海洋烷烃降解菌的富集分离与多样性初步分析及其生物表面活性剂产生菌的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类开发地球资源的加剧,海洋受到了严重的污染。目前普遍认为生物修复是清除海洋石油污染的有效手段。从海洋石油污染较严重的环境中进行石油烃降解微生物的分离、培养,以及对这些重要降解菌的鉴定是当前海洋环境微生物学研究的重点和热点。在众多的污染中,石油是海洋环境中的重要污染物,烷烃是石油的重要组成成分。但是其疏水性往往不利于微生物对其快速降解。化学表面活性剂虽然可以驱散油或加大其水溶性,但是由于其生物毒性,往往会阻碍微生物对油的利用。生物表面活性剂(biosurfactant)无毒、可生物降解,不会对环境造成污染,且能够增强憎水性化合物的亲水性和生物可利用性,提高微生物的数量,继而提高了烷烃的降解速度,是提高生物修复技术的有效手段。此外,生物表面活性剂在环境生物工程其它领域也有极大的应用潜力。因此,对烷烃降解菌和生物表面活性剂产生菌的研究具有较高的理论和应用价值。
     本文以十六烷为唯一碳源,通过培养和非培养两种手段研究了南海沉积物中石油降解菌的多样性。通过烷烃富集培养,从2个站点不同深度的南海沉积物样品中富集筛选出48株深海细菌,分属于10个不同的属,其中27株对十六烷有降解能力。表面张力测定结果表明,4株降解菌同时具有较强的表面活性剂产生能力,2株Dietzia maris菌能使水的表面张力降至33mN/m左右,这是该种微生物产表面活性剂的首次报道。通过变性梯度凝胶电泳(DGGE)分析显示,南海沉积物富集物中的烷烃降解菌优势菌是芽孢杆菌,而且有多种。其中,Bacillus aquimaris在两个站点的7个样品的富集物中都是优势菌。此外,Sporosarcina,Halomona以及Brevibacterium属的细菌在不同样品中也表现为除Bacillus之外的优势菌。其中大多数菌已报道可以降解原油或柴油。
     从南非开普敦码头的表层海水的十个样品中,以原油和柴油为唯一碳源,分离筛选89株单菌,经鉴定70株为烷烃降解菌。对十个站点中烷烃降解菌分布状况进行分析,用聚合酶链式反应(PCR)、变性梯度凝胶电泳(DGGE)和切胶测序相结合的方法对十个样品中的细菌多样性进行分析,结果显示开普敦表层海水中的烷烃降解菌优势菌是食烷菌。但是,不同样品之间存在差别。在S23站点中Sphingopyxis和Bacillus是优势菌,在S24站点中Alcanivorax和Marinobacter是优势菌,在S25站点中Marinobacter是优势菌,在S26站点中Alcanivorax,Marinobacter,Sinorhizobium和Luteibacter是优势菌,在S27站点中Alcanivorax是优势菌,在S28站点中Acinetobacter和Vibrio是优势菌,在S29站点中Acinetobacter和Erythrobacter是优势菌,在S30站点中Alcanivorax是优势菌,在S31站点中Alcanivorax和Erythrobacter是优势菌,在S32站点中Alcanivorax是优势菌。同时还有一些未培养的细菌存在。选取四株较好的烷烃降解单菌接种于十六烷作为唯一碳源的培养基中,利用气质联用(GC-MS)测定烷烃降解率。培养三天后,降解率分别为43%,37%,40%,46%。为石油污染的生物修复技术的应用提供丰富的菌种资源。
     以十六烷为唯一碳源,通过测定西南印度洋中脊深海水样中降解菌单菌培养液的表面张力,筛选出27株表面活性剂产生菌。有9种与GenBank中最近缘的菌株最高相似度均低于97%,是表面活性剂产生菌的新种或新属。这些菌所产生的表面活性剂成分尚未确定,也许具有新的生物活性,具有进一步研究的价值。
With the exploitation of the earth resources, marine has been suffered from seriouspollutions. Bioremediation is now widely recognized as an effective way to remove marine oil pollution. It has long been recognized that many microorganisms can use medium or long-chain n-alkanes as sources of carbon and energy, which has stimulated many studies on the usefulness of these organisms in the bioremediation of oil spills and contaminated sites. It's very important and necessary to isolate and culture and detect petroleum-degrading microorganisms from the polluted environment. Oil is one of the most important pollutants in the marine environment, but its hydrophobicity inevitably slows the degradation by microorganisms. Although chemical surfactants can disperse oil or increase oil water-solublility, but they tends to impede the oil use by microorganisms because of their toxicity. Biosurfactants are non-toxic, biodegradable, and will not cause pollution to the environment. Meanwhile biosurfactants can enhance the bioavailability of hydrophobic and hydrophilic compounds, therefore increase the degradation rate of alkane. In addition, the biosurfactant have great potential application in the environmental protection, crude oil recovery, health care, and food-processing industries.
     Deep sea sediment samples of the South China Sea were used to isolate hydrocarbon degrading bacteria. As a result, forty eight isolates were obtained from the enrichments with hexadecane as the sole carbon sources. Among them, 27 isolates were capable of degrading alkane; and 4 could produce biosurfactant significantly as determined by the surface tension measurement. Two isolates belonging to Dietzia maris lowered water surface tension to 33 mN/m. This is the first report about D. maris in biosurfactant production. The results of polymerase chain reaction (PCR) followed by Denaturing Gradient Gel Electrophoresis (DGGE) and DNA sequencing suggested that Bacillus was the dominant member in the hexadecane enriched communities. Isolates of Bacillus aquimaris were demonstrated to be the most predominant degraders in all 7 samples at 2 sampling sites. In addition, Sporosarcina, Halomonas and Brevibacterium were also found as one of the dominant members in some samples. Therefore, species of Bacillus might play an important role in alkane degradation in te sediments of the sampling sites.
