水产品中甲醛的暴露评估与风险管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛为较高毒性物质,2006年世界卫生组织下属的国际癌症研究局(IARC)已正式将其确定为A1类人类致癌物。本研究针对水产品中普遍自然存在着一定含量内源性甲醛的现象,对水产品中甲醛的本底含量进行了系统的、针对性的监测调查。在此基础上参照CAC食品安全风险分析理论和技术,应用基于蒙特卡罗模拟技术的@Risk定量风险评估软件开展了以水产品为来源的甲醛的定量风险评估初步研究,以期量化水产品食用途径的甲醛膳食暴露对我国普通居民造成的健康风险大小,探讨鲜活水产品中甲醛的限量标准建议。
     综合考虑水产品的产量、居民日常食用习惯及市场消费情况等方面因素,运用乙酰丙酮分光光度法,先后对23种349个淡水鱼类样品、89种532个海水鱼类样品、19种175个甲壳类样品、18种163个贝类样品、7种63个头足类样品和414个水产干制品样品共计1696个水产样品中本底甲醛含量进行了测定。研究结果表明,多数水产品中甲醛的本底含量处于低端水平;在有针对性调查的49个水产品样品类别中,龙头鱼、鳕、中国枪乌贼、口虾蛄、梭子蟹等种类甲醛本底含量较高;淡水鱼类样品中的罗非鱼甲醛含量要显著高于其它种类的淡水鱼类(p<0.05);不同类型的水产品之间甲醛含量也存在一定差异(p<0.05),具体表现为水产干制品样品中甲醛含量最高,其次为海水鱼类样品、头足类样品、甲壳类样品和贝类样品,淡水鱼类样品中甲醛含量最低。
     应用Monte Carlo模拟技术定量评估我国人群通过食用水产品途径的甲醛膳食暴露状况。结果表明,我国普通居民通过食用鲜活水产品途径摄入甲醛,日均暴露量的平均值为8.58E-3 mg/(kg·d),中位数为3.08E-3 mg/(kg·d),95百分位、97.5百分位甲醛暴露量分别为3.52E-2 mg/(kg·d)、4.70E-2 mg/(kg·d)。且通过食用鲜活水产品途径城市人群摄入甲醛面临的健康风险高于农村人群;不同年龄群体的膳食暴露量存在差异,幼年消费者(2~13岁)的暴露量均高于成年人;7岁前,女孩的暴露水平要高于男孩,7岁后,男孩的暴露水平高于女孩。我国普通居民通过食用干制水产品途径摄入甲醛的日均暴露量的平均值为1.62E-3mg/(kg·d),中位数为1.08E-3mg/(kg·d),95百分位、97.5百分位甲醛暴露量分别为5.01E-3mg/(kg·d)、6.27E-3mg/(kg·d)。
     运用基于蒙特卡罗模拟的@Risk软件,以风险商表征食用水产品途径的甲醛膳食风险。评估结果表明,我国普通居民通过食用鲜活水产品及干制水产品途径摄入甲醛的风险商平均值和各百分位数风险商均小于1,且通过食用干制水产品途径的甲醛膳食风险商平均值和各百分位数均比食用鲜活水产品途径的甲醛膳食风险商平均值和各百分位数要低1个数量级。因而,我国普通居民仅通过食用水产品途径摄入甲醛对人体健康状况造成风险的可能性不大,但是幼儿、儿童是食用水产品途径甲醛暴露的敏感性群体,在后续的风险管理过程中应给予足够的关注和重视。
     风险管理是根据风险评估的结果选择和实施适当的管理措施,旨在有效控制食品风险和保障公众健康。综合考虑其它来源的甲醛膳食暴露途径,应用@Risk定量评估软件建立甲醛评估模型,对我国普通人群和水产品高膳食水平的特殊人群食用鲜活水产品途径的甲醛膳食风险进行定量评估,建议将我国鲜活水产品中甲醛安全限量标准暂定为30mg/kg。与消费者建立有效的风险信息交流,指导其合理膳食,是目前能够有效控制食用水产品途径的甲醛膳食暴露水平和相应风险的主要风险管理措施。
Formaldehyde is a highly toxic substance, which had been formally identified as A1 class of human carcinogens by International Cancer Reasearch Agency(ICRA). In view of the general phenomenon that formaldehyde naturally existed in aquatic products, the background concentration of formaldehyde in aquactic products nationwide was investigated in a systematic and targeted monitoring survey. On this basis, a primary study on quantitative risk assessment of dietary formaldehyde in aquatic products based on Monte Carlo simulation technique was carried out by application of @Risk software according to the food safety risk analysis theory and technique of Codex Alimentarius Commission (CAC). This study was aimed to evaluate the risk level of formaldehyde by means of aquatic products’dietary comsumption and propose a reasonable limit standard for formaldehyde in fresh aquatic products.
