酒精对线虫作用的分子机理及神经元功能成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒精在现代社会中被广泛使用甚至滥用。酒精能够对神经系统产生严重的影响,长期饮酒能使机体对酒精产生耐受性和依赖性。在对酒精作用机制的研究中,近年来取得了一些重要的成果,但其分子机理仍然需要进一步深入研究。
     酒精可以影响很多物种学习行为的发生。在模式生物——秀丽隐杆线虫(Caenorhabditis elegans)中,味觉可塑性是学习行为的一个简单的范例,即在无食物状态下,长时间暴露于吸引浓度的作为化学引诱剂的NaCl溶液之后,线虫会改变它们对NaCl的化学趋向性,最终表现出对NaCl的趋向性降低甚至回避。利用这种简单的模式化的学习行为,我们探讨了酒精对线虫味觉可塑性行为的影响及其作用机制。结果表明,无论是在预处理阶段还是随后的测试阶段加入酒精,都干扰了线虫对NaCl的味觉可塑性行为。此外,通过对酒精作用的效应时间、效应浓度和线虫培养环境的研究,我们发现:酒精这一作用不是状况依赖性的,味觉可塑性并不因酒精加入导致的前后关联条件的改变而丧失;酒精的作用效果也不具有剂量依赖性;酒精的作用与线虫的摄食状况有关,依赖于线虫良好的摄食状况。对神经系统相关的突变体线虫株系的分析表明,复合胺信号途径的关键基因如tph-1、ser-4和ser-7,以及G蛋白基因gpa-3参与了酒精影响线虫味觉可塑性的调控,并且复合胺信号也参与调控了酒精对移动、产卵行为的作用。还进一步发现酒精对于受到食物信号控制的其它行为—辛醇厌恶行为也具有影响。我们的结果揭示出复合胺信号通路在线虫响应急性的酒精作用中的调控作用。
     本研究的另外一个重要方面,我们开发了一个带有矩形块状微阀和类Y型微通道的双层微流控芯片装置,用以实现线虫的活体固定和头部的液流刺激。在特异性启动子的控制下,利用钙离子指示探针G-CaMP标记线虫目标神经元,通过成像手段进行活体响应环境刺激时神经元细胞钙离子变化反应的检测。在此平台基础上,我们研究了ASE神经元(ASER和ASEL)感受NaCl刺激时的响应方式,以及受酒精的影响。结果表明,酒精可以直接在活体神经元水平上,影响ASER神经元对NaCl浓度升高产生的失活反应;对NaCl浓度降低产生的激活反应并无明显作用。并且,酒精对ASE神经元响应NaCl重复刺激的适应性具有明显作用。
     本研究通过多种技术方法揭示出酒精对于线虫的急性效应以及复合胺信号途径在其中所起的调控作用。酒精作用于线虫学习行为的分子机制的探索以及酒精对于神经元活动的直接影响的研究结果,对于揭示高等动物中酒精影响神经系统的机理具有重要的推动作用。
Alcohol is widely used or even abused in modern society. Alcohol can cause serious problems on nervous system and long-term alcohol consumption is correlated with an increased risk of developing tolerance and alcoholism. Although some important results have been achieved in recent years, the molecular mechanisms underlying the behavioral effects of ethanol still need further study.
     Ethanol can affect the formation of learning and memory in many species. In the model organism Caenorhabditis elegans, gustatory plasticity is a simple learning paradigm in which animals after prolonged pre-exposure to a chemo-attractive salt show chemo-aversion to this salt. Here, our results indicated that ethanol administration during pre-exposure or test stage interfered with gustatory plasticity in well-fed worms, in a dose-independent manner. Genetic analysis revealed that genes play important roles in serotonin signaling such as tph-1, ser-4 and ser-7 were involved in ethanol-mediated gustatory plasticity; serotonin signal also participated in behavior responses affected by ethanol such as locomotion and egg laying. In addition, the gpa-3 mutant animal, carrying mutations in the G-protein a subunit, also showed defects in response to ethanol in modulating gustatory plasticity. Further studies revealed that ethanol could affect the aversive response to diluted octanol, which was another behavioral response dependent on feeding status. These results suggested that serotonin signal play important roles in regulating acute intoxicating effects of ethanol in C. elegans.