     By enrichment with crude oil and diesel as the sole carbon source, the diversity of petroleum-degrading bacteria in the surface water of Cape Town was surveyed. Ten samples resulted in 10 petroleum -degrading consortia, whose structures were analyzed by the combined methods of DGGE and CFU counting. DGGE revealed quite diversity in bacterial population. We isolated 94 strains in total and they belong to 23 different genus. They belong to Proteobacteria, Acinobacteria, Flavobacteria, Firmicutes, Sphingobacteria, respectively. The results showed that the dominant strains were detected phylogenetically close to Alcanivorax, Marinobacter, Martelella, Novosphingobium, and Tthalassospira respectively. Four alkane degrading bacteria were selected to examine their potential in alkane degradation. After three days in cubation, 43%, 37%, 40% and 46% of hexadecane were degraded as quantified by GC-MS, respectively.
     With two kinds of methods including measurement of surface tension and oil-displacement test, 27 biosurfactant-producing bacteria was isolated from the southwest ridge of Indian Ocean. On the basis of 16S rRNA gene sequence similarity, there are 9 strains are less than the maximum 97% similarity .Therefore, 9 novel species or genus were proposed. The surfactant composition generated by these bacteria has not yet been determined; perhaps have new biological activity, with the value of further study.
引文
[1]陈建秋.中国近海石油污染现状、影响和防治[J].节能与环保,2002,30:15-17.
    [2]国家环保总局信息中心,国家海洋局.2002年中国海洋环境质量公报[R].2003.
    [3]HICKS B N,CAPLAN J A.Bioremediation:A natural solution[J].Pollution Engineering,1993,25(2):30-33.
    [4]Bragg et al.Effectiveness of bioremediation for the Exxon Valdez oil spill.Nature,1994,368:413-418.
    [5]Richard et al.Field evaluation of marine oil spill bioremediation.Microbiol.Review.1996,60:342-365.
    [6]Head I.M.et al.Bioremediation of potroleum hydrocarbon contaminants in marine habitats.Current opinion in Biotechnoiogy,1999,10:234-239.
    [7]千田,千弘,吉井上.海洋油污染的微生物处理.海洋石油,2000,103(1):59-62.
    [8]Juhasz and Naidu.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzenepyrene.International Biodeterioration &Biodegradation,2000,45:57-88.
    [9]Madsen EL.Determining in situ biodegradation:Facts and Challenges[J].Envrion.Sci.Technol.,1991,25(10):1663-1672.
    [10]Oh YS.Effects of nutrients on crude oil biodegradation in the upper intertidal zone[J].Mar.Pollut.Bull.,2001,42(12):1367-1372.
    [11]Prichard PH,Costa CF.EPA's Alaska oil spill bioremediation project[J].Envi ron.Sci.Technol.,1991,25(3):372-379.
    [12]OhYS.Effects of nutrients on crude oil biodegradation in the upper intertidal zone[J].Mar.Pollut.Bul,l 2001,42(12):1367-1372.
    [13]VenosaAD.Bioremediation of experiment oil spill on the shoreline of Delaware bay[J].Environ.Sci Techno,l 1996,30(5):1764-1775.
    [14]李进道,丁美丽,陈德辉,等.用长效肥料提高微生物分解海面油膜试验[J].青岛海洋大学学报,1990,20(3):84-89.
    [15]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002.
    [16]Okami Y.Marine microorganisms as a source of bioactive agents[J].Microbiol Ecol 1986,12:65-78.
    [17] Songen, N. L. Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoff- und Energiequelle ftir Mikroben. Zentralbl. Bakteriol Parasitenkd. Infektionskr. Hyg. Abt. 1913, 2 37, 595-609 (in German).
    [18] Ian M. Head, D. Martin Jones and Wilfred F. M. Roling. Marine microorganisms make a meal of oil. [J]Natr Rev Microbiol, 2006,4(3): 173-183
    