     A series of practical influence factors were considered, such as the output of aquatic products, the daily consumption habits of the residents and the market consumption. The concentration of formaldehyde in 1696 aquatic product samples, which including 349 samples of 23 species of freshwater fishes, 532 samples of 89 species of marine fishes, 175 samples of 19 species of crustaceans, 163 samples of 18 species of shellfishs, 63 samples of 7 species of cephalopods and 414 samples of dried fishery products, were determined by acetylacetone spectrophotometric method. The results showed that most aquatic product samples have low formaldehyde contentration. In the pertinent survey of 49 species, bombay duck (Hacpodon neheceus), cod (Cadous macrocephalus, Theragra chalcogramma and Miciomesistius poutassou), squid (Loligo chinensis), squill (Oratosquilla) and swimming crab (Portunus trituberculatus and Portunus pelagicus) had higher levels of background formaldehyde. While formaldehyde content in tilapia seemed to be significantly higher than other freshwater fish species (p<0.05). Significant differences on types indicated that the formaldehyde concentrations were highest in dried fishery products, followed by samples of marine fish, cephalopod, crustacean and shellfish, however, samples of freshwater fish were in the lowest formaldehyde content (p<0.05).
     The quantitative exposure assessment of formaldehyde by means of aquatic products’dietary consumption was conducted with application of Monte Carlo simulation techniques. The results revealed that the average daily intake of formaldehyde of general population via fresh aquatic products’consumption in China was 8.58E-3 mg/(kg·d), and the median, 95 percentile and 97.5 percentile was 3.08E-3 mg/(kg·d), 3.52E-2 mg/(kg·d) and 4.70E-2 mg/(kg·d) respectively. But the urban population faced a higher health risk level of formaldehyde exposure than rural population by means of fresh aquatic products’consumption. Different age groups had great differences in dietary expoure of formaldehyde by fresh aquatic products’intake. The exposure level of 2~13 age groups was higher than the adults’. Exposure risk faced by girls under the age of 7 was higher than the boys at the same age, and the exposure level reversed for the subpopulation at the age above 7. The average daily intake of formaldehyde of general population by eating dried fishery products in China was 1.62E-3 mg/(kg·d), and the median, 95 percentile and 97.5 percentile was 1.08E-3mg/(kg·d), 5.01E-3 mg/(kg·d) and 6.27E-3 mg/(kg·d) respectively.
     Hazard quotient was employed to characterize the dietary risk of formaldehyde via eating aquatic product with the application of @Risk software basing on Monte Carlo simulation . The result showed that the average and each percentile of the hazard quotient of general population through consuming both aquatic products and dried fishery products were less than 1. Moreover, the average and every percentile of hazard quotient by dietary consumption of dried fishery products was almost one order of magnitude lower than that by dietary consumption of fresh aquatic products. Therefore, to the general population, the dietary exposure of formaldehyde only by aquatic products’consumption was unlikely to bring about severe human health risk. To reduce the formaldehyde exposure from aquatic products, sufficient concern and attention should be given to the infant and childern in the subsequent risk management process.
     Based on the result of risk assessment, risk management aims to effectively control food risk level and protect public health with the selection and implementation of appropriate management measures. Taking into account other dietary sources of formaldehyde exposure pathways, risk assessment model of formaldehyde was estbablished by @Risk software to conduct quantitative dietary risk assessment of genneral population and high dietary consumers of aquatic products. It was suggested that the safety limit standard of formaldehyde in fresh aquatic products should be 30mg/kg. In conclusion, the main risk management measures to effectively control the dietary risk by consumption of aquatic products were to estbablish an effective risk communication with consumers and guide them carrying on rational diet.
