武装直升机贴地飞行控制与地形跟随研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对贴地飞行时武装直升机的飞行控制系统进行深入的研究和探索,讨论了贴地飞行时气流扰动对直升机系统的影响,研究了H_∞鲁棒控制和动态逆控制在直升机飞控系统中的应用。主要的内容包括直升机飞行控制系统内外回路设计、直升机机动飞行的仿真、地形跟随的仿真以及OpenGL三维动画仿真等方面的内容。
     由于直升机存在着较强的耦合性、不稳定性,呈现出较强的非线性,本文首先建立了直升机六自由度的小扰动耦合的运动模型。之后介绍了直升机遭受气流扰动的影响,并且建立了大气紊流和风切变的数学模型,为后面控制系统的设计提供了基础。
     接着本文设计直升机姿态角速率指令(RCAH)、姿态角指令(ACAH)模态,按照时标分离的原则将直升机内环飞控系统划分为快慢回路,并分别采用H_∞和动态逆的方法设计控制器,使直升机的四个通道得到解耦。
     随后在直升机外环回路进行设计,采用二次型状态调节器设计法设计速度控制回路。为了验证飞控系统的抗风扰动特性,引入风切变和紊流,仿真表明所设计的飞控系统对风扰动具有良好的鲁棒稳定性。并且选取几个典型的机动飞行科目进行仿真,结果表明达到ADS33D标准要求。
     地形跟随系统的设计也是本文的一个重要内容,在这一章中,本文采用适应角法设计地形跟随系统,并提出了适应角法的改进方法。在典型地形情况下进行地形跟随仿真,并且为了真实模拟地形跟随,在控制通道加入风扰动,结果表明该飞控系统能够很好的抵抗风扰动,紧紧跟随最优轨迹飞行。
     本文最后在VC环境下用OpenGL开发了直升机三维动画仿真平台,构造了三维地形和直升机模型,仿真了直升机做蛇形机动、急跃升/急跃降、地形跟随等机动飞行,通过逼真的视觉效果验证了飞控系统的正确性。
The flight control system of attack helicopter and the influence of disturbance during NOE flight are studied in this dissertation. And the use of H∞ robust control and dynamic
    inversion schemes in flight control system are discussed. In this paper involved several aspects about the inner and outer loops design for helicopter flight control system, maneuver flight simulation for helicopter, terrain following simulation and 3D animation flight simulation system designed with OpenGL.
    Because model of helicopter is a highly coupled unstable nonlinear system, a group of six free-degree linear motion equations in combination with micro disturbance and couple are established firstly, and analyzed the infection of the disturbance to the helicopter and then mathematical Models of wind shear and turbulence are represented. This work supplied the basis for the design of the flight control system.
    Secondly, the modes of RCAH and ACAH are designed with H∞ robust control and dynamic inversion schemes. The controller is designed at two time scales. And the simulation shows the uncoupling of four loops is achieved with H∞ robust control and
    dynamic inversion schemes.
    Thirdly, the paper used linear quadratic state actuator scheme to design the velocity controlling loop. In order to test the anti-disturbance capability of the flight control system, the models of wind shear and turbulence are introduced to the flight control system. The result of simulation shows the flight control system has excellent anti-disturbance capability. Then several typical maneuvers are picked up to simulate, and the result shows that the control system can satisfy the design specification of ADS33D criteria .
    The design of terrain following system is another important part of the dissertation. The terrain following system is designed by adaptive angle method. But there are some problems in the system so the improved adaptive angle method is given. Then above the typical terrain and under the disturbance the terrain following system is simulated. The result shows the flight control system can withstand the disturbance and track the optimal trajectory.
    Finally, the thesis developed 3D animation flight simulation platform for helicopter using OpenGL in Visual C++. And the 3D terrain and helicopter model are constructed. The simulation of two typical maneuver (S maneuver flight and BopUp-BopDown) and terrain following shows that the fight control system of attack helicopter is improved by the realistic optical impact.
