基于二氢叶酸合成酶的磺胺类药物多残留快速检测分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磺胺类药物(sulfonamides, SAs)是一类广泛应用于畜牧业的广谱抗菌药物,但由于其不合理使用甚至滥用造成了动物源食品中药物残留问题,影响食品安全,进而危害人类健康。建立快速、高效、广谱、可靠的检测方法监控动物源食品中SAs残留,对食品安全和人类健康保障具有重要意义。本文以磺胺类药物受体蛋白二氢叶酸合成酶(Dihydropteroate Synthase, DHPS)为研究对象,建立快速检测方法检测牛奶中磺胺药物多残留。
     体外扩增来源于肺炎链球菌R6和大肠杆菌ATCC25922的flop基因,分别构建表达载体flop-pET28b,优化诱导表达条件,发现诱导温度20℃、诱导时间14~17h和0.5mM异丙基-β-D-硫代吡喃半乳糖苷(Isopropyl β-D-1-Thiogalactopyranoside, IPTG)时诱导效果最佳。采用镍柱亲和层析和离子交换方法纯化DHPS蛋白,通过纯化条件优化,发现100mM咪唑为最适洗脱缓冲液浓度。100mL大肠杆菌培养物可获得约3mg目的蛋白。
     采用二环己基碳二亚胺(Dicyclohexylcarbodiimide,DCC)法偶联辣根过氧化物酶(Horseradish Peroxidase,HRP)与磺胺类药物及其衍生物,获得7种酶标记物,其中4-(4-氨基-苯磺酰胺基)苯甲酸(4-(4-amino-benzenesulfonylamino) benzoic acid,CS)-HRP与DHPS结合力最强,对磺胺二甲基嘧啶(Sulphamethazine, SM2)的灵敏度最高。以CS-HRP与来源于肺炎链球菌的DHPS组合建立微孔板法检测SAs多残留,进行了条件优化,分别以31种磺胺类药物及其类似物建立标准曲线,其中29种磺胺类药物的IC50(50%结合时待测物浓度)值为2.95~56.22ngmL-1,均低于最高残留限量(Maximum Residue Limit,MRL)。以CS-HRP与来源于大肠杆菌的DHPS组合建立微孔法检测SAs多残留,29种磺胺类药物的IC50值为6.16~182.27ng mL-1,选择CS-HRP与来源于肺炎链球菌的DHPS组合建立微孔板法检测牛奶中SAs多残留,纯牛奶稀释5倍、脱脂牛奶稀释3倍即可用于检测。纯牛奶中磺胺间甲氧嘧啶(Sulfamonomethoxine,SMM)、磺胺喹噁啉(Sulfaquinoxaline,SQX)、SM2、磺胺甲基异嗯唑(Sulfamethoxazole,SMZ)和磺胺二甲氧嘧啶(Sulfadimethoxine,SDM)的添加回收率为83.3~108.8%,变异系数为1.1~15.8%;脱脂奶中的添加回收率为72.7~129.3%,变异系数为3.0~16.0%。为简化快速检测方法,用焦磷酸盐(pyrophosphate,PPi)取代DHPS的第一底物6-羟甲基-7,8二氢蝶呤焦磷酸盐(6-hydroxymethyl-7,8-dihydropterin pyrophosphate, DHPPP),以CS-HRP与来源于肺炎链球菌的DHPS组合建立SAs残留微孔板检测方法,进行了条件优化,其中9种SAs和PABA的检测限(limit of detection,LOD)低于MRL值,28种磺胺类药物的IC50值为426~50000ngmL-。
     合成了7种荧光标记物,以来源于肺炎链球菌的DHPS和最佳荧光标记物CS-BDF组合建立检测牛奶中SAs多残留的荧光偏振分析方法(Fluorescence Polarization Immunoassay, FPIA).进行了条件优化,29种SAs的IC50值为4.90~108.24ng mL-1, PABA的IC50值最低,为3.80ng mL-1。牛奶中SMM、SQX、SM2、SMZ和SDM的回收率为53.3~101.9%,变异系数为0.29-19.7%。
     为了深入了解DHPS与磺胺类药物的相互作用,为方法灵敏度的提高和DHPS体外进化提供理论基础,本研究利用Surflex-X-2.0对DHPS与6种SAs进行分子对接研究,并给出评分,相对亲和力的变化趋势与评分结果基本一致。DHPS与SAs作用的2个关键氨基酸残基为Ⅱe272和Asp221,疏水作用力是其相互作用的决定因素。综上所述,本研究获得了磺胺类药物受体蛋白DHPS,其对磺胺药物的亲和力高、广谱性好,可代替抗体应用于快速检测方法建立。
Sulfonamides (SAs) are a group of synthetic antibiotic agents that are widely used in veterinary practice for the treatment of infectious diseases and as growth-promoting feed additives. Illegal use of SAs or non-compliance of animal-treatment protocols may cause the residues of antibiotics in animal-derived food. It seriously infects food safety and human health, so it is necessary to monitor these chemical residues in food samples in order to obtain a better food safety assurance. For SAs residues, the screening methods must be precise, high sensitive and cheap, moreover, these methods must be simple, quick and broad-spectrum as it possible. In this paper, Dihydropteroate Synthase (DHPS) was produced and rapid detection assay based-on DHPS was developed for SAs in milk.