    [19] Melcher RJ, Apitz SE, Hemmingsen BB. Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies[J]. Appl Environ Microbiol, 2002,68: 2858-2868
    
    [20] Ward DM, C M Santegoeds, SC Nold, et al. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures[J]. Antonie Leeuwenhoek. 1997,71:143-150.
    
    [21] Amann R I, E Luding, K H Schleifer. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev, 1995, 59: 143-169.
    
    [22] 薛超波,王金良,金珊等.海洋微生物多样性研究进展[J].海洋科学进展, 2004,22:377-384.
    [23] Pace N R. A molecular viewer of microbial diversity and the biosphere[J]. Science, 1997,276:734-740.
    
    [24] Voytek M A, BB Ward. Detection of Ammonium-Oxidizing Bacteria of the Beta-Subclass of the Class Proteobacteria in Aquatic Samples with the PCR [J]. Appl Environ Microbiol, 1995, 61:1444-1450.
    
    [25] Pillai S D, K L Josephson, R L Bailey, et al. Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences [J]. Appl Environ Microbiol 1991, 57: 2283-2286.
    [26] Sykes P J, S H Neoh, M J Brisco, et al. Quantification of targets for PCR by use of limiting dilution[J]. Bio Techniques, 1992, 13: 444-449.
    
    [27] Bond P L, P Hugenholtz, J Keller, et al. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors [J]. Appl Environ Microbiol, 1995, 61:1910-1916.
    
    [28] Gonzalez J M, M A Moran. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater [J]. Appl Environ Microbiol, 1997,80 63: 4237-4342.
    [29] Muyzer G, E C de Waal, A G Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol, 1993, 59: 695-700.
    [30] Moeseneder M M, J M Arrieta, G Muyzer, et al. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis[J]. Appl Environ Micrbiol, 1999, 65:3518-3525.
    [31] Muyzer G DGGE/TGGE a method for identifying genes from natural ecosystems. [J]Curr Opini in Microbiol 1999.2: 317-322
    [32] Dunbar J S, Takala S M, Barns, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning[J]. Appl Environ Microbiol, 1999,65:1662-1669.
    [33] Dunbar J, L O Ticknor, C R Kuske. Assessment of microbial diversity in four southwestern United States Soils by 16S rRNA gene terminal restriction fragment analysis [J]. Appl Environ Microbiol, 2000,66: 2943-2950.
    [34] Liu W T, T L Marsh, H Cheng, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Appl Environ Microbiol, 1977,63: 4516-4522.
    