引文
[1]第四军医大学,《军事信息专刊》,军事信息专刊编辑部
    [2]国外武装直升机飞控系统的现状及发展趋势,航空工业部科技情报研究所,1986
    [3]简中伏等,武装直升机的空战能力,现代军事,1998(11):P41~43
    [4]AH—64“阿帕奇”武装直升机的改进计划,直升机技术,1996(1):37~40
    [5]Anon:"Aeronautical design standard. Handling qualities for military rotorcraft", United States Army Aviation Systems Command. ADS-33C. 1989
    [6]王崑玉,《直升机飞行控制系统》,蓝天出版社,1990
    [7]竺恒达,《自动着舰导引系统研究,南京航空航天大学硕士论文,1998
    [8]刘静,《动态逆方法在飞行自动着陆控制系统中的应用》,西北工业大学硕士论文,2000
    [9]叶而骅,《随机过程分析》,南京航空学院。
    [10]周娜,《飞机穿越微下击暴流的智能控制》,南京航空航天大学硕士论文,2001
    [11]黄一敏,郭锁凤,《直升机控制系统的内/外回路设计概念及其应用》,南京航空航天大学学报,1999,Vol.31,No.3,pp.287-292
    [12]姜长生等,《系统理论与鲁棒控制》,北京:航空工业出版社,1998
    [13]Doyle J C, Glover K, Khargonekar P P, etal, State space solutions to standard and control problems. IEEE Transaction on Automatic Control, 1989,34(8):831-846
    [14]王杭宁,《H_∞理论在直升机飞行控制系统设计中的应用》,飞行力学,1999
    [15]Ciann-Dong Yang, Chien-Chung Kung, Nolinear H_∞ Flight Control of General Six-Degree -of-Freedom Motions, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 2, Mar.- Apr., 2000:278-288
    [16]M.D.S.Aliyu, Robust Mixed H_2 /H_∞ Control for Linear System With Norm-Bounded Time-Varying Uncertainty, Proceedings of the American Control Conference Sun Diego, California 1 June 1999:3367-3371
    [17]Rozak J N,Ray A, Robust multivariable control of rotorcraft in forward flight[J].J of the American Helicopter Society. 1997,20(5): 149~160
    [18]D.J.Walker and I. Postlethwaite, Advanced Helicopter Flight Control Using Two-Degree-of-Freedom H_∞ Optimization, AIAA Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, March-April 1996:461-468
    [19]康永哲,《直升机控制系统设计》,国防工业出版社,2000
    [20]吴旭东,解学书,《H_∞鲁棒控制中的加权阵选择》,清华大学学报,Vol.37No.1,1997:27-30
    [21]Joseph J. Totah, Adaptive Flight Control and On-Line Learning, AIAA-97-3537
    [22]Krstic M., Kanellakopoulos. I. and Kokotovi P. V.. Nonlinear and Adaptive Control Design. New York: Wiley, 1995
    [23]Rolf T. Rysdyk, Anthony J. Calise, Adaptive Model Inversion Flight Control for Tiltrotor Aircraft, American Helicopter Society 54~(th) Annual Forum, 1998:20-22
    [24]Isidori A. Nonlinear Control System: An Introduction. Springer-Verlag, New York, 1989
    [25]冯纯伯、费树岷,《非线性控制系统分析与设计》,北京:电子工业出版社,1998
    [26]J.V.R. Parasad and A.J. calise, Adaptive Nonlinear Controller Synthesis and Flight
    
    Test Evaluation, IEEE International Conference on Control Application, 1999
    [27]冯彬, 《武装直升机飞行控制系统神经网络自适应控制研究》,南京航空航天大学硕士论文,2003
    [28]郭树军, 《直升机超机动飞行的神经网络控制研究》,南京航空航天大学博士论文,2000
    [29]蔡世龙, 《第四代战斗机超机动飞行智能控制及半实物分布式仿真平台研究》,南京航空航天大学硕士论文,2002
    [30]熊鑫, 《基于MFCS的直升机飞空技术及光传操纵研究》,南京航空航天大学硕士论文,2003
    [31]Control System Toolbox User's Guide, The Math Works,Inc. 1998
    [32]肖业伦,金长江,《大气扰动中的飞行原理》,国防工业出版社。
    [33]United States Army Aviation and Troop Command, Aeronautical Design Standard——Handling Qualities Requirements for Military rotorcraft, ADS-33D, July, 1994
    [34]张锐,《武装直升机大机动、高敏捷性神经网络鲁棒自适应飞行控制研究》,2002
    [35]申安玉等,《自动飞行控制系统》,国防工业出版社,2003
    [36]吴海华,《智能控制在武装直升机地形跟随控制系统中的应用》,南京航空航天大学硕士论文,1999
    [37]肖顺达,丁全心,《三次样条最佳地形跟随系统的研究》,航空学报,Vol.10.No.5,May,1989
    [38]王建平、沈春林,《地形跟随适应角控制方法》,航空学报,Dec.1992
    [39]袁卫东,李清等,《TF/TA飞行航迹控制器设计》,南京航空航天大学学报,Feb.1997
    [40]康永哲,罗和平等,《武装直升机地形跟随系统的设计》,航空与航天,2000.2
    [41]白建军,朱亚平等,《OpenGL三维图形设计与制作》,北京:人民邮电出版社,1999
    [42]OpenGL Manual, Microsoft MSDN, 1998
    [43]OpenGL Overview, OpenGL Org, http://www.opengl.or
    [44]张立,《新一代战斗机飞行控制系统及三维买时分布式仿真平台设计》,南京航空航天大学硕士论文,2000
    [45]叶文清,《第四代歼击机超机动攻击的火控及综合火/飞系统的智能控制与仿真研究》,南京航空航天大学硕士论文,2000
    [46]David J. Kruglinski 等,Visual C++6.0技术内幕5e,北京希望电子出版社,1999
    [47]OpenGL Programming Guide,2 nd Edition:The Official Guide to Learning OpenGL, Version1.1. OpenGL Architecture Board,Mason Woo,Jakie Meider, and Tom Davis.Addision Wesley, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700