引文
[1]庚晋,周洁.甲醛污染的危害[J].建材产品与应用. 2002,(5):49-51.
    [2] Haber LT., Maier A., Zhao QY, et al. Applications of mechanistic data in risk assessment: the past, present, and future[J]. Toxicological sciences, 2002, 61: 32-39.
    [3] WHO. Concise International Chemical Assessment Document 40: Formaldehyde[R]. Geneva :World Health Organization, 2002.
    [4] IARS/WHO. IARS Classifies Formaldehyde As Carcinogenic to Humans[R]. Genevese: International Agency for Research on Cancer, 2004.
    [5] IARC/WHO. Monographs on the Evaluation of Carcinogenic Risks to Human Volume 88: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol[R]. Geneva : World Health Organization, 2006.
    [6]刘淑玲.水产品中甲醛的风险评估与限量标准研究[D].青岛:中国海洋大学,2009.
    [7] ICPS. Formaldehyde[R]. Geneva: World Health Organization, International Programme on Chemical Safety, 1989, 219.
    [8] ATSDR. Toxicological profile for formaldehyde[R]. Atlanta: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, 1999.
    [9] Restani P, Restelli AR, Galli CL. Formaldehyde and hexamethylenetetramine as food additives: chemical interactions and toxicology[J]. Food additives and contaminants, 1992, 9(5): 597–605.
    [10] Scheuplein RJ. Formaldehyde: The Food and Drug Administration’s perspective. In: Turoski V, ed. Formaldehyde—analytical chemistry and toxicology[J]. American Chemical Society, 1985, 237-245.
    [11]李娜.甲醛的毒理学研究进展[J].职业卫生与应急救援,2009,(06):309-311.
    [12]杨玉花,袭著革,晁福寰.甲醛污染与人体健康研究进展[J].解放军预防医学杂志,2005,23(2):70-71.
    [13]朱桂珍.甲醛中毒的诊断与治疗[J].中毒与急救,2006,4 (1):57-60.
    [14]岳伟,金晓滨,潘小川.室内甲醛与成人过敏性哮喘关系的研究[J].中国公共卫生,2004,20(8):904~906.
    [15] Nordman H, Keskinen H, Tupparainen M.Formaldehyde asthmarare or overlooked[J].Allergy Clin Immunol, 1985, 75: 91-99.
    [16] Rumchev K B, Spichett J T, BulsaraM K, et al.Domestic exposure to formaldehyde significantly increases the risk of asthma in young children[J].Eur Respir, 2002, 20 (2): 403-408.
    [17]文育锋,姚应水,王金权,等.甲醛对小鼠免疫系统的影响[J].皖南医学院学报,2001,20(3):166.
    [18]马若波,张旸,吴艳萍,等.甲醛对小鼠免疫功能影响[J].中国公共卫生,2007,23(10):1218.
    [19]周砚青,常亮,王昆,等.用水迷宫实验检测甲醛对小鼠的神经毒性[J].公共卫生与预防医学,2007,18(6):4-6.
    [20] Pitten F, Kramer A, Herrmann K, et al.Formaldehyde neurotoxicity in animal experiments[J].Pathol Res Pract, 2000, 196 (3): 193-198.
    [21]郝连正,王志萍.甲醛致雌性生殖毒性的研究进展[J].环境与健康杂质,2008,25 (12):1122-1124.
    [22]刑沈阳,叶琳,王南南.甲醛对雄性小鼠的生殖遗传毒性[J].吉林大学学报(医学版),2007,33(4):716-718.
    [23] Miyachi T, Tsutsui T. Ability of 13 chemical agents used in dental practice to induce sister-chromatid exchanges in Syrian hamster embryo cells[J]. Odontology, 2005, 93: 24-29.
    [24] Hagiwara M, Watanabe E, Barrett JC, et al. Assessment of genotoxicity of 14 chemical agents used in dental practice: ability to induce chromosome aberrations in Syrian hamster embryo cells[J]. Mutat Res, 2006, 603: 111-120.
    [25] Thrasher J D, Kilburn K H.Embryo toxicity and teratogenicity of formaldehyde[J].Arch Environ Health, 2001, 56(4): 300-311.
    [26] Quievryn G, Zhitkovich A. Loss of DNA-protein crosslinks from formaldehde-exposed cells occurs through spontaneous hydrolysis and active repair process linked to proteosome function[J]. Carcinogenesis, 2000, 21 (8): 1573.