    [35] 陈海敏,陈胜明生物技术在分子微生物生态学上的应用.微生物学通报, 1999.26:436-439
    
    [36] Crump B, E V Armbrust, J A Baross. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean [J].Appl Environ Microbiol, 1999, 65: 3192-3204.
    [37] Ward B B, D P Martino, M C Diaz, et al. Analysis of ammonia-oxidizing bacteria from hypersaline Mono lake, California, on the basis of 16S rRNA sequences [J]. Appl Environ Microbiol, 2000, 66: 2873-2881.
    [38] Teske A, C Wawer, G Muyzer, et al. Distribution of sulfate-reducing bacteria in a Stratified Fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments [J]. Appl Environ Microbiol, 1996,62: 1405-1415.
    [39]Bognolo.G.Biosurfactants as emulsifying agents for hydrocarbons.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,152(2):41-52.
    [40]Jitendra DD and Ibrahim MB(1997).Microbial production of surfactants and their commercial potential.[J]Microbiol.Mol.Biol.Reviews 3:47-64
    [41]陈坚,华兆哲,伦世仪.生物表面活性剂在环境生物工程中的应用.环境科学,1996,17(4):84-87
    [42]Rosenberg E.Microbial surfactanrs.Crit.Rev.Biotechnol.,(1986),3:109-132
    [43]Hayes ME,Nestaas E and Hrebenar KR et al.Microbial surfactants.Chemtech,1986,4:239-243
    [44]Banat,I.M..Biosurfactants production and possible use in microbial enhanced oil recovery and oil pollution remediation microbial enhanced oil recovery and oil pollution remediation:a review.[J]Biorecource Technology,1995,51:1-12.
    [45]钱欣平,阳永荣,孟琴.生物表面活性剂对微生物生长和代谢的影响.微生物学通报,200229(3):75-78.
    [46]Hommel,R.K..Formation and physiological role of bioswfactants produced by hydrocarbon-utilizing microorganisms.[J]Biorem.,1990,1:107-119
    [47]A.M.,Andel,J.,Rulkens,W.H.Influence of non-ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons.[J]Appl.Environ.Microbiol,1995,61:1699-1705.
    [48]Willumsen,P A.,Karlson,U.Screening of bacteria,isolated from PAH-contaminated soils for production of biosurfactant and bioemuisifiers.[J]Biodegradation,1997,7:415-423.
    [49]Neu,T.R.and Poralla,K..Emulsifying agents isolated from bacteria isolated during screening for cells with hydrophobic surfaces.[J]Appl.Microbiol.Bioteehnoi,1990,32:521-525.
    [50]潘冰峰,徐国梁,施屏邑.生物表面活性剂产生菌的筛选.微生物学报,1999,39(3):264-267.
    [51]Shulga,A.N.,Karpenko,E.V.,Eliseev,S.A.,Turovskii,A.A,A method for determining the content of anionogenic surface-active peptidolipids of bacterial original.[J]Microbiology,1993,55(1):85-88.
    [52]Christoli,N.and Ivshina,I.B Microbial surfactants and their use in field studies of soil remediation.[J]Appl.Microbiol.Biotechnol,2002,93(6):915-929.
    [53]Kosaric,N..Biosurfactants.New York:Marcel Dekker.Inc.1993,65-67.
    [54] Olivera, N. L., Commndatore, M. Cx, Moran,A. C. and Esteves, J. L.. Biosurfactant-enhanced degradation of residual hydrocarbons from ship bilge wastes. J. Ind. Microbiol. Biotechnol, 2000,25: 70-73.
    [55] Banat, I. M., Makkar, R. S., Cameotra, S. S.. Potential commercial applications of microbial surfactants. [J]Appl. Environ. Microbiol, 2000, 53(5): 495-508
    
    [56] Jain, D. K., Lee, H. and Trevors, J. T.. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. [J]. Ind. Microbiol.,1992, 10:87-93.
    [57] Kosaric, N.Biosurfactants and their application for soil bioremediation.[J] Food Biotechnol,2001, 39(4): 295-304.
    
    [58] Deschens, L., Lafrance, P., Villeneuve, J. P. and Sanmson, R. The effect of an anionic surfactant on the mobilization and biodegradation of PAHs in a creosote-contaminated soil. [J] Hydrological Sciences Journal, 1995,40: 471-484.
    [59] Nakahara, T., Hisatsuka, K. and Minoda, Y.Effect of hydrocarbon emulsification on growth and respiration of microorganisms in hydrocarbon media. J. Ferment. Bioeng, 1981 59: 415-18.
    [60] Providenti, M. A., Greer, C. W., Lee, H. and Trevors. J. T.. Phenanthrene mineralization by Pseudomonas sp. UGH. [J]. Microbiol. Biotechnol, 1995, 11:271-279.
    [61] Providenti, M. A.Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiology Ecology, 1995, 17: 15-26.
    [62] Noodman, W. H. and Janssen, D. B.. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol, 2002, 68(9): 4502-4508
    [63] Itoh, S. and Suzuki, T.Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. [J]Agric. Biol. Chem, 1972,36:2233 —235.
    [64] Deziel, E., Paquette, G, Villemur, R., Lepine, F. Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons. [J]Appl. Environ. Microbiol, 1996, 62:1908-1912.
    