     Another important aspect in this study is that we developed a Y-shaped microfluidic chip for immobilizing and stimulating worms with a one-piece valve for enhanced immobilization of worms. A genetically encoded calcium sensor protein, G-CaMP, was expressed in ASE neurons of C. elegans under the control of specific promoters. Using the well-established interface shifting method, neuronal activities in response to stimuli of immobilized animals could then be monitored by in vivo fluorescence imaging. Results showed that average calcium transients in ASER neurons in response to up-step but not down-step of NaCl concentration were significantly affected by ethanol. ASER and ASEL exhibited different sensitivity in adaptation to NaCl, however ethanol produced significant effect on the adaptation response in ASEL neurons when compared to ASER neurons. Results of calcium imaging indicated that ethanol directly affected the neuronal activity of ASE neuron that plays a dominant role in chemotaxis to salt.
     Together, our results demonstrated the distinct role of serotonin pathway in modulation of acute response to ethanol in gustatory plasticity in C. elegans. Investigation of the molecular mechanisms underlying ethanol's effect on learning behaviors in C. elegans as well as the direct impact of ethanol on neuronal activity may make a great contribution to the understanding of ethanol's function manner in higher animals.
引文
[1]Brenner S. The genetics of Caenorhabditis elegans. Genetics,1974,77(1):71-94
    [2]Ellis H.M., Horvitz H.R. Genetic control of programmed cell death in the nematode C. elegans. Cell,1986,44(6):817-829
    [3]Bargmann C.I. Neurobiology of the Caenorhabditis elegans genome. Science,1998, 282(5396):2028-2033
    [4]Bargmann C.I., Thomas J.H., Horvitz H.R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol,1990,55:529-538
    [5]Mori I. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu Rev Genet,1999,33:399-422
    [6]Ward A., Liu J., Feng Z., et al. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci,2008,11(8):916-922
    [7]Kamath R.S., Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods,2003,30(4):313-321
    [8]Colbert H.A., Bargmann C.I. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron,1995,14(4):803-812
    [9]Colbert H.A., Bargmann C.I. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. Learn Mem,1997,4(2): 179-191
    [10]L'Etoile N.D., Bargmann C.I. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron,2000,25(3):575-586
    [11]Chao M.Y., Komatsu H., Fukuto H.S., et al. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci U S A,2004,101(43):15512-15517
    [12]Nuttley W.M., Atkinson-Leadbeater K.P., Van Der Kooy D. Serotonin mediates food-odor associative learning in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA,2002,99(19):12449-12454
    [13]Colbert H.A., Smith T.L., Bargmann C.I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci,1997,17(21):8259-8269
    [14]Bernhard N., van der Kooy D. A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans:adaptation and habituation. Learn Mem,2000,7(4):199-212
    [15]L'Etoile N.D., Coburn C.M., Eastham J., et al. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron,2002,36(6): 1079-1089
    [16]Torayama I., Ishihara T., Katsura I. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci,2007,27(4): 741-750
    [17]Zhang Y., Lu H., Bargmann C.I. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature,2005,438(7065):179-1784
    [18]Nicholas H.R., Hodgkin J. Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Mol Immunol,2004,41(5): 479-493
    [19]Bargmann C.I., Hartwieg E., Horvitz H.R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell,1993,74(3):515-527