     The gene flop encoding DHPS from Streptococcus pneumonia R6and Escherichia coli ATCC25922was ampilied using PCR and inserted in expression vector pET28b, respectively. After optimization, expression was carried out at20℃for14~17h after0.5mM Isopropyl β-D-1-Thiogalactopyranoside (IPTG) was added. Purification of DHPS required two steps of Ni2+chelation affinity chromatography (100mM imidazole in elution buffer) and ion exchange.
     To identify the ideal Horseradish Peroxidase (HRP)-conjugate matched with DHPS, seven haptens were conjugated to HRP by DCC (dicyclohexylcarbodiimide) method, respectively. Among these conjugates, CS-HRP showed the highest affinity to DHPS and the highest sensitivity to detect sulphamethazine (SM2), and was thus used to develop and optimize the direct competitive assay. We develop a microplate assay based on CS-HRP and DHPS from Streptococcus pneumonia R6for SAs, and after optimization29SAs used in the study could be detected with IC50values ranging from2.95ng mL-1to56.22ng mL-1which were under the Maximum Residue Limit (MRL). IC50values for29SAs ranged from6.16ng mL-1to182.27ng mL-1in the microplate assay based on CS-HRP and DHPS from Escherichia coli ATCC25922. DHPS from Streptococcus pneumonia R6was slected due to high sensitivity obtained. Five SAs, sulfamethoxazole (SMZ), sulfadimethoxine (SDM), sulfaquinoxaline (SQX), sulfamonomethoxine (SMM), and SM2were spiked in whole milk and skim milk samples with simple pretreatment. The recoveries were83.3%~108.8%with coefficient of variation (CV) of1.1%~15.8%and72.7%~129.3%with CV of3.0%~16%in whole milk and skim milk, respectively. In order to simplify the assay, PPi (pyrophosphate) was used to replace the first substrate of DHPS,6-hydroxymethyl-7,8-dihydropterin-pyrophosphate (DHPPP). Under optimized conditions,9SAs and PABA could be detected below100ng mL-1and28SAs used in the study could be detected with IC50values ranging from426ng mL-1to50000ng mL-
     The best fluorescent tracer CS-BDF was produced and a fluorescence polarization immunoassay (FPIA) based on DHPS from Streptococcus pneumonia R6for SAs in milk was developed. The IC50values of29SAs ranged from4.90ng mL-1to108.24ng mL-1and the lowest IC50value (3.80 ng mL-1) was for PABA. Analysis of SMZ, SDM, SQX, SMM, and SMX fortified milk samples by the FPIA showed average recoveries ranging from53.3%to101.9%with CV0.29~19.7%.
     In order to increase the sensitivity of the assay of fast detection further more and provide the theoretic foundation for vitro protein evolution, we investigated the binding between6SAs and DHPS using Surflex-X-2.0. The correlation between relative binding affinitys (RBAs) and docking score was investigated, and good correlation was observed. Ile272and Asp221were the important amino acid sites in the interaction between DHPS and SAs, and hydrophobic effect was a decisive factor in the interaction between DHPS and SAs. In conclusion, we produed DHPS with high affinity and broad-spectrum activity for SAs and ordinary antibody could be replaced by DHPS for SAs detection.
引文
[1]赵津子,郑礼,谢文艳等.药物残留免疫分析研究进展.中国药学杂志.2011(02):85-88
    [2]李亚红.畜禽产品药物残留的危害及控制措施.养殖技术顾问.2013(04):254-255
    [3]Schwarz, S., Chaslus-Dancla, E. Use of Antimicrobials in Veterinary Medicine and Mechanisms of Resistance. Veterinary Research.2001,32 (3-4):201-225
    [4]Long, A.R., Hsieh, L.C., Malbrough, M.S., et al. Multiresidue Method for the Determination of Sulfonamides in Pork Tissue. Journal Of Agricultural And Food Chemistry.1990,38 (2):423-426
    [5]European Commission (1999) Off Journal European Union L 60:16-5.
    [6]The Japan Food Chemical Research Foundation (2006) Positive List System for Agricultural Chemical Residues in Foods.
    [7]罗鹏程.动物性食品磺胺类药物残留检测.大众科技.2009(5):180
    [8]Schwarz, S., Chaslus-Dancla, E. Use of Antimicrobials in Veterinary Medicine and Mechanisms of Resistance. Veterinary Research.2001,32 (3-4):201-225
    [9]李俊锁,邱月明,王超.兽药残留分析.上海:上海科学出版社.2002:313.
    [10]母安雄,胡松华.奶牛乳房炎抗生素防治失败原因探讨.中国兽医杂志.2002,38(2):18-20
    [11]Jones, G, M,. on-Farm Test for Drug Residues in Milk. Virginia Technology,1995,26(5): 401-404.
