一次性纸质餐具纤维素纤维的降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着白色污染的日益加剧,寻找一种质优价廉且环境友好的塑料餐具代替品已成为社会发展的必然趋势。“以纸代塑”,一方面可以充分利用自然环境中含量丰富、价格低廉、再生周期短的植物纤维原料,另一方面所制成的纸质餐具可降解、可回收,因此,是最有效的发泡塑料餐具的替代品。
     然而,在纸质餐具的生产过程中,常添加一定量的防水剂和防油剂等化学药品。这些助剂的加入,一方面提高了纸质餐具的防油防水性,改善了纸质餐具的使用性能,另一方面降低了其在自然环境中的可降解性,使纸质餐具在自然环境中的降解变得较为困难,且成本较高。因此,迫切需要研究纸质餐具在不同环境中的降解行为,以此来指导实际生产。
     为此,本论文以碱性亚硫酸钠法苇浆为主要原料,以F-321型防油剂、HA-321型防水剂为主要化学助剂,研究了防油防水剂等化学助剂对纸质餐具防油防水性能的影响。
     研究结果表明:HA-321型防水剂与F-321型防油剂的添加可以赋予纸质餐具良好的防油防水性能。在浆中加入助留剂APAM可以提高防油防水剂的留着率,从而可以减少防水防油剂的用量。各类助剂在纸质餐具中的最佳用量为:HA-321,4%(对绝干浆计);F-321,0.6%(对绝干浆计);APAM,0.05%(对绝干浆计)。
     同时,采用光降解、热降解、土埋生物降解等方法对纸质餐具试样进行了降解实验,研究了纸浆模塑餐具中天然纤维素纤维在不同环境条件下降解的特性及防油防水剂对纸质餐具降解性能的影响。
     纸质餐具的光降解研究结果表明:在光降解过程中,紫外光的照射加快了纸质餐具试样的老化,使纸质餐具试样发生从外观到内在的变化。光照7周后,试样的白度约下降了20%左右;聚合度从初始的1124下降到600左右;抗张强度降低20~40%左右;试样失重率达到了10%左右;试样中长纤维含量减少,长度为0.2~1.0mm的短纤维含量增加;光降解6周后试样的结晶度从初始的71%上升到了75%。
     纸质餐具的热降解研究结果表明:纸质餐具试样的白度、聚合度、抗张强度等随着热降解时间的延长而逐渐降低。降解温度越高,试样的热降解越快。纸质餐具试样在100℃热降解16天后试样白度下降了25%左右;聚合度从初始的1124下降到600左右;失重率为12%~14%。而在160℃下热降解时,纸质餐具的性能急剧下降,96小时后试样的白度下降了80%以上;试样的聚合度从初始的1124下降到了200左右;抗张强度约下降了59~83%;失重率达18%左右,羰基指数升高;结晶度下降;短纤维含量大大增加,主要
    
     摘验
    集中在 0.2~0.6mm之间。
     纸质餐具的热失重分析结果表明:试样在受热分解时,试样失重分为两
    个阶段:在升温初期(约 60 C~100 C时)水分子首先脱除出来,导致试样失
    重;当温度升至240~250℃时试样开始急剧分解,当温度达到340~乃0℃时
    纸质餐具试样的分解速率达到最大,试样质量急剧下降;当温度继续升高至
    380℃左右时试样受热分解反应基本结束,此后试样失重速率趋向平稳。
     纸质餐具的土埋降解研究结果表明:采用土埋降解法可以较快地使纸质
    餐具发生降解,在土埋l~2周内既可使试样颜色明显变黄,表面出现霉点。
    随着土埋时间的延长,试样逐渐破碎,直至最后完全分解。经紫外光照射7
    周后的试样再进行土埋降解时,其降解速率较快,仅用3周即可使其聚合度
    下降到200以下。而未经光降解处理的空白纤维素试样在土埋降解5周后才
    完全分解。
     另外,研究还发现,无论是光降解、热降解,还是土埋降解,防油防水
    剂的加入均阻碍了纸质餐具的降解,因此是不利于纸质餐具的降解的。
     通过对纸质餐具降解特性的研究,揭示了助剂对纸质餐具使用性能、降
    解性能的影响,同时,也揭示了纸质餐具在不同环境中的降解特性,为纸质
    餐具天然纤维素纤维在不同环境中的降解提供了依据,从而有利于指导实际
    生产,为消除“以纸代塑”后的环境污染隐患提供了重要依据,具有重要的
    环保意义。
To solve the "white pollution", materials which is good in service and environment-friendly should be found to substitute the foamed plastic container. Among those new type of containers, paper-based containers are the most popular substitute of foamed plastic container, for they are mainly made of natural plant materials which are not only abundant in nature, but also can be degraded easily,
    While in practice, a lot of oil-proof and waterproof agents are added into pulp to perform better oil-proof or waterproof ability, which at the same time prevent the container from being degraded fast in natural. To solve the contradiction, it's important to research the mechanism of paper-based container's degradation in different environment.