    [65] Brettar I, Christen R and Hofle M G Idiomarina balticasp. nov.a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea. [J] Int J Syst Evol Microbiol.2003 53 (Pt 2): 407-413
    [66] Cambon-Bonavita M A, Lesongeur F, Pignet P, Wery N, Lambert C, Godfroy A,Querellou J and Barbier G Extremophiles, thermophily section, species description Thermococcus atlanticussp. nov., a hyperthermophilic Archaeon isolated from a deep-sea hydrothermal vent in the Mid-Atlantic Ridge. [J]Extremophiles 2003.7: 101-109
    [67] Kanso S and Patel B K Microvirga subterranea gen. nov., sp.nov.a moderate thermophile from a deep subsurface Australian thermal aquifer. [J]intJ Syst Evol.Microbiol 2003.53 (Pt 2): 401-406
    [68] Loveland-Curtze J, Sheridan P P, Gutshall K R and Brenchley J E Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. [J] Arch Microbiol .1999.171. 355 — 363
    [69] Pukall R, Buntefus D, Fruehling A, Rohde M, Kroppenstedt R M, Burghardt J, Lebaron P, Bernard L and Stackebrandt E Sulfztobacter mediterrahaeus sp. nov., a new sulfite-oxidizing Gram-negative bacterium of the alpha subclass of the class Proteobacteria. [J] Int J Svst Bacteriol.1999. 49: 513 — 519
    [70] Reddy G S, Prakash J S, Prabahar V, Matsumoto G I, Stackebrandt E and Shivaji S Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. [J] Int J Syst Evol Microbiol .2003.53 (Pt 1): 183 — 187
    [71] Shi B H, Arunpairojana V, Palakawong S and Yokota A Tistrella mobilis gen.nov.sp. nov, a novel polyhydroxyalkanoate-producing bacterium belonging to a-Proteobacteria. [J]Gen Appl Microbiol 2002.48: 335-43
    [72] Zhang Q, Li W J, Cui X L, Li M GS Xu L H and Jiang C L Streptomyces yunnanensis sp. nov.,a mesophile from soils in Yunnan, China. [J] Int J Syst Evol Microbiol.2003. 53 (Pt 1): 217-221
    [73] Morell Virginia .Life's last domain. [J] Science 1996.273:1043 — 1045
    [74] Bartlett D H Pressure effects on in vivo microbial processes. [J]Biochim Biophy Acta 2002.1595:367 — 381
    
    [75] Isaksen M F and Jorgensen B B Adaptation of psychrophilic and psychrotrophic Sulfate-reducing bacteria to permanently cold marine environments.. [J]Appl Environ Microbiol 1996.62:408-414
    
    [76] Kato C and Bartlett D H The molecular biology of barophilic bacteria. Extremophiles 1997.1:111-116
    