    [12]张素霞,魏秋红.食品中抗生素残留危害及其检测方法的分析.农产品加工.2009(5):62-64
    [13]焦兴弘.预防牛奶中抗生素残留的措施.科学种养.2013(11):120
    [14]江勇,佟建明.饲用抗生素与免疫增强剂促生长作用机理的比较.广东畜牧兽医科技.2005,30(1):18-21
    [15]车清明.动物性食品中药物残留的危害及预防措施.养殖技术顾问.2009(09):116-117
    [16]Sicherer, S.H., Leung, D.Y.M. Advances in Allergic Skin Disease, Anaphylaxis, and Hypersensitivity Reactions to Foods, Drugs, and Insects in 2012. Journal Of Allergy And Clinical Immunology.2013,131 (1):55-66
    [17]Cerniglia, C.E., Kotarski, S. Evaluation of Veterinary Drug Residues in Food for Their Potential to Affect Human Intestinal Microflora. Regulatory Toxicology And Pharmacology.1999,29 (3):238-261
    [18]武瑶,梁家鹏.北京化工大学理学院.食品中的抗生素.化学教学.2011(01):68-69
    [19]Montanaro, A. Sulfonamide Allergy. Immunology And Allergy Clinics Of North America.1998, 18 (4):843-850
    [20]Schwarz, S., Noble, W.C. Tetracycline Resistance Genes in Staphylococci from the Skin of Pigs. Journal lf Appl Bacteriol.1994,76 (4):320-326
    [21]Greene, R.T., Schwarz, S. Small Antibiotic Resistance Plasmids in Staphylococcus Intermedius. Zentralbl Bakteriol.1992,276 (3):380-389
    [22]Schwarz, S., Cardoso, M., Grolz-Krug, S., et al. Common Antibiotic Resistance Plasmids in Staphylococcus Aureus and Staphylococcus Epidermidis from Human and Canine Infections. Zentralbl Bakteriol.1990,273 (3):369-377
    [23]赵桂林,张健民.动物产品的兽药残留及其危害性.中国动物检疫.2003(03):17
    [24]陈茂发.动物源性食品药物残留的危害与监控措施.广东农业科学.2008(02):78-80
    [25]Kan, C.A., Petz, M. Residues of Veterinary Drugs in Eggs and Their Distribution between Yolk and White. Journal Of Agricultural And Food Chemistry.2000,48 (12):6397-6403
    [26]董曙光,赵丹彤,廉茵等.牛奶中抗生素残留的危害及控制措施.畜牧与饲料科学,2008(04):65-66
    [27]Kemper, N. Veterinary Antibiotics in the Aquatic and Terrestrial Environment. Ecological Indicators.2008,8 (1):1-13
    [28]Arikan, O.A., Rice, C., Codling, E. Occurrence of Antibiotics and Hormones in a Major Agricultural Watershed. Desalination.2008,226 (1-3):121-133
    [29]Maia, P.P., da Silva, E.C., Rath, S., et al. Residue Content of Oxytetracycline Applied on Tomatoes Grown in Open Field and Greenhouse. Food Control.2009,20 (1):11-16
    [30]Rysz, M., Alvarez, P.J.J. Amplification and Attenuation of Tetracycline Resistance in Soil Bacteria: Aquifer Column Experiments. Water Research.2004,38 (17):3705-3712
    [31]Pastor-Navarro, N., Maquieira, A., Puchades, R. Review on Immunoanalytical Determination of Tetracycline and Sulfonamide Residues in Edible Products. Analytical and Bioanalytical Chemistry. 2009,395 (4):907-920
    [32]Agarwal, V.K. Detection of Sulfamethazine Residues in Milk by High Performance Liquid Chromatography. Journal of Liquid Chromatography.1990,13 (17):3531-3539
    [33]袁中珍.动物源性食品中16种磺胺类药物残留检测:[硕士论文].重庆:重庆医科大学,2013
    [34]Reeves, V.B. Confirmation of Multiple Sulfonamide Residues in Bovine Milk by Gas Chromatography-Positive Chemical Ionization Mass Spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications.1999,723 (1-2):127-137
    [35]赵书景,贺绍君,罗国琦等.动物性食品中磺胺类药物残留检测方法的研究进展.中国畜牧兽医.2009(08):60-63
    [36]范莹莹,其鲁,杨树民.Hplc-Ms联用法测定猪肉组织中5种磺胺类药物的残留.现代仪器.2008(01):27-30
    [37]Wang, S., Zhang, H.y., Wang, L., et al. Analysis of Sulphonamide Residues in Edible Animal Products:A Review. Food Additives And Contaminants.2006,23 (4):362-384
    [38]崔小军,王硕.牛奶中残留青霉素类抗生素检测方法的研究进展.食品研究与开发.2005(04):113-116
    [39]顾欣.牛奶中青霉素残留的微生物学检测方法研究进展.中国兽药杂志.2007(01):40-45
    [40]Shitandi, A., Gathoni, K. Evaluation of the Bacillus Calidolactis Plate for Post Screening Assay of B-Lactam Antimicrobial Residues in Kenyan Dairies. Food Control.2005,16 (3):227-230
    [41]Aureli, P., Ferrini, A.M., Mannoni, V. Presumptive Identification of Sulphonamide and Antibiotic Residues in Milk by Microbial Inhibitor Tests. Food Control.1996,7 (3):165-168
    [42]Braham, R., Black, W.D., Claxton, J., et al. A Rapid Assay for Detecting Sulfonamides in Tissues of Slaughtered Animals. Journal Of Food Protection.2001,64 (10):1565-1573
    [43]Gaudin, V., Maris, P., Fuselier, R., et al. Validation of a Microbiological Method:The Star Protocol, a Five-Plate Test, for the Screening of Antibiotic Residues in Milk. Food Additives & Contaminants.2004,21 (5):422-433
    [44]Singh, P., Ram, B.P., Sharkov, N. Enzyme Immunoassay for Screening of Sulfamethazine in Swine. Journal Of Agricultural And Food Chemistry.1989,37 (1):109-114
