动态压力作用下体外海藻酸盐微囊化培养兔关节软骨细胞差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应力作用下软骨细胞代谢和功能的改变是导致软骨组织不断生长改建的主要原因。在正常人体关节软骨所受到的各种力中,压力是最主要的,研究表明,软骨受到动态和静态压缩载荷影响了软骨移植物的生物合成。但到目前为止,有关动态压力作用下调控软骨细胞生物学行为变化的分子机制尚不清楚,通过差异蛋白质组学研究可以识别参与细胞生命活动过程中的重要蛋白质,为深入探索其机制提供信息。本研究力图构建类似于体内软骨组织的体外软骨细胞立体培养动态压力加载模型,并借助于蛋白质组学技术,寻找和发现动态压力作用下调控软骨细胞代谢和功能改变的特定的蛋白质分子,为动态压力作用下软骨改建机理的更深入研究提供依据。
     研究方法:1)取4W龄乳兔膝关节软骨组织,体外分离、培养软骨细胞、对培养的软骨细胞进行蕃红“O”、甲苯胺蓝及II型胶原免疫组化染色等表型鉴定;2)将鉴定具有正常表型的P1代软骨细胞和海藻酸盐复合,形成凝胶小球培养,观察藻酸钙凝胶内软骨细胞生长情况。通过MTT检测确定细胞活性,使用二甲基亚甲兰法测定样品硫酸化糖胺多糖(GAG)的含量,同时对在藻酸钙凝胶内的软骨细胞进行组织学及组织化学染色以鉴定其表型;3)选取浓度分别为1%、2%、3%海藻酸盐,并通过INSTRON3365测定三种浓度海藻酸盐形成凝胶的机械刚度,将P1代软骨细胞分别与这三种浓度的海藻酸钙复合,培养28天,通过MTT法,二甲基亚甲兰法及RT-PCR测定并比较三种条件下软骨细胞增殖状况,GAG含量变化及II型胶原,聚集蛋白聚糖,I型胶原的基因表达状况从而筛选出最有利于软骨细胞生长的3D海藻酸盐凝胶培养环境;4)仿照Shram系统构建了体外立体培养的软骨细胞动态压力加载模型;并参照Shram等压力加载条件给予0.2MPa,0.66Hz静水压持续作用4h,提取培养相同时间的加压组和未加压组藻酸钙凝胶中的软骨细胞总蛋白,进行双向电泳分离,电泳后的凝胶银染,用分析软件对图谱进行分析,从而建立动态压力作用下藻酸盐立体培养条件下兔关节软骨细胞差异表达蛋白质图谱;5)使用基质辅助激光解析离子化飞行时间质谱(MALDI-TOF-MS)对得到的肽段进行分析,并结合蛋白质序列数据库,鉴定出差异表达的蛋白点。
     结果:采用消化法进行幼兔膝关节软骨细胞原代培养,经甲苯胺兰,II型胶原染色鉴定阳性,所培养细胞生长状态良好其软骨细胞表形能够保持3代稳定,且反映其生长增殖能力的生长曲线正常,在体外培养时可经历与在体状况相似的成熟过程,并具有与在体的关节软骨相似的生物学活性。2)在海藻酸钙小球内培养的软骨细胞能够保持球形状态,且随时间的延长,细胞逐渐增殖,GAG含量增多。经蕃红“O”、甲苯胺蓝及II型胶原免疫组化染色均为阳性。鉴定证实为具有正常表型的软骨细胞。3)浓度对海藻酸钙凝胶的机械刚度具有显著的影响。1%的海藻酸钙凝胶的压缩模量为19.44±2.72显著低于2%(167.09±12.43)和3%(226.24±19.82)。在培养的21天,软骨细胞在较软凝胶内增殖较快,但在21天后,在最软的凝胶内细胞增殖显著减少;基质积累随海藻酸盐刚度改变而不同。在培养第四周,软骨细胞在中间刚度组表现出最高的GAG合成,而软骨特征性基因CoLII、Agg的表达在具有中等刚度的凝胶内最稳定;4)通过双向电泳技术我们建立了动态压力作用下立体培养的软骨细胞差异表达蛋白质图谱。未加压组检测到1632±54个蛋白点,加压组检测到1698±13个蛋白点。通过软件分析,找到了10个差异蛋白点,其中2个在加压培养后表达消失;2个在加压培养后出现表达;6个表达增强。5)将这10个蛋白点通过质谱(MALDI-TOF-MS)分析,获得相应的肽质量指纹图谱,进一步通过蛋白质序列数据库鉴定了8个蛋白点,其中有意义的蛋白点6个。它们分别是:prolyl 4-hydroxylase alpha I,pyruvate kinase,L-lactate dehydrogenase A,Prolyl 4-hydroxylase subunit beta,destrin isoform,alpha enolase。
     结论:1)采用酶消化法获得幼兔关节软骨细胞的方法简便可行。体外培养的原代或P1,P2代软骨细胞具有良好的软骨细胞表型特征,适用于实验研究。2)软骨细胞在藻酸钙凝胶小球中生长维持了球状形态,细胞少量增殖并合成GAG,II型胶原,说明海藻酸钙凝胶适合于软骨细胞的生长。3)具有中等刚度的海藻酸钙凝胶更有利于软骨细胞的生长和软骨表型的维持。4)利用差异蛋白质组学方法研究动态压力作用对立体培养的软骨细胞的影响是可行的;5)通过差异蛋白质组学研究我们发现了动态压力作用下调控软骨细胞生物学行为的6个有意义的关键蛋白质,并推测了其在软骨改建中的作用。为今后研究这些差异蛋白在软骨细胞受压力刺激后代谢和功能变化的生物学作用奠定了基础。
Mechanical stresses are known to play important role on articular cartilage functions in vivo and also on cartilage explants and chondrocytes monolayer culture. However,the molecular events of chondrocytes in respose to dynamic stress are still not well understood so far.Differential proteomics can be applied to evaluate the significant proteins in cellular metabolism, which would aid in better understanding of the molecular mechanism of cartilage remolding under dynamic loading.Therefore, in the present study, we tried to set up an in vitro 3D loading model system similar to native joint cartilage and found out the major proteins involved in the chondrocytes cultured in alginate beads under dynamic stress loading by using comparative proteomics technology .
