表征属性识别技术在燕窝真伪鉴别中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燕窝是由金丝燕及多种同属燕类所筑的巢窝,主产于马来西亚、印度尼西亚、菲律宾、越南等东南亚国家和地区,自古以来一直被视为一种名贵中药和珍稀食品。近年来,燕窝在我国的消费量呈逐年上升趋势,与此同时,燕窝的进口价格也在逐渐攀升。受巨额利润的驱使,市场中燕窝的质量安全状况不容乐观,燕窝的掺假掺杂现象严重。另一方面,不同产地、不同生产方式的燕窝产品价位悬殊,利润空间巨大,燕窝的以次充好现象严重。由于缺乏相关的产品认证制度和溯源监管体系,致使目前市场上的燕窝产地、生产方式标识不清,严重损害了消费者和燕窝企业的权益。此外,燕窝产地及生产方式的判别也是行业分类标识的需求。因此,亟待加强对燕窝产品原料及来源的真伪鉴别,建立可用于燕窝中掺假物以及燕窝产地和生产方式的快速、准确鉴别方法。
     本论文研究了燕窝及其掺假物成分和不同产地及生产方式燕窝的鉴别方法,具体研究工作如下:
     1.针对燕窝质量快速初筛的需要,对不同来源的燕窝样品、燕窝及其掺假物和燕窝与掺假物的混合样品进行了红外光谱分析研究,将所得的光谱数据进行主成分分析,初步建立了燕窝真伪的判别模型。该模型可鉴别出较高含量掺假燕窝(掺假量≥30%)的真伪,但无法准确识别出掺假燕窝中的银耳或琼脂成分,适合于对燕窝产品真伪的快速鉴别和对燕窝产品质量的初步筛查。
     2.为了对燕窝中的掺假物成分进行准确定性,选取核酸作为研究对象,通过筛选和设计燕窝及其常见掺假物成分的特异性引物和探针,建立了基于分子生物学的燕窝及其掺假物的实时荧光PCR及液相芯片检测方法。对市售燕窝样品的检测结果表明所建立的实时荧光PCR和液相芯片体系灵敏度高,可用于对燕窝样品中掺假物成分的准确定性检测。
     3.针对燕窝产地及生产方式的鉴别,选取蛋白质组作为研究对象,采用SDS-PAGE电泳技术分离了不同燕窝样品的蛋白质,并将所得的蛋白条带数据进行多变量分析,初步建立了燕窝产地及生产方式的判别模型。采用双向电泳技术比较了不同燕窝样品的蛋白质组,筛选出不同生产方式与产地的差异蛋白点,为后续质谱鉴定奠定了基础。
     综上所述,本论文利用红外检测、基因检测及蛋白质组学分析技术,可分别实现对燕窝产品真伪的快速筛查、燕窝中掺假物成分的准确定性及燕窝产地及生产方式的判别,从而初步建立了燕窝质量检测的表征属性识别技术体系,该体系也可满足条件不同机构和不同检测目的的需求,为监控燕窝产品、整顿燕窝市场和规范燕窝行业提供技术支撑和理论指导,同时也为我国正致力于建立的燕窝监管溯源管理体系提供思路。
Edible bird's nest (EBN) is a kind of nests constructed by the swiftlet of Aerodramus genus and other closely related species, which mainly inhabited in Southest Asia countries such as Malaysia, Indonesia, Philippine, Vietnam. EBN has been regarded as a precious and valuable medical food for a long time. In recent years, the EBN comsumption has been growing. Driven by huge profits, a large number of EBNs with unidentified origins are input in an improper way by immoral retailers. The status of EBN quality and safety in market is unoptimistic and the phenomenon of adulteration in EBN with cheap materials is severe. On the other hand, the prices of EBNs with different geographic origin or production mode are various with huge profits, resulting in the severe phenomenon of shoddy. Nevertheless, the lack of related product certification system and traceability supervision system incur such phenomenons of unfair competition as ambiguous origin labeling and origin mislabeling, which seriously destroy the benefits of consumers and EBN enterprises. Therefore, it is urgent to strengthen the quality detection of EBN products and develop the rapid and accurate method for identifying adulterants from EBNs and the origin of EBNs.