    [45]Pastor-Navarro, N., Gallego-Iglesias, E., Maquieira, A., et al. Immunochemical Method for Sulfasalazine Determination in Human Plasma. Analytica Chimica Acta.2007,583 (2):377-383
    [46]Franek, M., Diblikova, I., Cernoch, I., et al. Broad-Specificity Immunoassays for Sulfonamide Detection:Immunochemical Strategy for Generic Antibodies and Competitors. Analytical Chemistry. 2006,78 (5):1559-1567
    [47]Zhou, Q., Peng, D., Wang, Y., et al. A Novel Hapten and Monoclonal-Based Enzyme-Linked Immunosorbent Assay for Sulfonamides in Edible Animal Tissues. Food Chemistry.2014,154 (0): 52-62
    [48]Liang, X., Ni, H., Beier, R., et al. Highly Broad-Specific and Sensitive Enzyme-Linked Immunosorbent Assay for Screening Sulfonamides:Assay Optimization and Application to Milk Samples. Food Analytical Methods.2014:1-11
    [49]Yakovleva, J.N., Lobanova, A.I., Panchenko, O.A., et al. Production of Antibodies and Development of Specific Polarization Fluoroimmunoassay for Acetochlor. International Journal of Environmental and Analytical Chemistry.2002,82 (11-1):851-863
    [50]Eremin, S.A., Ryabova, I.A., Yakovleva, J.N., et al. Development of a Rapid, Specific Fluorescence Polarization Immunoassay for the Herbicide Chlorsulfuron. Analytica Chimica Acta.2002, 468 (2):229-236
    [51]Kolosova, A.Y., Park, J.-H., Eremin, S.A., et al. Fluorescence Polarization Immunoassay Based on a Monoclonal Antibody for the Detection of the Organophosphorus Pesticide Parathion-Methyl. Journal Of Agricultural And Food Chemistry.2003,51 (5):1107-1114
    [52]Eremin, S.A., Landon, J., Smith, D.S., et al. Development of a Polarization Fluoroimmunoassay for Sulfamethazine Using an Automated Analyser. Analyst.1994,119 (12):2723-2726
    [53]Zhang, S., Wang, Z., Nesterenko, I.S., et al. Fluorescence Polarisation Immunoassay Based on a Monoclonal Antibody for the Detection of Sulphamethazine in Chicken Muscle. International Journal of Food Science & Technology.2007,42 (1):36-44
    [54]Eremin, S.A., Murtazina, N.R., Ermolenko, D.N., et al. Production of Polyclonal Antibodies and Development of Fluorescence Polarization Immunoassay for Sulfanilamide. Analytical Letters.2005, 38 (6):951-969
    [55]Crooks, S.R., Baxter, G.A., O'Connor, M.C., et al. Immunobiosensor--an Alternative to Enzyme Immunoassay Screening for Residues of Two Sulfonamides in Pigs. Analyst.1998,123 (12): 2755-2757
    [56]Bienenmann-Ploum, M., Korpimaki, T., Haasnoot, W., et al. Comparison of Multi-Sulfonamide Biosensor Immunoassays. Analytica Chimica Acta.2005,529 (1-2):115-122
    [57]吴刚,姜瞻梅,霍贵成等.胶体金免疫层析技术在食品检测中的应用.食品工业科技.2007(12):216-218
    [58]Wang, X., Li, K., Shi, D., et al. Development and Validation of an Immunochromatographic Assay for Rapid Detection of Sulfadiazine in Eggs and Chickens. Journal Of Chromatography B.2007,847 (2): 289-295
    [59]Wang, X., Li, K., Shi, D., et al. Development of an Immunochromatographic Lateral-Flow Test Strip for Rapid Detection of Sulfonamides in Eggs and Chicken Muscles. Journal Of Agricultural And Food Chemistry.2007,55 (6):2072-2078
    [60]Guo, Y., Ngom, B., Le, T., et al. Utilizing Three Monoclonal Antibodies in the Development of an Immunochromatographic Assay for Simultaneous Detection of Sulfamethazine, Sulfadiazine, and Sulfaquinoxaline Residues in Egg and Chicken Muscle. Analytical Chemistry.2010,82 (18): 7550-7555
    [61]张梅,张继瑜,李剑勇.兽药人工抗原合成的研究进展.中兽医医药杂志.2006(01):63-65
    [62]张泽英,袁宗辉.兽药人工抗原合成的研究进展.中国兽药杂志.2006(05):44-47
    [63]沈红.抗磺胺药抗体的制备与免疫分析法的研究:[博士论文].北京:中国农业大学.2005
    [64]Cliquet, P., Cox, E., Haasnoot, W., et al. Generation of Group-Specific Antibodies against Sulfonamides. Journal Of Agricultural And Food Chemistry.2003,51 (20):5835-5842
    [65]Spinks, C.A., Wyatt, G.M., Lee, H.A., et al. Molecular Modeling of Hapten Structure and Relevance to Broad Specificity Immunoassay of Sulfonamide Antibiotics. Bioconjugate Chemistry. 1999,10 (4):583-588
    [66]Korsrud, G.O., Papich, M.G., Fesser, A.C.E., et al. Laboratory Testing of the Charm Test Ii Receptor Assays and the Charm Farm Test with Tissues and Fluids from Hogs Fed Sulfamethazine, Chlortetracycline, and Penicillin G. Journal Of Food Protection.1996,59 (2):161-166
    [67]Kitts, D.D., Zheng, M., Burns-Flett, E., et al. Comparison of Sulfadimethoxine Residue Analyses in Salmon Muscle Using Hplc and Charm Ii Test. Journal Of Food Protection.1995,58 (6):678-682
    [68]Http:/www.Charm.Com/Products/Charm-Ii.Html.