     Methods:1) rabbit chondrocytes were isolated from the articular cartilage of a 4-week-old rabbit by enzyme digestion method , cultured in DMEM supplemented with 10% FBS.the chondrocytes were identified with Toluidine blue and immunohistochemistry of collagen type II staining;2)P1 chondrocytes suspended in calcicum alginate beads were observed dynamically under phrase contrast microscope,the vability and proliferation of cells were evaluated by MTT,The quantity of GAG was determined by a modification of the dimethyl-methylene blue method,histological and immunohistochemistry staining were employed to evaluate cell morphology, matrix deposition and the presence of cartilage specific type II collagen. 3) alginate hydrogels ranging in stiffness were formed via varying the alginate solids concentration from 1% to 3%, The compressive modulus of each condition were characterized using INSTRON 3365,The articular chondrocyte were encapsulated in each hydrogel condition, and growth, morphology,and gene expression were assessed; 4) A dynamic compression unit was set up followed the method of Sharam,chondrocytes cultured in 2% alginate beads were exposed to 0.2 MPa,0.66Hz cyclic loadings for 4h,the total proteins extracted from either loading or unloadind cells were separated by two-dimensional gel eletrophoresis(2-DE).5)PMF was analyzed using Matrix assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF-MS),the differentially expressed proteins involved in chondrocytes cultured in alginate beads under dynamic stress loading were identified with protein and pertide databases.
     Results:
     1) The chondrocytes obtained here showed favorable growth and function character. The phenotype expression of chondrocytes could be kept steadily for three passages. The growth curve which could reflect the proliferation ability of the cells was obtained.in vitro cultured chondrocytes could also experienced the same mature process as they growed in vivo and had the similiar biological activity as those cells in vivo.
     2) chondrocytes cultured in alginate mantained the spherical morphology. The number of viability cells and glycosaminoglycan(GAG) production increased with time .Histological examination reveal chondrocytes retained their differentiation state in alginate beads.
     3) The contents of the alginate had a significant influence on compressive mechanical properties. 1% alginate conditions had significantly lower moduli(19.44±2.72) than the 2%(167.09±12.43) and 3%(226.24±19.82) alginate conditions. chondrocytes were proliferating more rapidly on lower stiffness gels(1%,2%) than on the higher stiffness gels(3%). After day 21, no further cell proliferation, but a slight reduction in cell number, especially, on the softest gel,the reduction is most obvious.Matrix accumulation also varied significantly with type of alginate used, At week 4, the 2% group resulted in the highest GAGs production , the expression of cartilage-specific genes, such as type II collagen and aggrecan ,in the middle stinffness alginate constructs showed the highest level expression;
     4)two-dimensional gel eletrophoresis showed significant differences between the dynamic stress group and unloading group. There are 1698±13 protein spots in the loading group and 1632±54 in the unloading group. 10 proteins were diferentially expressed by analyzing with soft ware compared with unloading group,among them, 2 proteins were new appearance, 2 proteins disappeared,6 proteins were up-regulated.
     5)Among the 10 diferentially expressed proteins,the PMFs of 8 proteins were obtained through MALDI-TOF-MS analysis.Fouthermore ,by searching in protein and pertide databases,six meaningfull proteins were identified,they were:prolyl 4-hydroxylase alpha I, pyruvate kinase,L-lactate dehydrogenase A,Prolyl 4-hydroxylase subunit beta,destrin isoform,alpha enolase.
     Conclusions :
     1) The method used in the present work for isolation and culture of chondocytes is simple and feasible.The chondrocytes cultured in vitro maintained the specific chondrocytes phenotype in the P0, P1, P2 passages,which is suitable for most experiments.
     2) Alginate induced chondrocytes cluster-like growth and increased the deposition of GAG as well as phenotype stability,which indicated that alginate is favored for chondrocytes growth.
     3) The physical properties of alginate gel influence the embedded cells bio-behave,alginate with the middle stiffness led to the highest GAG synthesize and the most stable phonotype maintaining.
     4) it’s feasible to investigate the influence of dynamic compression on chondrocytes through the differential proteomics approach.
     5) Our research provided fundamental information on the differential expression of protein of chondrocytes cultured in alginate under dynamic stress. however, futher studies need to be done to better understand the molecular mechanisms of cartilage remodeling induced by dynamic stress loading.
引文
[1] Yamamoto TT,Nakagawa K, Kawakami M , et al . Comparison of the effect of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occip ital synchondrosis in vitro . Am J O rthod Dentofac O rthop, 1991, 99 (5) : 448~455
    [2]白玉兴,罗颂椒.大鼠下颌前伸后大鼠髁突软骨雌激素变化的研究.中华口腔医学杂志, 1997, 32 (3) : 161~163
    [3]罗颂椒,周征.功能矫形前伸大鼠下颌后髁突软骨胰岛素样生长因子I表达变化的研究.华西口腔医学杂志,1998, 16 (2) : 161~163
    [4] Shen G and Ali Darendeliler M. The Adaptive Remodeling of Condylar Cartilage—A Transition from Chondrogenesis to Osteogenesis. J Dent Res 2005; 84; 691 Review
    [5] Mao JJ, Rahemtulla F, Scott PG.. Proteoglycan expression in the rat temporomandibular joint in response to unilateral bite raise. J Dent Res 1998,77:1520-1528.
    [6] Sharawy M, Ali AM, Choi WS. Experimental induction of anterior disk displacement of the rabbit craniomandibular joint: an immuno-electron microscopic study of collagen and proteoglycan occurrence in the condylar cartilage. J Oral Pathol Med 2003;32: 176-184.
    [7]张英,崔磊,刘伟,曹谊林力学环境对软骨软骨基质代谢的影响中国生物工程杂志2003;23(7):80-83
    [8] Zhang, S. Beyond the Petri dish. Nat Biotechnol. 2004;22(2):151-2.
    [9] Abbott, A. Cell culture: biology’s new dimension. Nature. 2003, 21;424(6951):870-2.