     This paper studied on the method for authenticating EBNs and discriminating the EBN origins (geographic origin and production mode). The specific studies are as follows:
     1. In order to meet the requirement of rapid quality detection for EBN products, infrared spectroscopy was utilized to detect EBNs with different origins, the separate samples of EBN and adulterants and the mixed samples of both. The obtained infrared spectra data were conducted by Principle Component Analysis and a discrimination model for authentication of EBNs was preliminarily established. The model could be used for screening the adulterated EBNs with the quantity of adulterants above30%(w/w). However, it failed to distinguish the specific adulterant component from the adulterated EBNs with white fungus or agar. The results showed that infrared spectroscopy could be effectively used for rapid screening of EBN authentication and preliminary monitoring of EBN quality.
     2. In order to accurately detect the adulterant ingredients in EBNs, nucleic acid was selected as the object, and specific primers and probe for EBN and adulterant components were screened and designed to establish the method of the real-time PCR and suspension bead array based on the molecular biology. The detection results of commercial EBN samples suggested that the established real-time PCR and suspension bead array with high sensitivity can be used for accurately identifying the adulterant ingredients in EBN products.
     3. In order to study on the discrimination method of EBN origins, the protein was selected as the object and SDS-PAGE was used for analyzing the proteins in different EBN samples. Then multivariate analysis was conducted based on the obtained data from protein bands and points, and finally the discriminant model was preliminarily established for the determination of geographic origin and production mode for EBNs. Then two-dimensional electrophoresis (2-DE) was utilized to compare the proteomes of different EBNs and the protein points representing different production modes or geographic origins were screened out, which lays a foundation for subsequent protein identification by mass spectrum.
     In summary, this study combined such three technologies as the infrared detection, genetic testing and protein analysis technique for preliminarily establishing a comprehensive set of quality detection system for EBN products based on the representative characteristics recognition technology, which involved in the rapid screening for EBN quality, qualitative detection of adulterants components and discrimination of geographic origin and peoduction mode for EBNs. The developed detection system can meet the requirements of various institutions for different purposes. The study in this thesis could provide technical support and therotical guidance for positively monitoring EBN products, supervising EBN market and regulating EBN industry, and also could provide ideas for the establishement of EBN supervision traceability management system conducted by our country.
引文
[1]Kang N, Hails C J, Sigurdsson J B. Nest construction and egg-laying in Edible-nest Swiftlets Aerodramus spp. and the implications for harvesting[J]. IBIS,1991,133:170-177.
    [2]Lau A S M, Melville D S. International trade in swiftlet nests with special reference to Hong Kong[J]. Cambridge (UK):Traffic International,1994.
    [3]Lin J, Zhou H, Lai X. Overview of edible bird's nest research[J]. Journal of Chinese Medicinal Materials,2006,29(1):85-90.
    [4]Wang B, Shen Y, Liao Q, et al. Breeding biology and conservation strategy of the Himalayan swiftlet (Aerodramus brevirostris innominatd) in southern China[J]. Biodiversity Science,2013,21(1):54-61.
    [5]Mardiastuti A, Mulyani Y A, Gultom T A C. Breeding success of edible-nest swiftlets in a man-made nesting habitat[J]. Media Konservasi,1997,2:81-83.
    [6]Sankaran R. The status and conservation of the Edible-nest Swiftlet(Collocalia fuciphaga) in the Andaman and Nicobar Islands[J]. Biological Conservation,2001,97(3):283-294.
    [7]Ma F, Liu D. Sketch of the edible bird's nest and its important bioactivities[J]. Food Research International,2012,48(2):559-567.
    [8]But P P, Jiang R, Shaw P. Edible bird's nests-How do the red ones get red?[J]. Journal of Ethnopharmacology,2013,145(1):378-380.
    [9]胡雅妮,李峰,康廷国.燕窝的研究进展[J].中国中药杂志,2003(11):10-12.
    [10]Marcone M F. Characterization of the edible bird's nest the "Caviar of the East"[J]. Food research international,2005,38(10):1125-1134.
    [11]林洁茹,周华,赖小平.燕窝研究概述[J].中药材,2006(1):85-90.
    [12]Guo C T, Takahashi T, Bukawa W, et al. Edible bird's nest extract inhibits influenza virus infection[J]. Antiviral research,2006,70(3):140-146.