    [77] Yakimov, M.M., Golyshin, P.N., Lang, S., Moore, E.R., Abraham, W.R., Lunsdorf, H. and Timmis, K.N. Alcanivorax borkumensis gen.nov . , sp . nov . , a new hydrocarbon-degrading and surfactant producing marine bacterium [J]. Int J Syst Bacteriol 1998, 48: 339-348.
    [78] Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment.Intern. J. System. Evolution. Microbiol. 2006, 55:1181-86
    [79] Takami H, Inoue A, Fuji F, et al. Biodiversity in deep sea sites located near the south part of Japan[J]. Extremophilies 1999, 3:97-102.
    [80] Kato C, Li L, Tamaoka J, et al. Molecular analysis of the sediment of the 11000m deep Mariana Trench[J]. Extremophilies, 1997, 1:117-123.
    [81] Li L, Kato C, Horikoshi K. Bacterial diversity in deep sea sediments from different depths.[J].Biodiv Conserv, 1999, 8:659-677.
    [82] Yangbayashi M, Nogi Y, Li L, et al. Changes in the microbial community in Japan Trench sediment from a depth of 6292m during cultivation without decompression [J]. FEMS Microbiol Let, 1999, 170:271-279.
    [83] Zengler K, Toledo G, Rappe M, et al. cultivating the uncultured [J]. Proc Natl Acad Sciv USA,2002, 99(24): 15681-15686.
    [84] Penelope S Y, Bronwyn E G, Philip H, et al. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum level diversity of soil bacteria[J]. Appl Environ Microbiol,2004,70 (7) :4363-4366.
    [85] Shayne J J, Philip H, Parveen S, et al. Laboratory cultivation of widespread and previously uncultured soil bacteria [J]. Appl Environ Microbiol, 2003, 69(12):7210-7215.
    [86] Komukai-NS, Sugiura K, Yamauchi-IY, et al. Construction of bacterial consortia that degrade Arabian light crude oil [J]. J Ferment Bioeng, 1996, 82: 570-574.
    [87] Venkateswaran K, Harayama S. Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil [J]. Can J Microbiol, 1995, 41: 767-775.
    [88] Peng F, Liu Z, Wang L and Shao Z.. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants.[J] Appl Microbiol,2007,102: 1603-1611.
    [89] Ferris M J, Muyzer G, Ward D M. Denaturing gradiment gel electrophoresis profiles of 16S rNDNA defined population's inhabaiting a hot spring microbial mat community [J]. Appl Environ Microbiol, 1996, 62:2448-2462.
    
    [90] Ward D M, Ferris M J, Nold S C. A natural view of microbial biodiversity within hot spring cynobacterial mat communities [J]. Microbiol Nol Biol Rev, 1998,62:1353-1370.
    [91] Emilio O C, Hendrik S C, Lluis B, et al. Identification of and Spatio-Temporal differences between microbial assemblages from two neighboring sulfurous lake: comoarison by microscopy and denaturing gradiment gel electrophoresis [J].Appl Environ Microbiol, 2000,66:499-508.
    
    [92] Sekiguchi H, Watanbe M, Nakahara T. Succession of bacterial community structure along the Changjiang River determined by denaturing gradiment gel electrophoresis and clone library analysis.[J]. Appl Environ Microbiol, 2002, 68:5142-5150.
    
    [93] Moeseneder M M, Jesus M A, Gerard M. Optimization of terminal-rrestriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradiment gel electrophoresis.[J].Appl Environ Microbiol, 1999,65:3518-3525.
    
    [94] Bano N, Hollibaugh J T. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean [J]. Appl Environ Microbiol, 2002, 68:505-518.
    
    [95] Duineveld B M, Rosado A, Elsas J D. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization pattern[J]. Appl Environ Microbiol, 1998, 64:4950-4957.
    
    [96] Smit E, Leeflang P, Gommans S. Diversity and seasonal fluetrations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods [J]. Appl Environ Microbiol, 2001, 67:2284-2291.
    
    [97] Boyd A. Mckew, Frederic Coulon, A. Mark Osborn, Kenneth N. Timmis and Terry J. McGenity.Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary ,UK. [J]Environ. Microbiol. 2007, 9(1): 165-176.
    
    [98] Yakimov, M.M., Denaro, R., Genovese, M ., Cappello, S., D auria, G., Chernikova, T.N., et al.Natural microbial diversity in superficial sediments of Milazzo Harbor(Sicily) and community successions during microcosm enrichment with various hydrocarbons . [J] Environ Microbiol.2005,7: 1426-1441.
    
    [99] Murray AE, Hollibaugh JT. Phylogenetic composition of bacterio-pankton from two California estuaries compared by denaturing gradient gelelectrophoresis of 16SrDNA fragments. [J]Appl Environ Microbiol, 1996, 62 (7): 2676-2680.
    [100]Yoon JH,Kim IG,Kang KH.Bacillus marisflavi sp.nov.and Bacillus aquimaris sp.nov.,isolated from sea water of a tidal flat of the Yellow Sea in Korea.[J]Int J Syst Evol Microbiol,2003,53:1297-30
    [101]Yuki Kasai,Hideo Kishira,et al.,Predominent growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water.[J]Environ Microbiol.2002,4(3):141-147
    [102]吴业辉.海洋石油降解菌的分离鉴定及其降解酶基因的研究.[D]厦门大学.2007…………

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700