    [10] Cukierman E, Pankov R, Stevens DR, and Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001 23;294(5547):1708-12.
    [11] Lee J, Cuddihy MJ, Kotov NA. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Eng Part B Rev. 2008;14(1):61-86.
    [12] Lodish H., Berk A., Zipursky LS., Matsudaira P., Baltimore D., and Darnell JE. Molecular Cell Biology. New York: W.H. Freeman and Company, 2002.
    [13] Gartner LP., and Hiatt JL. Color Textbook of Histology. Philadelphia: Saunders, 2001.
    [14] Fuchs E., Tumbar T., and Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004; 116(6): 769-78.
    [15] Langer R. and Vacanti JP. Tissue engineering. Science. 1993;260(5110): 920-6.
    [16] Vacanti JP. and Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999,354suppl, SI32-4.
    [17] Griffith LG. and Naughton G. Tissue engineering—current challenges and expanding opportunities. Science 2002,295(5557):1009-14
    [18] Debnath J. and Brugge JS. Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 2005,5(9):675-88,.
    [19] Griffith LG. and Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006,7(3), 211-24.
    [20] Ratner BD., Hoffman AS., Schoen FJ., and Lemons JE.BiomaterialsScience: An Introduction to Materials in Medicine. San Diego: Elsevier Academic Press, 2004.
    [21] Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, et al. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br 1989;71(1):74–80.
    [22] van Susante JLC, Buma P, Schuman L,Homminga GN, van den Berg WB, Veth RPH. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 1999;20(13):1167–75.
    [23] Kawamura S, Wakitani S, Kimura T, Maeda A, Caplan AI,Shino K, et al. Articular cartilage repair. Rabbit experiments with a collagen gel-biomatrix and chondrocytes cultured in it. Acta Orthop Scand 1998;69(1):56–62.
    [24] Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101(7):1869–80.
    [25] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24(24):4337–51
    [26] Jeanie L. Drury, David J. Mooney.Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003,24(24) 4337–4351.Review
    [27] De Vos P, De Haan B, Van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials. 1997;18(3):273-8.
    [28] Smidsrod O, Haug A. Dependence upon the gel-sol state of the ion-exchange properties of alginates. Acta Chem Scand. 1972;26(5):2063-74.
    [29] Koyano T, Minoura N , Nagura M,et al . Attachment and growth of cultured fibroblast cells on PVA/ chitosan -blended hydrogels.Biomed Mater Res ,1998 ,39(3) :486-90.
    [30] Manukhin IB , Frank GA , Minkina GN ,et al . Determination of the proliferative activity of the cervix uteri epithelium in papillomavirus infection . Vestn Ross Akad Med Nauk ,1997 ,(2) :20-4.
    [31] Auger FA , Rouabhia M, Goulet F ,et al . Tissue-engineered human skin substitutes developed from collagen populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput , 1998 ,36(6) :801-12
    [32] Ohsumi H,Hirata H,Najakura T,et ai . Enhancement of perineurial repair and inhibi tion of nerve adhes ion by viscous injectable pure alginate sol .Plas t Recons tr Surg. 2005;116(3):823-830
    [33]郭全义,张莉,眭翔,等.采用藻酸钙培养法在体外构建工程化关节软骨组织.中华实验外科杂志, 2006, 23( 7) : 877
    [34] Grant G, Morris E, Rees D, Smtih P, Thom D. Biological Interactions between polysaccharides and divalent cations. The egg-box model. FEBS Letters 1973;32: 195-8.
    [35] Wee S,Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31: 267-285
    [36] Klein L. Pore size and properties of spherical Ca-alginate biocatalysts. Eur J Appl Microbiol Biotechnol 1983; 18: 86-91
    [37] Hauselmann HJ,Aydelotte MB,Schumacher BL,Kuettner KE,Gitelis SH,Thonar EJ. Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. Matrix 1992; 12:116-129
    [38] Wang L,Shelton RM,Cooper PR,Lawson M,Triffitt JT,Barralet JE.Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 2003; 24: 3475-3481
    [39] Mayne R.Cartilage collagens.What is their function,and are they involoved in articular disease?Arthritis Rheum 1989;32(3):241-6
    [40] Schmid TM,Linsenmayer TF.Immunohistochemical localization of short chain cartilage collagen(type X)in avian tissues.J Cell Biol 1985;100(2):598-605
    [41] Kuettner KE.Biochemistry of articular cartilage in health and disease.Clin Biochem 1992;25(3):155-63
    [42] Zimmermann DR,Ruoslahti E.Multiple domains of the large fibroblast proteoglycan,versican.EMBO J 1989;8(10):2975-81
    [43] Skjak-Braek G, Biochem. Soc. Trans. 1992, 20: 27-33.
    [44] Glowacki J, Trepman E, Folkman J. Cell shape and phenotypic expression in chondrocytes.Proc Soc Exp Biol Med. 1983; 172(1):93-8.
    [45] De Ceuninck F, Lesur C,Pastoureau P,Caliez A,Sabatini M. Culture of Chondrocytes in Alginate Beads.Methods Mol Med 2004 ;100:15-22
    [46] Guo J, Jourdian G, MacCallum D. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Conn Tiss Res 1989;19:277-97.
    [47] Hauselmann, HJ., Fernandes, RJ., Mok, SS., et al. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J. Cell Sci.1994, 107, 17–27
    [48] Bonaventure, J., Kadhom, N., Cohen-Solal, L., et al. Reexpression of cartilage-specific genes by dedifferentiated human chondrocytes cultured in alginate beads. Exp. Cell Res. 1994,212, 97–104.
    [49] Lemare, F., Steimberg, N., Le Griel, C., Demignot, S., and Adolphe, M.Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1β. J. Cell. Physiol.1998, 176, 303–313.
    [50] Liu, H., Lee, YW., and Dean, MF. Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta.1998, 1425, 505–515.
    [51] Redini, F., Min, W., Demoor-Fossard, M., Boittin, M., and Pujol, JP. Differential expression of membrane-anchored proteoglycans in rabbit articular chondrocytes cultured in monolayers and in alginate beads. Effect of transforming growth factor-beta 1. Biochim. Biophys. Acta 1997, 1355, 20–32.