    [13]侯雁,冼小敏,林洁茹,等.燕窝对ConA刺激下大鼠淋巴细胞增殖的增效作用[J].中国当代医药,2010,17(26):9-11.
    [14]Kim K C, Kang K A, Lim C M, et al. Water extract of edible bird's nest attenuated the oxidative stress-induced matrix metalloproteinase-1 by regulating the mitogen-activated protein kinase and activator protein-1 pathway in human keratinocytes[J]. Journal of the Korean Society for Applied Biological Chemistry,2012,55(3):347-354.
    [15]Kong Y C, Keung W M, Yip T T, et al. Evidence that epidermal growth factor is present in swiftlet's (Collocalia) nest[J]. Comparative Biochemistry and Physiology,1987,87B(2):221-226.
    [16]Vimala B, Hussain H, Nazaimoon W M W. Effects of edible bird's nest on tumour necrosis factor-alpha secretion, nitric oxide production and cell viability of lipopolysaccharide-stimulated RAW 264.7 macrophages[J]. Food and Agricultural Immunology,2012,23(4):303-314.
    [17]乌日罕,陈颖,吴亚君,等.燕窝真伪鉴别方法及国内外研究进展[J].检验检疫科学,2007,17(4):60-62.
    [18]陆汉豪.一种燕窝伪品的鉴别[J].广东药学,2005,15(2):14-15.
    [19]梅宏辉,林伟萍.燕窝真伪优劣的检定[J].中草药,2005(8):133-134.
    [20]Li H, Yu X, Yan J, et al. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis[J]. Bioresource Technology,2008,99(8):3301-3305.
    [21]Cote G L, Hanisak M D. Production and properties of native agars from Gracilaria tikvahiae and other red algae[J]. Botanica Marina,1986,XXIX:359-366.
    [22]Murano E. Chemical structure and quality of agars from Gracilaria[J]. Journal of Applied Phycology,1995,7:245-254.
    [23]Israel A, Martinez-Goss M, Friedlander M. Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation[J]. Journal of Applied Phycology,1999,11:543-549.
    [24]Du X, Wu J. Technology of making agaropectin from laver[J]. Journal of Huaihai Institute of Technology(Natural Sciences Edition),2005,14(4):58-61.
    [25]曹会兰.亚硝酸盐对人体的危害和预防[J].微量元素与健康研究,2003,20(2):57-58.
    [26]文惠玲,汪冶,申欣.3种伪品燕窝的鉴别[J].中国中药杂志,1996(10):10-11.
    [27]林洁茹,周华,赖小平.体视镜在燕窝鉴别中的应用[J].中药材,2006(3):219-221.
    [28]陈文锐.毛细管气相色谱法测定燕窝中的氨基酸及掺伪鉴别方法的研究[J].旅行医学科学,1995(3):110-113.
    [29]朱春红,雍炜,徐厉,等.燕窝真假鉴定技术研究[J].中国食品卫生杂志,2007(3):206-209.
    [30]杨亮.燕窝及其制品掺伪鉴别和含量测定技术的研究[D].长春:吉林大学,2008.
    [31]黄华军,奚星林,陈文锐,等.分光光度法检测燕窝及其制品中燕窝含量[J].广州食品工业科技,2003(3):68-69.
    [32]李敏,黄华军,奚星林,等.燕窝中唾液酸含量的分光光度测定方法[J].中国卫生检验杂志,2011(3):598-600.
    [33]华永有,杨艳,林美华.高效液相色谱法测定燕窝类保健品中唾液酸[J].中国卫生检验杂志,2010(10):2454-2456.
    [34]冯婷玉,薛长湖,孙通,等.燕窝中唾液酸的DAD/FLD串联HPLC测定方法研究[J].食品科学,2010(8):233-236.
    [35]李敏,李宪华,奚星林,等.无损检测技术在食品分析中的应用[J].检验检疫科学,2009,18(6):60-62.
    [36]卜凡艳,韩剑众.无损检测技术在食品品质检测中的应用[J].食品工业科技,2007,28(7):221-224.
    [37]陈颖,葛毅强.现代食品分子检测鉴别技术[M].北京:中国轻工业出版社,2008.
    [38]孙素琴,梁曦云,杨显荣.6种燕窝的傅里叶变换红外光谱法原性状快速鉴别[J].分析化学,2001(5):552-554.