    First, the alkaline sulfite reed pulp was used as main material and oil-proof agent of F-321and waterproof agent of HA-321 were used as the main chemical agents to research the effect of agents on the properties of paper-based container in service.
    The results showed that F-321and HA-321 can inform paper-based container good properties of oil-proof and waterproof performance. APAM could increase the remaining of F-321 and HA-321 in pulp. The optimum dosages was HA-321, 4%, F-321, 0.6%, APAM, 0.05% (to oven weight).
    Secondly, degradation experiment of paper-based container had been tested under UV light, heat or soil environments. The characters of cellulose under different degradation conditions were researched. The effects of waterproof agent and oil-proof agent on the degradation of container were also researched.
    The photolysis results showed that when paper-based containers were aged under UV light, they changed a lot from exterior to interior. When irradiated under UV light for 7 weeks, the brightness of samples decreased about 20%, and the DP decreased from 1124 to 600. The tensile strength decreased about 20-40%, and the weightlessness was about 10%. The content of long cellulose decreased, while the short cellulose which was about 0.2~1.0 mm long increased. When irradiated under UV light for 6 weeks, the crystallinity of samples increased from 71% to 75%.
    The thermolysis result showed that when paper-based container were degraded under high temperatures, the properties, such as brightness, DP, tensile strength of samples decreased. The higher the temperature was the faster the thermolysis
    
    
    processed. When the paper-based containers were aged under 100℃ for 16 days, the brightness decreased about 25%, DP decreased from 1124 to 600, the weightiness lost was about 12%~14%. While when samples were decomposed under 160℃ for 96 hours, the brightness decreased above 80%; the DP decreased from 1124 to 200; the tensile strength decreased about 59%~83%; the weightiness lost about 18%; the carbonyl group index increased; the crystallinity decreased; shorter cellulose which were about 0.2-0.6mm long increased.
    The TG of samples showed that when heated, the samples' thermolysis included two stages: In the initial stage of thermolysis (60℃~100℃), water molecules in the samples emerged firstly, which caused the weightiness of samples decreased about 4.77%~6.89%. When the temperature increased to 240℃~250℃I the samples decomposed quickly, and when the temperature increased to 340℃ -350℃, the samples degraded in the fastest velocity, and the weightiness of samples decreased fast. When the temperature increased to about 380℃, the thermolysis of paper-based container was almost finished, the weightiness decreased slowly with time going on.
    The biodegradation results in soil showed that when samples were buried into soil, they degraded fast. In the first 1-2 weeks, the color of samples became yellow obviously, and the surface of samples was attacked by mildew. With the time going on, samples broke up, and degraded completely finally. Samples pretreated under UV light for 7 weeks degraded faster in soil, and after 3 weeks, the DP decreased to about 200. While samples unpretreated by UV light degraded completely after being buried in soil for 5 weeks.