    [52] Beekman, B., Verzijl, N., de Roos, JA., and TeKoppele, JM. Matrix degradation by chondrocytes cultured in alginate: IL-1βinduces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthritis Cartilage 1998,6, 330–340.
    [53] Loeser, RF., Todd, MD., and Seely, BL. Prolonged treatment of human osteoarthritic chondrocytes with insulin-like growth factor-I stimulates proteoglycan synthesis but not proteoglycan matrix accumulation in alginate cultures. J. Rheumatol.2003, 30, 1565–1570.
    [54] Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA.Injectable cartilage. Plast Reconst Surg 1995;96:1390–8.
    [55] Atala A, Kim W, Paige KT, Vacanti CA, Retik AB. Endoscopic treatment of vesicoureteral re?ux with a chondrocyte-alginate suspension. J Urol 1994;152(2 Part 2):641–3.
    [56] Chang SCN, Rowley JA, Tobias G, Genes NG, Roy AK,Mooney DJ, Vacanti CA, Bonassar LJ. Injection molding of chodrocyte/alginateconstructs in the shape of facial implants.J Biomed Mater Res 2001;55:503–11.
    [57] de Chalain T, Phillips JH, Hinek A. Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and k-elastin. J Biomed Mater Res 1999;44:280–8.
    [58] Bent AE, Tutrone RT,McLennan MT, Lloyd LK, Kennelly MJ,Badlani G. Treatment of intrinsic sphincter deficiency using autologous ear chondrocytes as a bulking agent. Neurourol Urodynam 2001;20:157–65
    [59] Schwarz US, Bischofs IB. Physical determinants of cell organization in soft media. Med Eng Phys 2005;27(9):763–72.
    [60] Wong JY, Leach JB, Brown XQ. Balance of chemistry, topography,and mechanics at the cell–biomaterial interface: issues and challenges for assessing the role of substrate mechanics on cell response. Surf Sci 2004;570(1–2):119–33.
    [61] Discher DE, Janmey P, Wang Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310(5751): 1139–43.
    [62] Liu WF, Chen CS. Engineering biomaterials to control cell function. Mater Today 2005;8(12):28–35
    [63] Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47–55.
    [64] Shin H, Jo S,Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24(24):4353–64.
    [65] Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 2003;14(5):551–8.
    [66] Silva EA, Mooney DJ. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol 2004; 64: 181–205.
    [67] Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996; 17(17):1647–57.
    [68] Dillon GP, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV. The in?uence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci: Polym Ed 1998; 9(10): 1049–69.
    [69] Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures.Biomaterials 2001;22(10):1077–84.
    [70] Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels in?uence neurite extension. J Biomed Mater Res A 2005; 72A(1):91–7.
    [71] Bryant SJ, Anseth KS. Hydrogel properties in?uence ECM production by chondrocytes photoencapsulated in poly(ethyleneglycol) hydrogels. J Biomed Mater Res 2002;59(1):63–72.
    [72] Genes NG, Rowley JA, Mooney DJ, Bonassar LJ. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch Biochem Biophys. 2004;422(2):161-7.
    [73] Rowin ME, Whatley RE, Yednock T, Bohnsack JF. Intracellular calcium requirements for beta1 integrin activation. J Cell Physiol. 1998;175(2): 193-202.
    [74] Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell. 1996;9(3):181-6.
    [75] Leung-Hagesteijn CY, Milankov K, Michalak M, Wilkins J, Dedhar S.Cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin alpha-subunit-binding protein. J Cell Sci. 1994;107 ( Pt 3):589-600.
    [76] Wong M, Siegrist M, Wang X, Hunziker E. Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis. J Orthop Res 2001;19(3):493–9.
    [77] Vailhe B, Ronot X, Tracqui P, Usson Y, Tranqui L. In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In Vitro Cell Dev Biol Anim 1997;33(10):763–73.
    [78] Deroanne CF, Lapiere CM, Nusgens BV. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix–cytoskeleton. Cardiovasc Res 2001;49(3):647–58.
    [79] Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA. Neurite branching on deformable substrates. Neuroreport 2002; 13(18): 2411–5.
    [80] Sieminski AL, Hebbel RP, Gooch KJ. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 2004; 297(2): 574–84.
    [81] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24(24):4337–51.
    [82] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2002;54(1):3–12.
    [83] Li RH, Altreuter DH, Gentile FT. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol Bioeng 1996;50(4):365–73.
    [84] Leddy HA, Awad HA, Guilak F. Molecular diffusion in tissue- engineered cartilage constructs: effects of scaffold material, time, andculture conditions. J BiomedMater Res B: Appl Biomater 2004;70(2): 397–406.
    [85] Kellner K, Liebsch G, Klimant I, Wolfbeis OS, Blunk T, Schulz MB,et al. Determination of oxygen gradients in engineered tissue using a ?uorescent sensor. Biotechnol Bioeng 2002;80(1):73–83.
    [86] Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A 2003;64(1):70–9.
    [87] Alsberg E, Kong HJ, Hirano Y, SmithMK, Albeiruti A,Mooney DJ.Regulating bone formation via controlled scaffold degradation. J Dent Res 2003;82(11):903–8.
    [88] Mahoney MJ, Anseth KS. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 2006;27(10):2265–74.
    [89] Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R,Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 2004;88(3):379–91.
    [90] Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 2004;10(3–4):515–22.
    [91]刘天一,周广东,刘伟,曹谊林.力学生物学对软骨生物学性状的影响及在组织工程中的应用.国外医学骨科学分册.2004;25(1): 51-54
    [92] Heath CA, Magari SR. Mini-review: Mechanical factors affecting cartilage regeneration in vitro. Biotechnol Bioeng. 1996;50(4):430-7.
    [93]余方圆,卢世璧,袁玫.组织工程关节软骨研究进展.中国矫形外科杂志,2004,10(12):785 787.
    [94] Wong M., Carter DR. Articular cartilage functional histomorphology and mechanobiology:a research perspective. Bone 2003; (33): 1–13.Review
    [95]王小虎,卫小春,陈维毅.软骨细胞力学特性的研究进展.中华医学杂志,2006,21(86):1502-4.
