclear fusion reactor instrumentation links. Proc. SPIE, 2002,4547(1): 42-48
    [44] Peter Alfke, Rick Padovani. Radiation Tolerance of High-Density FPGAs. http://klabs.org/richcontent/MAPLDCon98/Papers/b6_alfke.pdf, 1998.
    [45] Analog Devices, Inc. Quad-Channel Digital Isolators:ADuM1400/ADuM140/ADuM1402.Http://www.analog.com,2003.
    [46] W. Johnson, Martin Graham. High-Speed Digital Design. Prentice Hall PTR, Englewood Cliffs, New Jersey.
    [47] Linear Technology Corporation, LT1764 Series Datasheet,www.linear.com,2000.
    [48] 薛俊东.BESⅢμ子鉴别器前端数据读出技术研究.中国科学技术大学博士学位论文,2005.5
    [49] Texas Instruments Inc. SN75LVDT386/388A/390, SN75LVDS387/389/391 Datasheet.http://www.ti.com,2002.
    [50] Xilinx, Inc. Libraries Guide. March 3, 2003: P1739.
    [51] 高能所束测组.BPM电极感应信号的计算及应用.
    [52] Maxim-ic Corporation. Dual ECL and Dual/Quad PECL, 500ps, Ultra-High-Speed Comparators Datasheet. www. maxim-ic. com. 2002,9.
    [53] On semiconductor Corporation. MC10198 Monostable Multivibrator Datasheet, Rev. 7. http://onsemi.com/mc10198.pdf.2002,Jan.
    [54] 高文春.BEPCⅡ事件定时系统设计.2004,7.
    [55] TOF电子学方案设计.中国科技大学近代物理系快电子学实验室.2005,07,31.50-53
    [56] CERN Microelectronics Group. Quartz Crystal Phase-Locked Loop (QPLL) Preliminary data sheet, http://ttc.web.cern.ch/ttc/.June 2002.
    [57] Xilinx Corporation. RocketIO Transceiver User Guide. www.xilinx.com.October 16,2002
    [58] Ph. Busson, et al. Embedding deserialisation of LHC experimental data inside Field Programmable Gate Arrays.
    [59] 徐吴.MDC触发MFT板的设计.北京高能物理研究所.2005
    [60] Alberto Aloisio. ATLAS Level-1 Muon Barrel Optical Link Final Design Review. INFN-Sezione di Napoli, Italy, Mar. 12, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700