    [20]Rankin C.H., Beck CD., Chiba C.M. Caenorhabditis elegans:a new model system for the study of learning and memory. Behav Brain Res,1990,37(1):89-92
    [21]Wicks S.R., Rankin C.H. The integration of antagonistic reflexes revealed by laser ablation of identified neurons determines habituation kinetics of the Caenorhabditis elegans tap withdrawal response. J Comp Physiol A,1996,179(5):675-685
    [22]Rankin C.H., Wicks S.R. Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter EAT-4 affect habituation of the tap-withdrawal response without affecting the response itself. J Neurosci,2000,20(11):4337-4344
    [23]Hedgecock E.M., Russell R.L. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA,1975,72(10):4061-4065
    [24]Mori I., Ohshima Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature,1995,376(6538):344-348
    [25]Gray J.M., Karow D.S., Lu H., et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature,2004,430(6997):317-322
    [26]Hobert O. Behavioral plasticity in C. elegans:paradigms, circuits, genes. J Neurobiol,2003,54(1):203-223
    [27]Jansen G., Weinkove D., Plasterk R.H. The G-protein gamma subunit gpc-1 of the nematode C. elegans is involved in taste adaptation. Embo J,2002,21(5):986-994
    [28]Saeki S., Yamamoto M., lino Y. Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol,2001,204(Pt 10):1757-1764
    [29]Hukema R.K., Rademakers S., Jansen G. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate. Learn Mem,2008,15(11):829-836
    [30]Hukema R.K., Rademakers S., Dekkers M.P., et al. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans. Embo J,2006,25(2): 312-322
    [31]Holloway F.A. State-dependent effects of ethanol on active and passive avoidance learning. Psychopharmacologia,1972,25(3):238-261
    [32]Bammer G., Chesher G.B. An analysis of some effects of ethanol on performance in a passive avoidance task. Psychopharmacology (Berl),1982,77(1):66-73
    [33]Hernandez L.L., Valentine J.D., Powell D.A. Ethanol enhancement of Pavlovian conditioning. Behav Neurosci,1986,100(4):494-503
    [34]Melia K.F., Ehlers C.L., LeBrun C.J., et al. Post-learning ethanol effects on a water-finding task in rats. Pharmacol Biochem Behav,1986,24(6):1813-1815
    [35]Lister R.G., Eckardt M.J., Weingartner H. Ethanol intoxication and memory. Recent developments and new directions. Recent Dev Alcohol,1987,5:111-126
    [36]White A.M., Matthews D.B., Best P.J. Ethanol, memory, and hippocampal function: a review of recent findings. Hippocampus,2000,10(1):88-93
    [37]Cain D.P., Finlayson C., Boon F., et al. Ethanol impairs behavioral strategy use in naive rats but does not prevent spatial learning in the water maze in pretrained rats. Psychopharmacology (Berl),2002,164(1):1-9
    [38]Pautassi R.M., Melloni C., Ponce L.F., et al. Acute ethanol counteracts the acquisition of aversive olfactory learning in infant rats. Alcohol,2005,36(2):99-105
    [39]LaFerriere H., Guarnieri D.J., Sitaraman D., et al. Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster. Genetics,2008, 178(4):1895-1902
    [40]Davies A.G., Pierce-Shimomura J.T., Kim H., et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell,2003, 115(6):655-666
    [41]Wolf F.W., Heberlein U. Invertebrate models of drug abuse. J Neurobiol,2003,54(1): 161-178
    [42]Davies A.G., McIntire S.L. Using C. elegans to screen for targets of ethanol and behavior-altering drugs. Biol Proced Online,2004,6:113-119
    [43]Moore M.S., DeZazzo J., Luk A.Y., et al. Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell,1998,93(6):997-1007
    [44]Bargmann C.I., Kaplan J.M. Signal transduction in the Caenorhabditis elegans nervous system. Annu Rev Neurosci,1998,21:279-308
    [45]Rand JB J.C., Caenorhabditis elegans:Modern biological analysis of an organism. 1995:San Diego:Academic Press.187-204.