    [96] Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech.1995, 28 : 1529–41.
    [97] Guilak F, The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage, Biorheology 2000,37, 27–44.
    [98] D? Andrea P,Vittur F . Propagati on of intercellular Ca2 +waves in mechanically stimulated articular chondrocytes. FEBS Lett, 1997, 400 (1) : 582-64.
    [99] Guilak F, Sah R, Setton LA, in: V.C. Mow, W.C. Hayes (Eds.),Basic Orthopaedic Biomechanics, Lippincott-Raven, 1997, pp. 179-207.
    [100] Buschmann MD, Hunzikar EB, Kimand YJ, et al . Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage. J Cell Sci, 1996, 109 (Pt2) : 499-508.
    [101] Chen CS, IngberDE, Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthritis Cartilage, 1999, 7 (1) : 81-94.
    [102] Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991;3(5):841-8.
    [103] Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev.1998, 78 763-781.
    [104] Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA. 1997 ;94(3):849-54.
    [105] Ko KS,McCulloch CA.Partners in protection:interdependence of cytoskeleton and plasma membrane in adaptations to applied forces.J Membr,2000,174(2):85-95.
    [106] Kim YJ ,Sah R L Y,Grodzinsky A J ,et al .Mechanical regulation of cartilage biosynthetic behavior : Physical stimuli . Arch Biochem Biophys ,1994 ,311:1-12
    [107]李玉瑞.细胞外基质的生物化学及研究方法.人民卫生出版社, 1998
    [108] Michal DB , Yehezkiel AG, Alan JG, et al . Mechanical compression modulates matrix biosynthesis in chondrocyte/ agarose culture. J Cell Sci ,1995 ,108 :1497~1508
    [109]李伟,肖德明.应力状态下软骨细胞研究进展.国外医学骨科学分册2005,26(3):180-181
    [110] Gray ML, Pizzanelli AM, Grodzinsky AJ, Lee RC. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res 1988;6:777–92.
    [111] Larsson T, Aspden RM, Heinegard D. Effects of mechanical load on cartilage matrix biosynthesis in vitro. Matrix 1991;11:88–94.
    [112] Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M. Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 1992;10:610–20.
    [113] Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD.Biosynthetic response of cartilage explants to dynamic compression.J Orthop Res 1989;7:619–36.
    [114] Sah RL-Y, Grodzinsky AJ, Plaas AHK, Sandy JD. Effects of Static and Dynamic Compression of Matrix Metabolism in Cartilage Explants. In:Kuettner KE, Hascall VC, Schleyerbach R, editors. Articular cartilage biochemistry and osteoarthritis. New York: Raven Press; 1992, 373–92.
    [115] Steinmeyer J, Knue S. The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading. Biochem Biophys Res Commun 1997;240:216–21.
    [116] Torzilli PA, Grigiene R, Huang C, Friedman SM, Doty SB, Boskey AL, Lust G. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system.J Biomech 1997;30:1–9.
    [117] Wong M, Siegrist M, Cao X. Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol 1999;18:391–9.
    [118] Blain EJ, Gilbert SJ, Wardale RJ, Capper SJ, Mason DJ, Duance VC. Up-regulation of matrix metalloproteinase expression and activation following cyclical compressive loading of articular cartilage in vitro. Arch Biochem Biophys 2001;396:49–55.
    [119] Fermor B, Weinberg J, Pisetsky D, Misukonis M, Fink C, Guilak F.Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 2002;10(10):792-8.
    [120] Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ,Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 2001;19:729–37.
    [121] Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR,Trippel SB. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-1. J Orthop Res 2001;19:11–7.
    [122] Maroudas A. Transport of solutes through cartilage: permeability to large molecules. J Anat 1976;122:335–47.
    [123] O’Hara BP, Urban JP, Maroudas A. In?uence of cyclic loading on the nutrition of articular cartilage. Ann Rheum Dis 1990;49:536–9.
    [124] Hall AC, Urban JP, Gehl KA. The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 1991;9:1–10.
    [125] Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helmi-nen HJ. Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 1993;300:458–65.
    [126] Jortikka MO, Parkkinen JJ, Inkinen RI, Karner J, Jarvelainen HT,Nelimarkka LO, Tammi M, Lammi MJ. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys 2000;374:172–80.
    [127] Plumb MS, Treon K, Aspden RM. Competing regulation of matrix biosynthesis by mechanical and IGF-1 signalling in elderly human articular cartilage in vitro.Biochem Biophys Acta. Biochim Biophys Acta. 2006;1760(5):762-7.
    [128] Lammi MJ, Inkinen R, Parkkinen JJ, H?kkinen T, Jortikka M, Nelimarkka LO, J?rvel?inen HT, Tammi MI. Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochem J.1994,15;304 ( Pt 3):723-30.
    [129] Lee DA,Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose.J Orthop Res,1997;15(2):181-188
    [130] De Croos JN, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA.Cycliccompressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol, 2006; 25(6):323-31.
    [131] Takahashi K, Kubo T, Kobayashi K, Imanishi J, Takigawa M, Arai Y, Hirasawa Y. Hydrostatic pressure in?uences mRNA expression of transforming growth factor-beta 1 and heat shock protein 70 in chondrocyte-like cell line. J Orthop Res 1997; 15: 150–8.
    [132] Sironen R, Elo M, Kaarniranta K, Helminen HJ, Lammi MJ. Transcriptional activation in chondrocytes submitted to hydrostatic pressure. Biorheology 2000;37:85–93.
    [133] Takahashi K, Kubo T, Arai Y, Kitajima I, Takigawa M, Imanishi J,Hirasawa Y. Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor alpha mRNAs in a chondrocyte-like cell line. Ann Rheum Dis 1998;57:231–6.
    [134] Chow JW,Wilson AJ,Chambers TJ,Fox SW.Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week old rats.J Bone Miner Res.1998 Nov;13(11):1760-7
    [135] Urban JPG. The chondrocyte: a cell under pressure. Br J Rheumatol 1994,33: 901–8.