    [69]温凯,沈建忠,孟辉等.抗恩诺沙星噬菌体单链抗体库的构建及鉴定.中国农业大学学报.2011(02):118-124
    [70]Stone, E., Hirama, T., Tanha, J., et al. The Assembly of Single Domain Antibodies into Bispecific Decavalent Molecules. Journal Of Immunological Methods.2007,318 (1-2):88-94
    [71]Korpimaki, T., Rosenberg, J., Virtanen, P., et al. Further Improvement of Broad Specificity Hapten Recognition with Protein Engineering. Protein Engineering.2003,16 (1):37-46
    [72]Korpimaki, T., Brockmann, E.C., Kuronen, O., et al. Engineering of a Broad Specificity Antibody for Simultaneous Detection of 13 Sulfonamides at the Maximum Residue Level. Journal Of Agricultural And Food Chemistry.2004,52 (1):40-47
    [73]谢海燕,陈薛钗,邓玉林.核酸适配体及其在化学领域的相关应用.化学进展.2007(06):1026-1033
    [74]段诺,吴世嘉,王周平.核酸适配体识别-荧光法检测赭曲霉素a.分析化学.2011(03):300-304
    [75]Jeong, S., Rhee Paeng, I. Sensitivity and Selectivity on Aptamer-Based Assay:The Determination of Tetracycline Residue in Bovine Milk. ScientificWorldJournal.2012,2012:159456
    [76]Schirmer, C., Meisel, H. Synthesis of a Molecularly Imprinted Polymer for the Selective Solid-Phase Extraction of Chloramphenicol from Honey. Journal Of Chromatography A.2006,1132 (1-2):325-328
    [77]王培龙,范理,宋荣等.动物尿液中盐酸克伦特罗的分子印迹固相萃取-气相色谱-质谱法研究.分析化学.2007(09):1319-1322
    [78]Zhu, K., Li, J., Wang, Z., et al. Simultaneous Detection of Multiple Chemical Residues in Milk Using Broad-Specificity Antibodies in a Hybrid Immunosorbent Assay. Biosensors and Bioelectronics. 2011,26 (5):2716-2719
    [79]朱海,范放,吕敬章等.呋喃唑酮代谢物荧光纳米颗粒免疫层析法的建立.畜牧与饲料科学.2009(06):32-34
    [80]Shen, J., Zhang, Z., Yao, Y., et al. A Monoclonal Antibody-Based Time-Resolved Fluoroimmunoassay for Chloramphenicol in Shrimp and Chicken Muscle. Analytica Chimica Acta. 2006,575 (2):262-266
    [81]Shen, J., Zhang, Z., Yao, Y., et al. Time-Resolved Fluoroimmunoassay for Ractopamine in Swine Tissue. Analytical and Bioanalytical Chemistry.2007,387 (4):1561-1564
    [82]苏赛飞.用于免疫分析的聚苯乙烯微孔板功能化的研究:[硕士论文]长春:长春理工大学.2008
    [83]Hevener, K.E., Yun, M.K., Qi, J., et al. Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase. Journal Of Medicinal Chemistry.2010,53 (1):166-177
    [84]Babaoglu, K., Qi, J., Lee, R.E., et al. Crystal Structure of 7,8-Dihydropteroate Synthase from Bacillus Anthracis:Mechanism and Novel Inhibitor Design. Structure.2004,12 (9):1705-1717
    [85]Fernley, R.T., Iliades, P., Macreadie, I. A Rapid Assay for Dihydropteroate Synthase Activity Suitable for Identification of Inhibitors. Analytical Biochemistry.2007,360 (2):227-234
    [86]Hevener, K.E., Zhao, W., Ball, D.M., et al. Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. Journal of Chemical Information and Modeling.2009,49 (2):444-460
    [87]Achari, A., Somers, D.O., Champness, J.N., et al. Crystal Structure of the Anti-Bacterial Sulfonamide Drug Target Dihydropteroate Synthase. Nature Structural Biology.1997,4 (6):490-497
    [88]Hampele, I.C., D'Arcy, A.,Dale, G.E., et al. Structure and Function of the Dihydropteroate Synthase from Staphylococcus Aureus. Journal Of Molecular Biology.1997,268 (1):21-30
    [89]Baca, A.M., Sirawaraporn, R., Turley, S., et al. Crystal Structure of Mycobacterium Tuberculosis 6-Hydroxymethyl-7,8-Dihydropteroate Synthase in Complex with Pterin Monophosphate:New Insight into the Enzymatic Mechanism and Sulfa-Drug Action. Journal Of Molecular Biology.2000,302 (5): 1193-1212
    [90]Yun, M.-K., Wu, Y., Li, Z., et al. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase. Science.2012,335 (6072):1110-1114
    [91]Lawrence, M.C., Iliades, P., Fernley, R.T., et al. The Three-Dimensional Structure of the Bifunctional 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase/Dihydropteroate Synthase of Saccharomyces Cerevisiae. Journal Of Molecular Biology.2005,348 (3):655-670
    [92]Bagautdinov, B.; Kunishima, N. Crystal Structure of Dihydrop-Teroate Synthase (Folp) from Thermus Thermophilushb8.Riken Structural Genomics/Proteomics Initiative (Rsgi) 2006.