    [46]Matthews D.J., Kopczynski J. Using model-system genetics for drug-based target discovery. Drug Discov Today,2001,6(3):141-149
    [47]Brownlee D.J., Fairweather I. Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci,1999,22(1):16-24
    [48]Dick D.M., Bierut L.J. The genetics of alcohol dependence. Curr Psychiatry Rep, 2006,8(2):151-157
    [49]Ffrench-Constant R.H., Anthony N., Aronstein K., et al. Cyclodiene insecticide resistance:from molecular to population genetics. Annu Rev Entomol,2000,45: 449-466
    [50]Dent J.A., Davis M.W., Avery L. avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. Embo J,1997,16(19):5867-5879
    [51]Liu J., Asuncion-Chin M., Liu P., et al. CaM kinase Ⅱ phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci,2006,9(1): 41-49
    [52]Kapfhamer D., Bettinger J.C., Davies A.G., et al. Loss of RAB-3/A in Caenorhabditis elegans and the mouse affects behavioral response to ethanol. Genes Brain Behav,2008,7(6):669-676
    [53]Davis J.R., Li Y., Rankin C.H. Effects of developmental exposure to ethanol on Caenorhabditis elegans. Alcohol Clin Exp Res,2008,32(5):853-867
    [54]Bettinger J.C., McIntire S.L. State-dependency in C. elegans. Genes Brain Behav, 2004,3(5):266-272
    [55]Berke J.D., Hyman S.E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron,2000,25(3):515-532
    [56]Koob G.F., Le Moal M. Drug abuse:hedonic homeostatic dysregulation. Science, 1997,278(5335):52-58
    [57]Rubinstein M., Phillips T.J., Bunzow J.R., et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell,1997,90(6): 991-1001
    [58]Spanagel R., Weiss F. The dopamine hypothesis of reward:past and current status. Trends Neurosci,1999,22(11):521-527
    [59]Weiss F., Porrino L.J. Behavioral neurobiology of alcohol addiction:recent advances and challenges. JNeurosci,2002,22(9):3332-3337
    [60]Koob G.F., Roberts A.J., Schulteis G., et al. Neurocircuitry targets in ethanol reward and dependence. Alcohol Clin Exp Res,1998,22(1):3-9
    [61]Koob G.F. Alcoholism:allostasis and beyond. Alcohol Clin Exp Res,2003,27(2): 232-243
    [62]Rimondini R., Sommer W., Heilig M. A temporal threshold for induction of persistent alcohol preference:behavioral evidence in a rat model of intermittent intoxication. J Stud Alcohol,2003,64(4):445-459
    [63]Roberts A.J., Heyser C.J., Cole M., et al. Excessive ethanol drinking following a history of dependence:animal model of allostasis. Neuropsychopharmacology,2000, 22(6):581-594
    [64]Scholz H., Ramond J., Singh C.M., et al. Functional ethanol tolerance in Drosophila. Neuron,2000,28(1):261-271
    [65]Berger K.H., Heberlein U., Moore M.S. Rapid and chronic:two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res,2004,28(10):1469-1480
    [66]Davies A.G., Bettinger J.C., Thiele T.R., et al. Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron,2004,42(5): 731-743
    [67]Lee J., Jee C., McIntire S.L. Ethanol preference in C. elegans. Genes Brain Behav, 2009,8(6):578-585
    [68]Rand J.B., Duerr J.S., Frisby D.L. Neurogenetics of vesicular transporters in C. elegans. FASEB J,2000,14(15):2414-2422
    [69]Roeder T., Seifert M., Kahler C., et al. Tyramine and octopamine:antagonistic modulators of behavior and metabolism. Arch Insect Biochem Physiol,2003,54(1): 1-13
    [70]Sulston J., Dew M., Brenner S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol,1975,163(2):215-226
    [71]Loer C.M., Kenyon C.J. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. JNeurosci,1993,13(12):5407-5417
    [72]Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry,1998, 44(3):151-162
    [73]Heisler L.K., Zhou L., Bajwa P., et al. Serotonin 5-HT(2C) receptors regulate anxiety-like behavior. Genes Brain Behav,2007,6(5):491-496
    [74]Horvitz H.R., Chalfie M., Trent C., et al. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science,1982,216(4549):1012-1014
    [75]Sze J.Y., Victor M., Loer C., et al. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature,2000,403(6769): 560-564