    [136] Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, et al. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 1995,13: 824– 31.
    [137] Hall AC. Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes. J Cell Physiol. 1999; 178(2):197-204.
    [138] Fukuda K. Asada S , Kumano F ,et al . Cyclic tensile stretch on bovinearticular chondrocytes inhibits protein kinase C activity. J Lab Med , 1997,130(2):209
    [139] Wright MO , Nishida K, Bavington C , et al . Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res , 1997 , 15(5) :742
    [140] Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/ agarose culture. J Cell Sci. 1995 ;108 ( Pt 4):1497-508.
    [141] Wilkins M. Government backs proteome proposal . Nature, 1995; 378(6558): 653
    [142] Gerlai R.Phenomics:fiction or the future? Trends Neurosci 2002;25:506-9
    [143] Service RF.High-speed biologists search for gold in proteins.Science 2001;294:2074-77
    [144] Hanash S. Disease proteomics. Nature. 2003 Mar 13;422(6928):226-32.
    [145] Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S. Protein analysis on a proteomic scale. Nature. 2003; 422(6928):208-15.
    [146] Rappsilber J, Mann M. What does it mean to identify a protein in proteomics . Trends Biochem Sci. 2002;27(2):74-8.
    [147]何大澄,肖雪媛.差异蛋白质组学及其应用.北京师范大学学报:自然科学版,2002 ,38 (4) :558 - 62.
    [148] O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry, 1975,250(10): 4007-21
    [149] Bjellqvist B, Righetti PG, G? rg AJ. Isoelectric focusing in immobilised pH gradients principle, methodology and some applications. Biochem Biophys Methods, 1982, 6: 317-39
    [150] Blomberg,A.et,al.Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis.Electrophoresis 1995,16:1935-45.
    [151] Lopez M F , Kristal B S , Chernokalskaya E , et al . High throughput profiling of the mitochondrial proteome using affinity fractionation and automation . Electrophoresis , 2000 , 21 :2617
    [152] Wilkins MR, Hochstrasser DF, Sanchez JC, Bairoch A, Appel RD. Integrating two-dimensional gel databases using the Melanie II software. Trends Biochem Sci. 1996;21(12):496-7.
    [153] Roepstorff P . Mass spectrometry in protein studies from genome to function. Analytical Biotechnology, 1997, 8(1): 6-10
    [154] Figeys D, Aebersold R. High sensitivity identification of proteins by electrospray ionization tandem mass spectrometry: initial comparisi -on between an ion trap mass spectrometer and a triple quadrupole mass spectrometer. Electrophoresis, 1997, 18: 360-8
    [155] Cattemll JB, Rowan AD, Sarsfield S, el al1 Development of a novel 2D proteomics app r oach for the identification of p roteins secreted by primary chondrocytes after stimulation by IL - I and oncostatin M Rheumatology (Oxford) , 2006, 45: 1101-9
    [156] Ruiz-Romero C, López-Armada MJ, Blanco FJ. Proteomic characterization of human normal articular chondrocytes: a novel tool for the study of osteoarthritis and other rheumatic diseases.Proteomics. 2005;5(12):3048-59
    [157] Ruiz-Romero C, López-Armada MJ, Blanco FJ. Mitochondrial proteomic characterization of human normal articular chondrocytes. Osteoarthritis Cartilage. 2006;14(6):507-18.
    [158] De Ceuninck F, Marcheteau E, Berger S, Caliez A, Dumont V, Raes M, Anract P,Leclerc G, Boutin JA, Ferry G. Assessment of some tools for the characterization of the human osteoarthritic cartilage proteome. J Biomol Tech. 2005;16(3):256-65.
    [159] Hermansson M, Sawaji Y, BoltonM, et al. Proteomic analysis of articular cartilage shows increased type 11 collagen synthesis in osteoarthritis and expresion of inhibin 13A (Activin A) , a regulatory molecule for chondrocytes. J Biol Chem, 2004, 279: 43514 - 21
    [160] Yamagiwa H, Sarkar G, Charlesworth MC, McCormick DJ, Bolander ME. Two-dimensional gel electrophoresis of synovial fluid: method for detecting candidate protein markers for osteoarthritis. J Orthop Sci. 2003;8(4):482-90.
    [161] Xiang Y, Sekine T, Nakamura H, Imajoh-Ohmi S, Fukuda H, Nishioka K, Kato T. Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum. 2004;50(5):1511-21.
    [162] Elo MA, Sironen RK, Kaarniranta K, Auriola S, Helminen HJ, Lammi MJ. Differential regulation of stress proteins by high hydrostatic pressure, heat shock, and unbalanced calcium homeostasis in chondrocytic cells. J Cell Biochem. 2000 ;14;79(4):610-9.
    [163] Elo MA, Sironen RK, Karjalainen HM, Kaarniranta K, Helminen HJ, Lammi MJ. Specific induction of heat shock protein 90beta by high hydrostatic pressure. Biorheology. 2003;40(1-3):141-6.
    [164] Lammi MJ, Elo MA, Sironen RK, Karjalainen HM, Kaarniranta K, Helminen HJ. Hydrostatic pressure-induced changes in cellular protein synthesis. Biorheology. 2004;41(3-4):309-13.
    [165] Elo MA, Karjalainen HM, Sironen RK, Valmu L, Redpath NT, Browne GJ, Kalkkinen N, Helminen HJ, Lammi MJ. High hydrostatic pressure inhibits the biosynthesis of eukaryotic elongation factor-2. J Cell Biochem. 2005 ;15;94(3):497-507.
    [166] Ruiz-Romero C, Carreira V, Rego I, Remeseiro S, López-Armada MJ, Blanco FJ. Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis.Proteomics. 2008;8(3):495-507.
    [167] Junaqueira L. C , Carneiro J , kelley R. O , Basic Histology. 8th edition. Norwalk , Connecticut : A Simon &Schuster Compary , 1995 : 124-131
    [168] Manning WK, Bonner WM Jr. Isolation and culture of chondrocytes from human adult articular cartilage. Arthritis Rheum. 1967;10(3): 235-9.