    [39]邓月娥,孙素琴,周群,等.FTIR光谱法与燕窝的品质分析[J].光谱学与光谱分析,2006(7):1242-1245.
    [40]Wei X, Xu N, Wu D, et al. Determination of branched-amino acid content in fermented Cordyceps sinensis mycelium by using FT-NIR spectroscopy technique[J]. Food and Bioprocess Technology,2014,7(1):184-190.
    [41]宫本佼,容蓉,张国英,等.九州虫草不同部位的红外光谱分析与评价[J].光谱学与光谱分析,2011,31(09):2420-2423.
    [42]陈建波,周群,王晓平,等.冬虫夏草的红外光谱真伪鉴定[Z].中国广东韶关:20122.
    [43]Cozzolino D, Murray I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy[J]. LWT-Food Science and Technology,2004,37(4):447-452.
    [44]Chen X, Liu X, Sheng D, et al. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,97:667-672.
    [45]王少玲,姚景,彭翠红,等.红外光谱法对粤北灵芝的快速鉴别[J].韶关学院学报,2007,28(06):68-71.
    [46]汪虹,曹晖,崔星明,等.几种食用菌的傅立叶变换红外光谱鉴别研究[J].食用菌学报,2005,12(3):52-55.
    [47]孙素琴,梁曦云,杨显荣.六色灵芝的FTIR快速无损鉴别[J].光谱学与光谱分析,2002,22(2):226-228.
    [48]唐慧英,鄢丹,武彦文,等.FTIR用于不同商品等级鹿茸的品质评价[J].世界科学技术(中医药现代化),2009,11(02):283-286.
    [49]吴信子,王思宏,吴丽花,等.不同鹿茸片红外数据的聚类分析[J].安徽农业科学,2010,38(35):20123-20124.
    [50]毛建江,张玉杰,徐经伟.傅立叶近红外光谱法用于鹿茸的定性分析[J].理化检验(化学分册),2007,43(1):33-36.
    [51]Bu H, Nie L, Wang D, et al. Rapid determination of Panax ginseng by near-infrared spectroscopy[J]. Analytical Methods,2013,5(23):6715-6721.
    [52]Chen X, Wu D, He Y, et al. Nondestructive differentiation of Panax Species using visible and shortwave Near-Infrared Spectroscopy[J]. Food and Bioprocess Technology,2011,4(5):753-761.
    [53]Kwon Y, Ahn M S, Park J S, et al. Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis[J]. Journal of Ginseng Research,2014,38:52-58.
    [54]Lucio-Gutirez J R, Coello J, Maspoch S. Expeditious identification and semi-quantification of Panax ginseng using near infrared spectral fingerprints and multivariate analysis[J]. Analytical Methods,2013,5(4):857-865.
    [55]Lu Q, Fan Y, Peng Z, et al. Study on nondestructive discrimination of genuine and counterfeit wild ginsengs using NIRS[J]. The European Physical Journal Applied Physics,2012,59(1):10701-10706.
    [56]Zhang Y, Chen J, Lei Y, et al. Evaluation of different grades of ginseng using Fourier-transform infrared and two-dimensional infrared correlation spectroscopy [J], Journal of Molecular Structure,2010,974(1-3):94-102.
    [57]王灵灵,黄亚伟,戚淑叶,等.基于主根横断面近红外光谱的西洋参和人参鉴别研究[J].光谱学与光谱分析,2012,32(4):925-929.
    [58]李静芳,汤水平,张素文,等.实时荧光定量PCR技术在食品检测中的应用[J].实用预防医学,2008,15(6):1997-1999.
    [59]赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志,2007,16(4):492-497.
    [60]陈颖,吴亚君.基因检测技术在食品物种鉴定中的应用[J].色谱,2011,29(7):594-600.
    [61]赵金银,王景林.寡核苷酸探针悬浮芯片在病原体检测中的应用[J].现代生物医学进展,2009,9(8):1559-1562.
    [62]Sherry A D. Applications of Luminex xMAPTM technology for rapid, high-throughput multiplexed nucleic acid detection[J]. Clinica Chimica Acta,2006,363(1):71-82.
    [63]Wu Y, Chen Y, Wang B, et al. Application of SYBRgreen PCR and 2DGE methods to authenticate edible bird's nest food[J]. Food Research International,2010,43(8):2020-2026.