    [76]Lints R., Emmons S.W. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development,1999,126(24):5819-5831
    [77]Hare E.E., Loer C.M. Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis. BMC Evol Biol,2004,4:24
    [78]Sawin E.R., Ranganathan R., Horvitz H.R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron,2000,26(3):619-631
    [79]Duerr J.S., Frisby D.L., Gaskin J., et al. The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci,1999,19(1):72-84
    [80]Jayanthi L.D., Apparsundaram S., Malone M.D., et al. The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant-and cocaine-sensitive dopamine transporter. Mol Pharmacol,1998,54(4):601-609
    [81]Ranganathan R., Sawin E.R., Trent C., et al. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and-independent activities of fluoxetine. JNeurosci,2001,21(16):5871-5884
    [82]Hills T., Brockie P.J., Maricq A.V. Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. JNeurosci,2004,24(5):1217-1225
    [83]Sanyal S., Wintle R.F., Kindt K.S., et al. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. Embo J,2004,23(2): 473-482
    [84]Rose J.K., Rankin C.H. Analyses of habituation in Caenorhabditis elegans. Learn Mem,2001,8(2):63-69
    [85]Weinshenker D., Garriga G., Thomas J.H. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci,1995,15(10): 6975-6985
    [86]Segalat L., Elkes D.A., Kaplan J.M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science,1995,267(5204):1648-1651
    [87]Rogers C.M., Franks C.J., Walker R.J., et al. Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. JNeurobiol,2001,49(3):235-244
    [88]Niacaris T., Avery L. Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol,2003,206(Pt 2):223-231
    [89]Waggoner L.E., Zhou G.T., Schafer R.W., et al. Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron,1998,21(1):203-214
    [90]Mendel J.E., Korswagen H.C., Liu K.S., et al. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science,1995,267(5204):1652-1655
    [91]Remy J.J., Hobert O. An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science,2005,309(5735):787-790
    [92]Ward A., Walker V.J., Feng Z., et al. Cocaine modulates locomotion behavior in C. elegans. PLoS ONE,2009,4(6):e5946
    [93]Hamdan F.F., Ungrin M.D., Abramovitz M., et al. Characterization of a novel serotonin receptor from Caenorhabditis elegans:cloning and expression of two splice variants. JNeurochem,1999,72(4):1372-1383
    [94]Olde B., McCombie W.R. Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci,1997,8(1):53-62
    [95]Hobson R.J., Geng J., Gray A.D., et al. SER-7b, a constitutively active Galphas coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. JNeurochem,2003,87(1):22-29
    [96]Ranganathan R., Cannon S.C., Horvitz H.R. MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature,2000, 408(6811):470-475
    [97]Alkema M.J., Hunter-Ensor M., Ringstad N., et al. Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron, 2005,46(2):247-260
    [98]Suo S., Kimura Y., Van Tol H.H. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci,2006,26(40):10082-10090
    [99]Rex E., Molitor S.C., Hapiak V., et al. Tyramine receptor (SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans. J Neurochem,2004,91(5):1104-1115
    [100]Rex E., Komuniecki R.W. Characterization of a tyramine receptor from Caenorhabditis elegans. JNeurochem,2002,82(6):1352-1359
    [101]Tsalik E.L., Niacaris T., Wenick A.S., et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol,2003,263(1):81-102
    [102]Rex E., Hapiak V., Hobson R., et al. TYRA-2 (F01E11.5):a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons. J Neurochem, 2005,94(1):181-191
    [103]Murakami H., Bessinger K., Hellmann J., et al. Aging-dependent and -independent modulation of associative learning behavior by insulin/insulin-like growth factor-1 signal in Caenorhabditis elegans. JNeurosci,2005,25(47):10894-10904