    [93]Levy, C., Minnis, D., Derrick, J.P. Dihydropteroate Synthase from Streptococcus Pneumoniae: Structure, Ligand Recognition and Mechanism of Sulfonamide Resistance. Biochemical Journal.2008, 412 (2):379-388
    [94]Lopez, P., Espinosa, M., Greenberg, B., et al. Sulfonamide Resistance in Streptococcus Pneumoniae:DNA Sequence of the Gene Encoding Dihydropteroate Synthase and Characterization of the Enzyme. Journal Of Bacteriology.1987,169 (9):4320-4326
    [95]Vinnicombe, H.G., Derrick, J.P. Dihydropteroate Synthase from Streptococcus Pneumoniae: Characterization of Substrate Binding Order and Sulfonamide Inhibition. Biochemical And Biophysical Research Communications.1999,258 (3):752-757
    [96]Http://Www.Rcsb.Org/Pdb/Explore/Explore.Structureid=2veg.
    [97]Dallas, W.S., Gowen, J.E., Ray, P.H., et al. Cloning, Sequencing, and Enhanced Expression of the Dihydropteroate Synthase Gene of Escherichia Coli Mc4100. Journal Of Bacteriology.1992,174 (18): 5961-5970
    [98]Http://Www.Rcsb.Org/Pdb/Explore/Explore.Structureid=lajO.
    [99]von Itzstein, M., Wu, W.Y., Kok, G.B., et al. Rational Design of Potent Sialidase-Based Inhibitors of Influenza Virus Replication. Nature.1993,363 (6428):418-423
    [100]Trummlitz, G., van Ryn, J. Designing Selective Cox-2 Inhibitors:Molecular Modeling Approaches. Curr Opin Drug Discov Devel.2002,5 (4):550-561
    [101]段爱霞,陈晶,刘宏德等.分子对接方法的应用与发展.分析科学学报.2009(04):473-477
    [102]Kuntz, I.D., Blaney, J.M., Oatley, S.J. A Geometric Approach to Macromolecule-Ligand Interactions. Journal Of Molecular Biology.1982,161 (02):269-288
    [103]Moritz, O.L., Tam, B.M., Hurd, L.L., et al. Mutant Rab8 Impairs Docking and Fusion of Rhodopsin-Bearing Post-Golgi Membranes and Causes Cell Death of Transgenicxenopus Rods. Molecular Biology Of The Cell.2001,12 (8):2341-2351
    [104]Goodsell, D.S., Morris, G.M., Olson, A.J. Automated Docking of Flexible Ligands:Applications of Autodock. Journal Of Molecular Recognition.1996,9 (1):1-5
    [105]Morris, G.M., Goodsell, D.S., Halliday, R.S., et al. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. Journal Of Computational Chemistry.1998,19 (14):1639-1662
    [106]赵琦.基于分子对接技术的小分子—蛋白质相互作用研究:[硕士论文]江南大学.2009
    [107]Hevener, K.E., Yun, M.-K., Qi, J., et al. Structural Studies of Pterin-Based Inhibitors of Dihydropteroate Synthase. Journal Of Medicinal Chemistry.2009,53 (1):166-177
    [108]Zhou, M.Y., Gomez-Sanchez, C.E. Universal Ta Cloning. Curr Issues Mol Biol.2000,2 (1):1-7
    [109]Goda, N., Tenno, T., Takasu, H., et al. The Presat-Vector:Asymmetric T-Vector for High-Throughput Screening of Soluble Protein Domains for Structural Proteomics. Protein Science. 2004,13 (3):652-658
    [110]Pemble Ⅳ, C., Mehta, P., Mehra, S., et al. Crystal Structure of the 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase·Dihydropteroate Synthase Bifunctional Enzyme from Francisella tularensis. PloS one.2010,5 (11):e14165
    [111]Valderas, M.W., Bourne, P.C., Barrow, W.W. Genetic Basis for Sulfonamide Resistance in Bacillus Anthracis. Microbial Drug Resistance-mechanisms Epidemiology And Disease.2007,13 (1): 11-20
    [112]Li, Y., Wu, Y., Blaszczyk, J., et al. Catalytic Roles of Arginine Residues 82 and 92 of Escherichia Coli 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase:Site-Directed Mutagenesis and Biochemical Studies(?). Biochemistry.2003,42 (6):1581-1588
    [113]Baneyx, F. Recombinant Protein Expression in Escherichia Coli. Current Opinion In Biotechnology.1999,10(5):411-421
    [114]林静云,白志毅,李家乐.三角帆蚌(Hyriopsis Cumingii)Perlucin蛋白原核表达条件的优化及表达产物的鉴定.生物技术通报.2013(07):114-118
    [115]叶姣,陈长华,夏杰等.温度对重组大肠杆菌生长及外源蛋白表达的影响.华东理工大学学报.2002(04):364-367
    [116]毕智丽.重组融合蛋白最佳诱导表达条件的研究.安徽农业科学.2012(10):5743-5745
    [117]Liang, X., Wang, Z., Wang, C., et al. A Proof-of-Concept Receptor-Based Assay for Sulfonamides. Analytical Biochemistry.2013,438 (2):110-116
    [118]Mouillon, J.M., Ravanel, S., Douce, R., et al. Folate Synthesis in Higher-Plant Mitochondria: Coupling between the Dihydropterin Pyrophosphokinase and the Dihydropteroate Synthase Activities. Biochemical Journal.2002,363:313-319
    [119]Aspinall, T.V., Joynson, D.H., Guy, E., et al. The Molecular Basis of Sulfonamide Resistance in Toxoplasma Gondii and Implications for the Clinical Management of Toxoplasmosis. Journal Of Infectious Diseases.2002,185 (11):1637-1643