    In addition, the addi
引文
1.唐赛珍,塑料包装废弃物与环境污染,轻工标准与质量,1999年,第3期
    2.徐宏道,以纸代塑的发展趋势,上海造纸,1997,第3期
    3.江春元、聂青,纸浆模塑快餐具的研制现状和前景,纸和造纸,1998,第2期
    4.黄加瑞,可替代一次性发泡塑料餐具理想产品的探索与发展,中国包装,2000,第1期
    5.陈港、刘志辉,无污染快餐盒的现状和展望,广东造纸,1997,第1期,第30页
    6.董金狮,各种新型环保餐具比较和评价,中国包装,2001,第9期,第53页
    7.吕永松、林汉权,纸浆模塑餐具的性能优势与市场分析,造纸科学与技术,2001年,第6期
    8.郭文川、朱新华,一次性可降解餐具的研究与应用现状,中国包装工业,2000年12月,总78期,第48~50页
    9.张力、徐依斌,可降解聚合物,华南师范大学学报(自然科学版),1999,第3期
    10.戴长华等,塑料的降解机理及可降解塑料的开发,现代塑料加工应用,1999,第3期
    11.熊汉国、曾庆想,国内降解塑料的生产现状及发展中应注意的问题,化工环保,2000年,第20卷,第3期
    12.郭元薪、沈开惠,绿色纤维餐具的生产工艺技术,安徽农业技术师范学院学报,1999年,第13卷,第2期,第51~53页
    13.刘嘉,与环境、人类友好(纸浆模塑制品环保特色刍议),中国包装工业,2000年,第3期,总69期
    14.肖大锋,纸浆模塑餐具的前景和生产,纸和造纸,1999年,第2期
    15.一次性可降解餐饮具的通用技术条件,CB18006.1-1999
    16.一次性可降解餐饮具降解性能试验方法,GB18006.2-1999
    17.B.朗比,J.F.拉贝克,聚合物的光降解、光氧化和光稳定,科学出版社,1986,第1版
    18.施纳贝尔,聚合物降解原理及应用,化学工业出版社,1988年9月,第1版
    
    
    19.W.L.霍金斯著,吕世光译,聚合物的稳定化,轻工业出版社,1981年12月,第1版
    20.周大纲、谢鸽成,塑料老化与防老化技术,中国轻工业出版社,1998年,第1版
    21.化工部合成材料研究院、金海化工有限公司编,聚合物防老化手册,化学工业出版社,1996年6月,第1版
    22.塑料实验室光源曝露试验方法(第1部分:通则),GB/T 16422,1-1996
    23.塑料实验室光源曝露试验方法(第2部分:氙弧灯),GB/T16422.2-1999
    24.塑料实验室光源曝露试验方法(第3部分:荧光紫外灯),GB/T 16422,3-9917
    25.陈夫山等,纸的老化及耐久性能,北方造纸,1997年第3期。
    26.金夙庸等,Degradation mechanism of paper by UV treatment,J Tappi,1990,Vol.44,No.62
    27.金夙庸等,Changes in physical properties of paper containing high yield pulp by violet treatment,J Tappi,1989,Vol.43,No.11
    28. Jana Kolar et al, Near-UV and visible pulsed laser interaction with Paper, J. Cult. Heritage, 2000, No.1.
    29. Jim French and Kenneth N. Maddern, Development of a UV Light-Aging Test Procedure, Appita, Vol. 43, No. 2.
    30.纸和纸板的干热加速老化方法(105±2℃,72h),GB/T464.1—1989
    31.纸和纸板干热加速老化的方法(120±2℃,或150±2℃),GB/T464.2—93
    32.橡胶热空气老化试验方法,GB3512—1983
    33.塑料热空气老化试验方法(热老化箱法)通则,GB 7141—86
    34.塑料在恒定湿热条件下曝露试验方法,GB 12000-89
    35.塑料长期受热作用后的时间——温度极限的测定,CB 7142-86
    36.软质泡沫聚合材料加速老化试验方法,GB 9640-88
    37.罗果文、HH.肖雷金娜,纤维素及其伴生物化学,科学出版社,1958,第1版
    38. William D. Major, The Degradation of Cellulose in Oxygen and Nitrogen at High Temperature, Tappi, 1958, Vol. 44, No. 9
    39. Jose Luiz, Pedersoli Junior, Effect of Cellulose Crystallinity on the progress of Thermal Oxidative Degradation of Paper, Journal of Application Polymer Science, 2000, Vol.78, p61~66
    40. Paul M. et al, Determination of the Cellulose Scission Route in the Hydrolytic
    
    and Oxidative Degradation of Paper, Restaurator, 1994, Vol. 15, p26~45
    41. A. M. Emsley et al, A Size Exclusion Chromatography Study of Cellulose Degradation, Polymer, 2000, Vol. 41, p8513~8521
    42. Jana Kolar et al, New colourimetric method for determination of hydroxyl radical ageing of cellulose, Analytica Chimica Acta 431,2001, p 313~319
    43.陈玉放等,植物纤维有氧条件下的热稳定特性的研究,纤维素科学与技术,1999年,第7卷,第3期
    44. K. L. Kato et al, Structure-property Relationships in Thermally Aged Cellulose Fibers and Paper, Journal of Applied Polymer Science, 1999,Vol. 74,No. 6, p1466~1477.