    [104]Paradis S., Ailion M., Toker A., et al. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev,1999,13(11):1438-1452
    [105]Scott B.A., Avidan M.S., Crowder C.M. Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science,2002,296.(5577):2388-2391
    [106]Tomioka M., Adachi T., Suzuki H., et al. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron,2006,51(5):613-625
    [107]de Bono M., Tobin D.M., Davis M.W., et al. Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature,2002,419(6910): 899-903
    [108]Ward S. Chemotaxis by the nematode Caenorhabditis elegans:identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A, 1973,70(3):817-821
    [109]Bargmann C.I., Horvitz H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron,1991,7(5):729-742
    [110]Kaufman A., Keinan A., Meilijson I., et al. Quantitative analysis of genetic and neuronal multi-perturbation experiments. PLoS Comput Biol,2005,1(6):e64
    [111]Yu S., Avery L., Baude E., et al. Guanylyl cyclase expression in specific sensory neurons:a new family of chemosensory receptors. Proc Natl Acad Sci USA,1997, 94(7):3384-3387
    [112]Pierce-Shimomura J.T., Morse T.M., Lockery S.R. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci,1999,19(21): 9557-9569
    [113]Tsalik E.L., Hobert O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol,2003,56(2):178-197
    [114]Wes P.D., Bargmann C.I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature,2001,410(6829):698-701
    [115]Troemel E.R., Sagasti A., Bargmann C.I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell,1999,99(4):387-98
    [116]Culotti J.G., Russell R.L. Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics,1978,90(2):243-256
    [117]Dusenbery D.B. Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. J Exp Zool,1974,188(1):41-47
    [118]Hilliard M.A., Bargmann C.I., Bazzicalupo P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr Biol,2002, 12(9):730-734
    [119]Hilliard M.A., Bergamasco C., Arbucci S., et al. Worms taste bitter:ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. Embo J,2004,23(5):1101-1111
    [120]Kaplan J.M., Horvitz H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci USA,1993,90(6):2227-2231
    [121]Sambongi Y., Nagae T., Liu Y., et al. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport,1999,10(4):753-757
    [122]Hilliard M.A., Apicella A.J., Kerr R., et al. In vivo imaging of C. elegans ASH neurons:cellular response and adaptation to chemical repellents. Embo J,2005, 24(1):63-72
    [123]Tobin D., Madsen D., Kahn-Kirby A., et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron,2002,35(2):307-318
    [124]de Bono M., Maricq A.V. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci,2005,28:451-501
    [125]Troemel E.R., Kimmel B.E., Bargmann C.I. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell,1997,91(2): 161-169
    [126]Kuhara A., Okumura M., Kimata T., et al. Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science,2008,320(5877): 803-807
    [127]Genome sequence of the nematode C. elegans:a platform for investigating biology. Science,1998,282(5396):2012-2018
    [128]Kerr R., Lev-Ram V., Baird G., et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron,2000,26(3):583-594
    [129]Bargmann C.I. Chemosensation in C. elegans. WormBook,2006:1-29
    [130]Shimozono S., Fukano T., Kimura K.D., et al. Slow Ca2+ dynamics in pharyngeal muscles in Caenorhabditis elegans during fast pumping. EMBO Rep,2004,5(5): 521-526
    [131]Shyn S.I., Kerr R., Schafer W.R. Serotonin and Go modulate functional states of neurons and muscles controlling C. elegans egg-laying behavior. Curr Biol,2003, 13(21):1910-1915
    [132]Kerr R. A. Imaging the activity of neurons and muscles, WormBook, doi/10. 1895/wormbook.1.113.1, http://www.wormbook.org
    [133]Suzuki H., Kerr R., Bianchi L., et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron,2003,39(6):1005-1017