    [64]Jin G, Wang X, Li Y, et al. Development of conventional and nested PCR assays for the detection of Ophiocordyceps sinensis[S]. Journal of Basic Microbiology,2013,53(4):340-347.
    [65]Peng Q, Zhong X, Lei W, et al. Detection of Ophiocordyceps sinensis in soil by quantitative real-time PCR[J]. Canadian Journal of Microbiology,2013,59(3):204-209.
    [66]马骏,谢力,陈永红,等.冬虫夏草实时荧光PCR检测方法的建立[J].食品科学,2012,33(22):242-245.
    [67]翁榕安,李树华.冬虫夏草与其混伪品北虫草的ITS测序鉴别[J].湖南师范大学学报(医学版),2008,5(3):42-45.
    [68]许美燕,唐传红,张劲松,等.利用SRAP和(?)ISSR建立快速鉴定灵芝属菌株的SCAR标记[J].菌物学报,2008,27(5):707-717.
    [69]罗联忠,林树钱,谢宝贵,等.灵芝菌株的DNA指纹分析[J].食用菌学报,2005,12(3):7-13.
    [70]涂剑锋,查代明,司方方.PCR法鉴别鹿茸真伪[J].上海畜牧兽医通讯,2009(2):55.
    [71]张蓉,刘春生,黄璐琦,等.鹿茸饮片的DNA条形码鉴别研究[J].中国药学杂志,2011,46(04):263-266.
    [72]白根本,张林源,刘春生,等.鹿源类中药材DNA序列分析及马鹿和梅花鹿的PCR鉴定[J].中草药,2006,37(10):1566-1569.
    [73]詹鑫婕,田程,张媛,等.基于ITS2条形码SNPs的人参和西洋参PCR-SSCP分子鉴别研究[J].中国中药杂志,2012,37(24):3748-3751.
    [74]Wang H, Sun H, Kwon W, et al. A PCR-based SNP marker for specific authentication of Korean ginseng (panax ginseng) cultivar "Chunpoong"[J]. Molecular Biology Reports,2010,37(2):1053-1057.
    [75]Morgan J A T, Welch D J, Harry A V, et al. A mitochondrial species identification assay for Australian blacktip sharks(Carcharhinus tilstoni, C. limbatus and C. amblyrhynchoides) using real-time PCR and high-resolution melt analysis[J]. Molecular Ecology Resources,2011,11(5):813-819.
    [76]Caballero S, Cardenosa D, Soler G, et al. Application of multiplex PCR approaches for shark molecular identification:feasibility and applications for fisheries management and conservation in the Eastern Tropical Pacific[J]. Molecular Ecology Resources,2012,12(2):233-237.
    [77]郭云霞,张舒亚,谌鸿超,等. SYBR Green实时荧光PCR检测食品中鲨鱼源性成分真实性方法的建立[J].食品与生物技术学报,2012,31(12):1300-1306.
    [78]辛普森理查德j.,何大澄.蛋白质与蛋白质组学实验指南[M].北京:化学工业出版社,2006.
    [79]Tsugita A, Kawakami T, Uchida T. Proteome analysis of mouse brain:two-dimensional electrophoresis profiles of tissue proteins during the course of aging[J]. Electrophoresis,2000,21(9):1853-1871.
    [80]唐亚丽,施用晖,赵伟,等.聚丙烯酰胺凝胶电泳及其在食品检测中的应用[J].食品与发酵工业,2008,33(12):111-116.
    [81]朱运峰,冯东晓,李春海.聚丙烯酰胺凝胶电泳在分离小分子物质中的应用[J].生物技术通讯,1998,9(3):303-305.
    [82]Gorg A, W W W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics,2004,4(12):3665-3685.
    [83]干国平.燕窝及其伪品的的凝胶电泳鉴别[J].中国医院药学杂志,1996(4):172.
    [84]林洁茹,董燕,周华,等.燕窝鉴别中的蛋白质电泳研究[J].世界科学技术,2006,8(3):30-32.
    [85]侯雁.电泳技术在燕窝鉴别中的应用[D].广州中医药大学,2010.
    [86]胡珊梅,赖东美.燕窝的聚丙烯酰胺凝胶电泳法鉴别[J].中国中药杂志,1999(6):11-21.