    45.王德培,纤维素酶的研究与应用,天津轻工业学院硕士论文集,1999年
    46.任东,塑料的生物降解性及其检测方法,塑料工业,1994,第2期
    47.贾原媛、谢来苏,纸质材料在土壤中的降解,纸和造纸,1997年,第2期
    48.高玉杰,纸基农用地膜(TPA)的透明性能极其应用的研究,天津轻工业学院博士学位论文,1998年
    49.陈佐等,铁路新型快餐具降解性能及评价方法的研究,铁道劳动安全卫生与环保,1998年,第25卷,第4期
    50.郑安平,可降解塑料降解机理与降解性能测试评价方法的研究,清华大学环境工程系核环境工程专业博士论文集,1998,
    51.郭金山等,聚乙烯薄膜光降解过程及其降解物性能的研究,中国塑料,1995年,第9卷,第6期
    52.翁云煊等,降解PE膜、发泡PS餐盒评价方法的研究,中国塑料,第13卷,第2期
    53.董金狮、马文实,光——生物降解发泡PS快餐具性能评价方法研究,中国塑料,1996年3月,第10卷,第2期
    54. Yifang Ou et al, Degradation of New Cellulose-Based Complex Material, Journal of Applied Polymer Science, 2000
    55.黄秋莲、欧义芳等,水基施胶剂对纤维素复合材料降解的影响,纤维素科学与技术,2001,No.1
    56. Qiulian Huang et al, Effect of Waterbased Sizing Agent on Degradation of Cellulose Complex Material, International Symposium on Cellulose and Lignocellulosics Chemistry 2000, p300~302
    57.孔宪会、王东黎,新型快餐盒生物降解性能试验方法初探,铁道劳动安全
    
    与环保,1997年,第24卷,第2期
    58. John F. Waterhouse, the Aging Characteristics of European Handmade Papers: 1400~1800. Tappi Journal, 1991, Oct., p207~212.
    59.曹昶铉等,LODYNE(劳达)抗油脂抗水氟化合物施胶剂,上海造纸,第29卷,第2期,第54页
    60.沈一丁,造纸化学品的置备和作用机理,中国轻工业出版社,1999,第1版
    61.吴学栋,食品包装纸用含氟表面活性剂,纸和造纸,1997,第3期
    62.梁治齐等,氟表面活性剂,中国轻工业出版社,1998年5月,第1版
    63.戴红旗、毕松林,纸浆模塑餐盒防油防水性能研究,林产工业,1998年,第25卷,第4期
    64.廖明真、郭信,纸浆模塑制品(快餐饭盒)的研制,农恳造纸,第4期,第30页
    65.何双敏,纸浆模塑餐具的内施胶技术,中国包装工业,2000年,第74期
    66.马恒臣、刘华宾,浅谈纸浆模塑餐具防油、防水性能的影响因素,中国包装工业,2000年7月,总73期
    67.黄发荣等,高分子材料的循环利用,化学工业出版社,2000,第1版
    68.高洁、汤烈贵,纤维素科学,科学出版社,1996年,第1版
    69.吴宗华、陈少平,漂白机械白度稳定性的研究进展,中国浆纸,2000年,第1月
    70.赵玉林,助剂处理抑制杨木APAM纸浆返黄的初步研究,中国造纸,2001年,第2期
    71. Paulsson M., Chemical Modification of Lignin-rich Papeh Part 8: Effect of Light Source on the Accelerated Light-induced Yellowing of Untreated and Acetylated High-yield Pulps, Nord. Pulp Paper Res. J, 1998, Vol. 13, No. 2, p132~142
    72. Zong-Hua Wu et al, Mechanochemistry of Lignin, ⅩⅤⅢ. A Novel Approach to Improve Brightness Stability of H202-Bleached High-Yield Pulps by Addition of Radical Scavengers to the Pulping Process, Holzforschung, Vol. 48, 1994, p400~404
    73.吴宗华、陈少平,植物纤维表面光致黄化及其反应机理的研究,高分子学报,2000,第2期
    74. Hideykui Ohnishi et al, Bleaching of Lignin Solution by a Photocatalyzed
    
    Reaction on Semiconductor Photocatalysts,, Ind. Eng. Chem. Res., 1989, Vol. 28, p719~724
    75. Coburn. L. A. et al, Kraft Bleach Plant Effluent Treatment by Ultravoilet/Oxidation Process, Tappi Proceedings of the 1984 Environmental Conference, Savannah, GA 1984, p277~286
    76. Alam M. Emsley et al, On the Kinetics of Degradation of Cellulose, Cellulose, 1997, No. 4, p1~5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700