    [134]Kimura K.D., Miyawaki A., Matsumoto K., et al. The C. elegans thermosensory neuron AFD responds to warming. Curr Biol,2004,14(14):1291-1295
    [135]Dal Santo P., Logan M.A., Chisholm A.D., et al. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell,1999,98(6):757-767
    [136]Miyawaki A., Llopis J., Heim R., et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature,1997,388(6645):882-887
    [137]Miyawaki A., Griesbeck O., Heim R., et al. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A,1999,96(5): 2135-40
    [138]Nagai T., Yamada S., Tominaga T., et al. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A,2004,101(29):10554-10559
    [139]Baird G.S., Zacharias D.A., Tsien R.Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A,1999,96(20): 11241-11246
    [140]Nakai J., Ohkura M., Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol,2001,19(2):137-141
    [141]Griesbeck O., Baird G.S., Campbell R.E., et al. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem, 2001,276(31):29188-29194
    [142]Suzuki H., Thiele T.R., Faumont S., et al. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature,2008, 454(7200):114-117
    [143]Clark D.A., Biron D., Sengupta P., et al. The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans. J Neurosci, 2006,26(28):7444-7451
    [144]Chalasani S.H., Chronis N., Tsunozaki M., et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature,2007,450(7166):63-70
    [145]Wakabayashi T., Kimura Y., Ohba Y., et al. In vivo calcium imaging of OFF-responding ASK chemosensory neurons in C. elegans. Biochim Biophys Acta, 2009,1790(8):765-769
    [146]Davis M.W., Somerville D., Lee R.Y., et al. Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function.J Neurosci,1995,15(12):8408-8418
    [147]Goodman M.B., Hall D.H., Avery L., et al. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron,1998,20(4):763-772
    [148]Lucchetta E.M., Lee J.H., Fu L.A., et al. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature,2005, 434(7037):1134-1138
    [149]Wheeler A.R., Throndset W.R., Whelan R.J., et al. Microfluidic device for single-cell analysis. Anal Chem,2003,75(14):3581-3586
    [150]Chronis N., Zimmer M., Bargmann C.I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods,2007, 4(9):727-731
    [151]Hulme S.E., Shevkoplyas S.S., Apfeld J., et al. A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip,2007,7(11):1515-1523
    [152]Guo S.X., Bourgeois F., Chokshi T., et al. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat Methods,2008,5(6): 531-533
    [153]Zeng F., Rohde C.B., Yanik M.F. Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip,2008,8(5):653-656
    [154]Stiernagle T., Maintenance of C. elegans.2006.
    [155]酒亚明,张蓉颖,吴政星.线虫基因显微注射和整合技术——设备,操作与指南.生物化学与生物物理进展,2009(005):648-652
    [156]Hong M., Choi M.K., Lee J. The anesthetic action of ethanol analyzed by genetics in Caenorhabditis elegans. Biochem Biophys Res Commun,2008,367(1):219-225
    [157]Graham M.E., Edwards M.R., Holden-Dye L., et al. UNC-18 Modulates Ethanol Sensitivity in Caenorhabditis elegans. Mol Biol Cell,2008,20(1):43-55
    [158]Berger K.H., Kong E.C., Dubnau J., et al. Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin Exp Res, 2008,32(5):895-908
    [159]Laferriere A., Millecamps M., Xanthos D.N., et al. Cutaneous tactile allodynia associated with microvascular dysfunction in muscle. Mol Pain,2008,4:49
    [160]Mitchell P.H., Bull K., Glautier S., et al. The concentration-dependent effects of ethanol on Caenorhabditis elegans behaviour. Pharmacogenomics J,2007,7(6): 411-417
    [161]Wragg R.T., Hapiak V., Miller S.B., et al. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. JNeurosci,2007,27(49):13402-13412
    [162]Avery L., Horvitz H.R. Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. JExp Zool,1990,253(3):263-270
    [163]Dempsey C.M., Mackenzie S.M., Gargus A., et al. Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics,2005,169(3):1425-1436