    [120]Wang, Z., Li, Y., Liang, X., et al. Forcing Immunoassay for Sulfonamides to Higher Sensitivity and Broader Detection Spectrum by Site Heterologous Hapten Inducing Affinity Improvement. Analytical Methods.2013,5 (24):6990-7000
    [121]王战辉,丁双阳,张素霞等.分子模拟技术研究17种磺胺类药物与抗体亲和力构效关系.化学学报.2008,66(23):2613-2619
    [122]Valderas, M.W., Andi, B., Barrow, W.W., et al. Examination of Intrinsic Sulfonamide Resistance in Bacillus Anthracis:A Novel Assay for Dihydropteroate Synthase. Biochimica Et Biophysica Acta-general Subjects.2008,1780 (5):848-853
    [123]Richey, D.P., Brown, G.M. The Biosynthesis of Folic Acid. Ix. Purification and Properties of the Enzymes Required for the Formation of Dihydropteroic Acid. Journal Of Biological Chemistry.1969, 244 (6):1582-1592
    [124]Shiota, T., Baugh, C., Jackson, R., et al. Enzymic Synthesis of Hydroxymethyldihydropteridine Pyrophosphate and Dihydrofolate. Biochemistry.1969,8(12):5022-5028
    [125]牛春华,刘文森,高宏伟等.封闭液对elisa检测蓖麻毒素的影响.吉林农业科学.2008,33(5):61-62
    [126]Roland, S., Ferone, R., Harvey, R.J. The Characteristics and Significance of Sulfonamides as Substrates for Escherichia Coli Dihydropteroate Synthase. Journal Of Biological Chemistry.1979,254 (20):10337-10345
    [127]Padayachee, T., Klugman, K.P. Novel Expansions of the Gene Encoding Dihydropteroate Synthase in Trimethoprim-Sulfamethoxazole-Resistant Streptococcus Pneumoniae. Antimicrobial Agents And Chemotherapy.1999,43 (9):2225-2230
    [128]Adrian, J., Font, H., Diserens, J.-M., et al. Generation of Broad Specificity Antibodies for Sulfonamide Antibiotics and Development of an Enzyme-Linked Immunosorbent Assay (Elisa) for the Analysis of Milk Samples. Journal Of Agricultural And Food Chemistry.2009,57 (2):385-394
    [129]Zhang, H., Duan, Z., Wang, L., et al. Hapten Synthesis and Development of Polyclonal Antibody-Based Multi-Sulfonamide Immunoassays. Journal Of Agricultural And Food Chemistry.2006, 54 (13):4499-4505
    [130]Cliquet, P., Cox, E., Haasnoot, W., et al. Extraction Procedure for Sulfachloropyridazine in Porcine Tissues and Detection in a Sulfonamide-Specific Enzyme-Linked Immunosorbent Assay (Elisa). Analytica Chimica Acta.2003,494 (1-2):21-28
    [131]Haasnoot, W., Pre, J.D., Cazemier, G., et al. Monoclonal Antibodies against a Sulfathiazole Derivative for the Immunochemical Detection of Sulfonamides. Food And Agricultural Immunology. 2000,12 (2):127-138
    [132]Cacciatore, G., Petz, M., Rachid, S., et al. Development of an Optical Biosensor Assay for Detection of [Beta]-Lactam Antibiotics in Milk Using the Penicillin-Binding Protein 2x*. Analytica Chimica Acta.2004,520 (1-2):105-115
    [133]Lamar, J., Petz, M. Development of a Receptor-Based Microplate Assay for the Detection of Beta-Lactam Antibiotics in Different Food Matrices. Analytica Chimica Acta.2007,586 (1-2):296-303
    [134]Zeng, K., Zhang, J., Wang, Y., et al. Development of a Rapid Multi-Residue Assay for Detecting Beta-Lactams Using Penicillin Binding Protein 2x*. Biomedical And Environmental Sciences.2013,26 (2):100-109
    [135]Zhang, J., Wang, Z., Wen, K., et al. Penicillin-Binding Protein 3 of Streptococcus Pneumoniae and Its Application in Screening of B-Lactams in Milk. Analytical Biochemistry.2013,442 (2): 158-165
    [136]Wang, Z., Zhang, S., Nesterenko, I.S., et al. Monoclonal Antibody-Based Fluorescence Polarization Immunoassay for Sulfamethoxypyridazine and Sulfachloropyridazine. Journal Of Agricultural And Food Chemistry.2007,55 (17):6871-6878
    [137]Kolosova, A.Y., Samsonova, J.V., Egorov Am. Competitive Elisa of Chloramphenicol:Influence of Immunoreagent Structureand Application of the Method for the Inspection of Food of Animal Origin. Food and agricultural immunology.2000,12 (2):115-125
    [138]Abad, A., Montoya, A. Development of an Enzyme-Linked Immunosorbent Assay to Carbaryl.2. Assay Optimization and Application to the Analysis of Water Samples. Journal Of Agricultural And Food Chemistry.1997,45 (4):1495-1501
    [139]Liang, C., Jin, R., Gui, W., et al. Enzyme-Linked Immunosorbent Assay Based on a Monoclonal Antibody for the Detection of the Insecticide Triazophos:Assay Optimization and Application to Environmental Samples. Environmental Science & Technology.2007,41 (19):6783-6788
    [140]Nistor, C., Oubina, A., Marco, M.-P., et al. Competitive Flow Immunoassay with Fluorescence Detection for Determination of 4-Nitrophenol. Analytica Chimica Acta.2001,426 (2):185-195