    [87]崔慧娥.燕窝糖蛋白酶联免疫检测方法的研究[D].天津科技大学,2009.
    [88]Zhang S, Lai X, Liu X, et al. Competitive enzyme-linked immunoassay for sialoglycoprotein of edible bird's nest in food and cosmetics[J]. Journal of Agricultural and Food Chemistry,2012,60(14):3580-3585.
    [89]Zhang S, Lai X, Liu X, et al. Development of monoclonal antibodies and quantitative sandwich enzyme linked immunosorbent assay for the characteristic sialoglycoprotein of edible bird's nest [J]. Journal of Immunoassay and Immunochemistry,2013,34(1):49-60.
    [90]聂桂华,黄声凤,连莹,等.冬虫夏草及其伪品的凝胶电泳鉴别[J].中药材,1997,20(9):457-458.
    [91]程丽敏,马建华,赵华英,等.冬虫夏草与其伪品的蛋白电泳鉴别[J].山东医药工业,1995,14(3):30-31.
    [92]方白玉.粤北野生灵芝与栽培灵芝同工酶及可溶性蛋白的研究[J].食用菌,2013(1):9-11.
    [93]白雪媛,赵雨,张惠,等.不同产地人参中水溶性蛋白质含量的差异性研究[J].中国现代应用药学,2012,29(11):980-983.
    [94]赵寿经,刘庆昌,钱延春,等.人参和西洋参种质资源的乳酸聚丙烯酰胺凝胶电泳分析[J].农业生物技术学报,2003,11(4):370-374.
    [95]姜先刚,赵雨,张巍,等.人参水溶性蛋白SDS-聚丙烯酰胺凝胶电泳指纹图谱研究[J].药物分析杂志,2008,28(6):873-876.
    [96]北京大学化学学院中级仪器实验室.傅里叶变换红外光谱操作使用说明书[Z].2010:2014.
    [97]宫本佼,容蓉,张国英,等.九州虫草不同部位的红外光谱分析与评价[J].光谱学与光谱分析,2011(09):2420-2423.
    [98]宋文军.野生冬虫夏草红外分析与鉴别[J].天津师范大学学报(自然科学版),2007(3):16-18.
    [99]Karoui R, Downey G, Blecker C. Mid-infrared spectroscopy coupled with chemometrics:A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships-A review[J]. Chemical Reviews,2010,110(10):6144-6168.
    [100]吉卉.基于红外光谱的花椒品质快速检测技术研究[D].西北农林科技大学,2010.
    [101]Allmann M, Candrian U, Hofelein C, et al. Polymerase chain reaction(PCR):a possible alternative to immunochemical methods assuring safety and quality of food[J]. Z Lebensm Unters Forsch,1993,196:248-251.
    [102]乌日罕,陈颖,吴亚君,等.燕窝DNA提取方法比较[J].食品与发酵工业,2008(3):33-36.
    [103]林洁茹,周华,赖小平,等.燕窝DNA提取方法研究[J].世界科学技术(中医药现代化),2010(2):202-210.
    [104]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research,1980,19(8):4321-4326.
    [105]张晓薇SDS-PAGE对不同产地及质量枸杞的鉴别研究[J].光明中医,2011,26(5):917-918.
    [106]王集会,冯玉,高世杰.四种产地全蝎粉可溶性蛋白质SDS-PAGE法分离研究[J].山东中医杂志,2012,5(1):26.
    [107]白雪嫒,赵雨,张惠,等.不同产地人参中水溶性蛋白质含量的差异性研究[J].中国现代应用药学,2012,29(11):980-983.
    [108]陈培,郭玉海,王保民,等.肉苁蓉属4种肉苁蓉可溶性蛋白的SDS-PAGE电泳分析[J].中草药,2006,37(9):1399-1402.
    [109]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000.77-100.
    [110]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社,2003.
    [111]王静.龙眼子叶胚发育过程中差异表达蛋白的研究[D].福建农林大学,2009.
    [112]孙强玲,刘银坤,卢雯静,等.人健康肝组织刀豆凝集素(ConA)结合型糖蛋白组学研究[J].中国科学C辑生命科学,2006,36(6):543-551.
    [113]李倩,于振,江帆,等.双向电泳技术在蛋白质组学中的应用[J].实验室科学,2009,7(2):81-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700