    [164]Hobson R.J., Hapiak V.M., Xiao H., et al. SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics,2006,172(1):159-169
    [165]Harris G.P., Hapiak V.M., Wragg R.T., et al. Three distinct amine receptors operating at different levels within the locomotory circuit are each essential for the serotonergic modulation of chemosensation in Caenorhabditis elegans. J Neurosci, 2009,29(5):1446-1456
    [166]Murakami H., Murakami S. Serotonin receptors antagonistically modulate Caenorhabditis elegans longevity. Aging Cell,2007,6(4):483-488
    [167]Pocock R., Hobert O. Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nat Neurosci,13(5):610-614
    [168]Jansen G., Thijssen K.L., Werner P., et al. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet,1999,21(4):414-419
    [169]Hallem E.A., Sternberg P.W. Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci U S A,2008,105(23):8038-8043
    [170]Mustard J.A., Edgar E.A., Mazade R.E., et al. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol Learn Mem,2008,90(4):633-643
    [171]Lee H.G., Kim Y.C., Dunning J.S., et al. Recurring ethanol exposure induces disinhibited courtship in Drosophila. PLoS ONE,2008,3(1):e1391
    [172]Bainton R.J., Tsai L.T., Singh C.M., et al. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol,2000,10(4):187-194
    [173]LeMarquand D., Pihl R.O., Benkelfat C. Serotonin and alcohol intake, abuse, and dependence:findings of animal studies. Biol Psychiatry,1994,36(6):395-421
    [174]LeMarquand D., Pihl R.O., Benkelfat C. Serotonin and alcohol intake, abuse, and dependence:clinical evidence. Biol Psychiatry,1994,36(5):326-337
    [175]Uzbay I.T., Usanmaz S.E., Tapanyigit E.E., et al. Dopaminergic and serotonergic alterations in the rat brain during ethanol withdrawal:association with behavioral signs. Drug Alcohol Depend,1998,53(1):39-47
    [176]Uzbay I.T. Serotonergic anti-depressants and ethanol withdrawal syndrome:a review. Alcohol Alcohol,2008,43(1):15-24
    [177]Dar M.S., Meng Z.H. Acute ethanol-induced adenosine diphosphate ribosylation regulates the functional activity of rat striatal pertussis toxin-sensitive g proteins. Alcohol Clin Exp Res,2004,28(9):1299-1307
    [178]Garic-Stankovic A., Hernandez M.R., Chiang P.J., et al. Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin-sensitive G protein and a phospholipase Cbeta-dependent Ca2+ transient. Alcohol Clin Exp Res, 2005,29(7):1237-1246
    [179]Bowers M.S., Hopf F.W., Chou J.K., et al. Nucleus accumbens AGS3 expression drives ethanol seeking through G betagamma. Proc Natl Acad Sci U S A,2008, 105(34):12533-12538
    [180]Fernandez-Sola J., Junyent J.M., Urbano-Marquez A. Alcoholic myopathies. Curr Opin Neurol,1996,9(5):400-405
    [181]Berridge M.J. Neuronal calcium signaling. Neuron,1998,21(1):13-26
    [182]Yang Z., Wang J., Zheng T., et al. Importance of extracellular Ca2+ and intracellular Ca2+ release in ethanol-induced contraction of cerebral arterial smooth muscle. Alcohol,2001,24(3):145-153
    [183]Oz M., Tchugunova Y.B., Dunn S.M. Direct inhibition of voltage-dependent Ca(2+) fluxes by ethanol and higher alcohols in rabbit T-tubule membranes. Eur J Pharmacol,2001,418(3):169-176
    [184]Mediratta P.K., Mahajan P., Sharma K.K., et al. Involvement of GABA-A receptor chloride channel complex in isolation stress-induced free choice ethanol consumption in rats. Indian J Exp Biol,2003,41(1):47-52
    [185]Cofan M., Nicolas J.M., Fernandez-Sola J., et al. Acute ethanol treatment decreases intracellular calcium-ion transients in mouse single skeletal muscle fibres in vitro. Alcohol Alcohol,2000,35(2):134-138
    [186]Duffy D., McDonald J., Schueller O., et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem,1998,70(23):4974-4984
    [187]Miller A.C., Thiele T.R., Faumont S., et al. Step-response analysis of chemotaxis in Caenorhabditis elegans. J Neurosci,2005,25(13):3369-3378

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700