    [169] Klagsbrun M. Large-scale preparation of chondrocytes.Methods Enzymol. 1979;58:560-4.
    [170] Shimomura Y, Suzuki F. Cultured growth cartilage cells.Clin Orthop Relat Res. 1984 ;(184):93-105.
    [171]司徒镇强,吴军政,主编.细胞培养.西安世界图书出版公司,1996,109-110
    [172] Freshney RL.Animal cell culture:a protical approach. London:Oxford IRL Press,1986.1-5
    [173] Kuettner KE,Bendicht UP,Gall G,et al.Synthesis of cartilage matrix by mammalian chondrocytes in vitro,Isolation,culture characteristics,and morphology.J Cell Biol,1982,93(3):743-6
    [174] Ishizaki Y,Julia FB,Martin CR.Autocrine singals enable chondrocytes to survive in culture,J Cell Biol,1994, 26(4):1069-73
    [175]张志光,郑卫平,苏凯,等.兔关节软骨细胞的分离培养和形态学特征.中山大学学报:医学科学版,2004;25(1):63
    [176] nobakhare BO,Bader DL,Lee DA. Quantification of sulfate glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9- dimethylmethylene blue. Anal Biochem 1996; 243: 189-191.
    [177] Roh DH, Kang SY, Kim JY, Kwon YB, Young Kweon H, Lee KG, Park YH, Baek RM, Heo CY, Choe J, Lee JH. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J Mater Sci Mater Med. 2006;17(6):547-52.
    [178] Rachel Glicklis,Lilia Shapiro, Hepatocyte Behavior Within Three-Dimensional Porous Alginate Scaffolds. Biotechnol Bioeng 2000; 67: 344–353,
    [179] Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001;80(11):2025-9.
    [180] Dar A, Shachar M, Leor Jand Cohen S, Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds, Biotechnol. Bioeng. 2002,80:305–312.
    [181] Margaret B Aydelotte ,Eugene J-M A Thonar,Jurgen Mollenhauer, et,al.Culture of chondrocytes in alginate gel:Variations in conditions of gelation influence the structure of the alginate gel,and the arrangement and morphology of proliferating chondrocytes.In Vitro Cell.Dev. Biol-Animal 1998;(34):123-30
    [182] Glowacki J, Trepman E, Folkman J. Cell shape and phenotypic expression in chondrocytes.Proc Soc Exp Biol Med. 1983; 172(1):93-8.
    [183] Lin YJ, Yen CN, Hu YC, Wu YC, Liao CJ, Chu IM. Chondrocytes culture in three-dimensional porous alginate scaffolds enhanced cell proliferation,matrix synthesis and gene expression. J Biomed Mater ResA 2009;88(1): 23–33,
    [184] Cullen DK, Vukasinovic J, Glezer Aand Laplaca MC, Micro?uidic engineered high cell density three-dimensional neural cultures, J. Neural Eng. 2007, 4:159–172.
    [185] Kavalkovich KW, Boynton RE, Murphy JM and Barry F, Chondrogenic differentiation of human mesenchymal stem cells within an alginate layer culture system, In Vitro Cell Dev. Biol. Anim. 2002, 38:457–466.
    [186] Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res. 2000,18(5):739-48.
    [187] Rivers PA, Rosenwasser MP, Mow VC, Pawluk RJ, Strauch RJ, Sugalski MT, Ateshian GA. Osteoarthritic changes in the biochemical composition of thumb carpometacarpal joint cartilage and correlation with biomechanical properties. J Hand Surg. 2000,25(5):889-98.
    [188] Ding M. Age variations in the properties of human tibialtrabecular bone and cartilage. Acta Orthop Scand Suppl. 2000,292:1-45.
    [189] Lamoureu P,Zheng J, Buxbaum RE, Heidemann SR. A cytomechanical investigation of neurite growth on different culture surfaces. J Cell Biol. 1992;118(3):655-61.
    [190] LeRoux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel:effects of sodium ions and alginate concentration. J Biomed Mater ResA 1999;47:46–53.
    [191] Sung LY, Lo WH, Chiu HY, Chen HC, Chung CK, Lee HP, Hu YC Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression.Biomaterials. 2007;28(23):3437-47.
    [192] Fr?hlich M, Malicev E, Gorensek M, Knezevi? M, Kregar Velikonja N. Evaluation of rabbit auricular chondrocyte isolation and growth parameters in cell culture. Cell Biol Int. 2007; 31(6): 620-5.
    [193] Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials, 2007;28(2):134–46.
    [194] West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 2007;28(30):4439–4
    [195] Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials.J Biomed Mater Res A. 2006;78(1):1-11.
    [196] Wang Y, De Isla N, Decot V, Marchal L, Cauchois G, Huselstein C, Muller S, Wang BH, Netter P, Stoltz JF. In?uences of construct properties on the proliferation and matrix synthesis. Biorheology 2008;45(3-4): 527–38
    [197] Stokes DG, Liu G, Coimbra IB, Piera-Velazquez S, Crowl RM, Jimenez SA. Assessment of the gene expression profile of dif-ferentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum 2002;46:404–419.
    [198] Wong M, Siegrist M, Wang X, Hunziker E. Development of mechanically stable alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis.J Orthop Res. 2001;19(3):493-9.
    [199] Knight MM, van de Breevaart Bravenboer J, Lee DA, van Osch GJ,Weinans H, Bader DL. Cell and nucleus deformation in compressed chondrocyte-alginate constructs:temporal changes and calculation of cell modulus.Biochim Biophys Acta. 2002;1570(1):1-8.
    [200] Guilak F, Sah R, Setton LA, in: V.C. Mow, W.C. Hayes (Eds.),Basic Orthopaedic Biomechanics, Lippincott-Raven, 1997, 179-207.
    [201] Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, Schurman DJ. In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthopaed Res 1996; 14: 53–60.
    [202] Holmvall K, Camper L, Johansson S, Kimura JH, Lundgrena kerlund E. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type-Ii and their response to mechanical stress. Exp Cell Res 1995;221: 496–503.
    [203] Anderson NL, Matheson AD, Steiner S. Proteomics: applications in basic and applied biology.Curr Opin Biotechnol. 2000 ,11(4):408-12.