    [141]Maragos, C., Jolley, M., Plattner, R., et al. Fluorescence Polarization as a Means for Determination of Fumonisins in Maize. J. Agric. Food Chem.2001,49 (2):596-602
    [142]Onnerfjord, P., Eremin, S., Emneus, J., et al. Fluorescence Polarisation for Immunoreagent Characterisation. Journal Of Immunological Methods.1998,213 (1):31-39
    [143]Krasnova, A.I., Eremin, S.A., Natangelo, M., et al. A Polarization Fluorescence Immunoassay for the Herbicide Propanil. Analytical Letters.2001,34 (13):2285-2301
    [144]Krikunova, V.S., Eremin, S.A., Smith, D.S., et al. Preliminary Screening Method for Dioxin Contamination Using Polarization Fluoroimmunoassay for Chlorinated Phenoxyacid Pesticides. International Journal Of Environmental Analytical Chemistry.2003,83 (7-8):585-595
    [145]Choi, M.J., Lee, J.R., Eremin, S.A. Development of Single Reagent for Fluorescence Polarization Immunoassay of Atrazine. Food And Agricultural Immunology.2002,14 (2):107-120
    [146]Murtazina, N.R., Eremin, S.A., Mozoleva, O.V., et al. Fluorescent Polarization Immunoassay for Sulphadiazine Using a High Specificity Antibody. International Journal of Food Science & Technology. 2004,39 (8):879-889
    [147]Kleman-Leyer, K.M., Klink, T.A., Kopp, A.L., et al. Characterization and Optimization of a Red-Shifted Fluorescence Polarization Adp Detection Assay. Assay and drug development technologies. 2009,7 (1):56-67
    [148]Deryabina, M.A., Yakovleva, Y.N., Popova, V.A., et al. Determination of the Herbicide Acetochlor by Fluorescence Polarization Immunoassay. Journal Of Analytical Chemistry.2005,60 (1):
    [149]Lynch, B.A., Loiacono, K.A., Tiong, C.L., et al. A Fluorescence Polarization Based Src-Sh2 Binding Assay. Analytical Biochemistry.1997,247 (1):77-82
    [150]Triglia, T., Menting, J.G.T., Wilson, C., et al. Mutations in Dihydropteroate Synthase Are Responsible for Sulfone and Sulfonamide Resistance in Plasmodium Falciparum. Proceedings of the National Academy of Sciences of the United States of America.1997,94 (25):13944-13949
    [151]Wang, Z., Zhang, S., Ding, S., et al. Simultaneous Determination of Sulphamerazine, Sulphamethazine and Sulphadiazine in Honey and Chicken Muscle by a New Monoclonal Antibody-Based Fluorescence Polarisation Immunoassay. Food Additives & Contaminants:Part A. 2008,25 (5):574-582
    [152]王战辉,张素霞,沈建忠等.荧光偏振免疫分析在农药和兽药残留检测中的研究进展.光谱学与光谱分析.2007(11):2299-2306
    [153]张才成,陈静,万腊根.回收试验与基质效应评价.实验与检验医学.2011,29(3):269-270
    [154]Shim, W.-B., Kolosova, A.Y., Kim, Y.-J., et al. Fluorescence Polarization Immunoassay Based on a Monoclonal Antibody for the Detection of Ochratoxin A. International Journal of Food Science & Technology.2004,39 (8):829-837
    [155]Gasilova, N.V., Eremin, S.A. Determination of Chloramphenicol in Milk by a Fluorescence Polarization Immunoassay. Journal Of Analytical Chemistry.2010,65 (3):255-259
    [156]Brooks, D.R., Wang, P., Read, M., et al. Sequence Variation of the Hydroxymethyldihydropterin Pyrophosphokinase:Dihydropteroate Synthase Gene in Lines of the Human Malaria Parasite, Plasmodium Falciparum, with Differing Resistance to Sulfadoxine. European Journal Of Biochemistry. 1994,224 (2):397-405
    [157]Kellam, P., Dallas, W.S., Ballantine, S.P., et al. Functional Cloning of the Dihydropteroate Synthase Gene of Staphylococcus Haemolyticus. Ferns Microbiology Letters.1995,134 (2-3):165-169
    [158]Pashley, T.V., Volpe, F., Pudney, M., et al. Isolation and Molecular Characterization of the Bifunctional Hydroxymethyldihydropterin Pyrophosphokinase-Dihydropteroate Synthase Gene from Toxoplasma Gondii. Molecular And Biochemical Parasitology.1997,86 (1):37-47
    [159]Swedberg, G., Ringertz, S., Skold, O. Sulfonamide Resistance in Streptococcus Pyogenes Is Associated with Differences in the Amino Acid Sequence of Its Chromosomal Dihydropteroate Synthase. Antimicrob Agents Chemother.1998,42 (5):1062-1067
    [160]Gibreel, A., Skold, O. Sulfonamide Resistance in Clinical Isolates of Campylobacter Jejuni: Mutational Changes in the Chromosomal Dihydropteroate Synthase. Antimicrob Agents Chemother. 1999,43 (9):2156-2160
    [161]Nopponpunth, V., Sirawaraporn, W., Greene, P.J., et al. Cloning and Expression of Mycobacterium Tuberculosis and Mycobacterium Leprae Dihydropteroate Synthase in Escherichia Coli. Journal Of Bacteriology.1999,181 (21):6814-6821

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700