    [204] Sharma G, Saxena RK, Mishra P. Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Clin Biomech (Bristol, Avon). 2007;22(2): 248-55.
    [205] Corbett JM, Dunn MJ, Posch A, G?rg A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis. 1994;15(8-9): 1205-11.
    [206] Finlay JB, Repo RU. Instrumentation and procedure for the controlled impact of articular cartilage. IEEE Trans Biomed Eng 1978;25:34–9.
    [207] Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH,Mann RW.Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 1986;83:2879–83.
    [208] Afoke NYP, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg Br 1987;69:536–41.
    [209] Toyoda T, Seedhom BB, Yao JQ, Kirkham J, Brookes S, Bonass WA. Hydrostatic Pressure Modulates Proteoglycan Metabolism in Chondrocytes Seeded in Agarose. Arthritis Rheum. 2003;48(10): 2865-72.
    [210] Wilkins MR, Sanchez JC, Gooley AA. Progress with p roteome projects: why all proteins exp ressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev, 1996, 13(1):19 - 21
    [211] Poon TC, Johns on PJ . Proteome analysis and its impact on the discovery of serological tumor markers. Clinica Chi mica Acta 2001;313 (1- 2) :231-4
    [212] Park YD, Lyou YJ, Yang JM. Two-dimensional electrophoresis analyses of atopic dermatitis and the chances to detect new candidate proteins by the variations in immobilized pH gradient strips. J Dermatol Sci. 2007;47(1):9-17.
    [213] Annunen P, Helaakoski T, Myllyharju J, Veijola J, Pihlajaniemi T, Kivirikko KI: Cloning of the human prolyl 4-hydroxylase alpha subunit isoform alpha(II) and characterization of the type II enzyme tetramer: the alpha(I) and alpha(II) subunits do not form a mixed alpha(I)alpha(II)beta2 tetramer. J Biol Chem 1997, 272:17342-48
    [214] Vuori K, Pihlajaniemi T, Marttila M, Kivirikko KI: Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expressionsystem. Proc Natl Acad Sci USA 1992, 89:7467-70
    [215] Nissi R, Autio-Harmainen H, Marttila P, Sormunen R, Kivirikko KI: Prolyl 4-hydroxylase isoenzymes I and II have different expression patterns in several human tissues. J Histochem Cytochem 2001, 49:1143-53
    [216] Annunen P, Autio-Harmainen H, Kivirikko KI: The novel type II prolyl 4-hydroxylase is the main enzyme form in chondrocytes and capillary endothelial cells, whereas the type I enzyme predominates in most cells. J Biol Chem 1998, 273:5989-92
    [217] Grimmer C, Balbus N, Lang U, Aigner T, Cramer T, Swoboda B and Pfander D.Regulation of Type II Collagen Synthesis during Osteoarthritis by Prolyl—Hydroxylases. Am. J. Pathol 2006;168(8):175
    [218] Hofbauer KH, Gess B, Lohaus C, Meyer HE, Katschinski D, Kurtz A: Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur J Biochem 2003, 270:4515-4522
    [219]王友臣,彭建宇,许坤,赵雁,曹媛媛.急性颈髓损伤后脊髓细胞能量代谢的变化河北医科大学学报.2005;26:91-94
    [220] Oremek GM, Gerstmeier F, Sauer-Eppel H, Sapoutzis N, Wechsel HW. Pre-analytical problems in the measurement of tumor type pyruvate kinase (tumor M2-PK). Anticancer Res. 2003;23(2A): 1127-30.
    [221] Yancik SA, McIlwraith CW, Wagner AE, Trotter GW . Evaluation of creatine kinase and lactate dehydrogenase activities in clinically normal and abnormal equine joints. Am J Vet Res 1987,48(3):463–6
    [222] Lindy S, Turto H, Uitto J, Vainio K. Origin of synovial Xuid lactate dehydrogenase in rheumatoid arthritis. Clin Chim Acta 1971,35(2): 377–82
    [223] Messieh M . Levels of lactate dehydrogenase in osteoarthritic and failed total knee joints. J Arthroplasty 1996, 11(3): 354–5
    [224] Hurter K, Spreng D, Rytz U, Schawalder P, Ott-Knusel F, Schm?kel H . Measurements of C-reactive protein in serum and lactate dehydrogenase in serum and synovial Xuid of patients with osteoarthritis. Vet J 2005, 169(2):281–285
    [225] Eveline L. C. Walter·David Spreng·Hugo Schm?ckel .Distribution of lactate dehydrogenase in healthy and degenerative canine stifle joint cartilage. Histochem Cell Biol 2007, 128:7–18
    [226] Campbell et al. Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes. Biochemical and Biophysical Research Communications 2007,361:329–334
    [227] Kim SJ, Hwang SG, Kim IC, Chun JS. Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis,dedifferentiation, and cyclooxygenase-expression in articular chondrocytes via mitogen- activated protein kinase and protein kinase C pathways. J Biol Chem. 2003;278(43):42448-56.
    [228] Kwak IH, Kim HS, Choi OR, Ryu MS, Lim IK. Nuclear accumulation of globular actin as a cellular senescence marker.Cancer Res. 2004, 15;64(2): 572-80.
    [229] Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T, Okusa T, Matsuzaki M,Yoshida K, Kobayashi S. ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and eoxygenation. J Biol Chem. 2004;279(48): 50120-31.
    [230] Aaronson RM, Graven KK, Tucci M, McDonald RJ, Farber HW.Non-neuronal enolase is an endothelial hypoxic stress protein. J Biol Chem. 1995;270(46):27752-7.
    [231] Fontán PA, Pancholi V, Nociari MM, Fischetti VA. Antibodies to streptococcal surface enolase react with human alpha-enolase: implications in poststreptococcal sequelae. J Infect Dis. 2000;182(6): 1712-21.
    [232] Baker MS, Feigan J andLowther DA,The mechanism of chodnrocyte H202 damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of G3PDH. J.Rheumatol. 1989,16,7-14.
    [233] R.A.Stockwell, Biology of cartilage cells. Cambridge University Press, London 1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700