    [27] Oliver M, Kristin R, Gunter S, et al.Analysis of chromate-induced DNA-protein crosslinks with the comet assay[J].Mutation Research, 2000, 417: 71-80.
    [28] Conaway C C, John W, Lynne K, et al.Formaldehyde mechanistic data and risk assessment: endogenous protection from DNA adduct formation[J].Elsevier Science, 1996, 71(1/2): 29-55.
    [29] Grafstorm R C, Fornace J A, Autrup H, et al.Formaldehyde damage to DNA and inhibition of DNA repair in human bronchial cells[J].Science, 1983, 220: 216-218.
    [30]娄小华,陈莉,吴丹,等.“活性甲醛”与甲醛远距离毒性的初步研究[J].环境科学学报,2009,29(3):607-612.
    [31] Recio L, Sisk S, pluta L, et al.P53 mutations in formaldehyde-induced nasal squamons cell carcinomas in rats[J].Cancer Res, 1992, 52: 6113-6116.
    [32]杨坚.渔药手册[M].中国科学技术出版社. 1998,109-112.
    [33] Jung S H, Kim J W, Jeon I G et al. Formaldehyde residues in formalin-treated olive flounder, black rockfish and seawater[J]. Aquaculture, 2001, 194 (3-4): 253-262.
    [34] Main K L, Rosenfeld C. Aquaculture health management strategies for marine fishes[J]. Aquaculture, 1996, 235-301.
    [35]王传现,卢钟山,胡永强,等.糖果中甲醛的危险性评估[J].检验检疫科学,2007,(6):51-55.
    [36] Pearson D. The chemical analysis of foods, 7th ed[M]. Churchill Livingstone, New York. 1976, 40-41.
    [37] Bechmann I E.Comparison of the formaldehyde content found in boiled and raw mince of frozen saithe using different analytical methods[J].Lebensm Wiss U Technol, 1998, 31: 449-453.
    [38]马永均,安利华,郑万源,等.中国常见水果甲醛本底值调查及含量分析[J].食品科技,2007,(03):221-224.
    [39]林树钱,王赛贞,林志杉.香菇生长发育和加工贮存中甲醛含量变化的初步研究[J].中国食用菌,2002,21(3):26-28.
    [40] Harada K. Studies on enzyme catalying the formation of formaldehyde and dimethylamine in tissues of fishes and shells[J]. J Shimonoseki Univ Fish,1975,23:163-241.
    [41] Amano K, Yamada K, Bito M. Content of formaldehyde and volatile in different tissues of gadoid fish[J]. Bulletin of the Japanese Scoiety of Scientific Fisheries, 1963, 29:860-864.
    [42] Rodriguez. Studies on the principal degration products of trimethylamine oxide four species of refrigerated fish[J]. Food and Feed Chemistry, 1997,288:131-135.
    [43] Bianchi F, Careri M, Musci M, Mangia A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS ananlysis[J]. Food Chemistry. 2007, 100 : 1049-1053.
    [44]柳淑芳,杜永芳,朱文慧,等.食用鱼类甲醛本底含量研究初报[J].海洋水产研究,2005,26(6):77-82.
    [45]郑斌,陈伟斌,徐晓林等.常见水产品中甲醛的天然含量及风险评估[J].浙江海洋学院学报,2007,26(1):6-11.
    [46]韩宏伟.食品中甲醛的检测方法[J].国外医学卫生学分册. 2008,35(5):13.
    [47]周德庆,马敬军,李晓川,翟毓秀,王联珠. SC/T 3025-2006水产品中甲醛的测定[S].北京:中国农业出版社, 2006.
    [48]徐成德.我国开展食品安全风险分析的问题与对策[J].农产品加工·学刊. 2009,163(2):61-66.
    [49]韦宁凯.食品安全风险监测和风险评估[J].铜陵职业技术学院学报. 2009, 2:32-36.
    [50]王茂起,刘秀梅,王竹天.中国食品污染监测体系的研究[J].中国食品卫生杂志,2006, 18(6):491-496.
    [51] FAO/WHO. Application of Risk Analysis to Food Standards Issues, Report of the Joint FAO/WHO Expert Consultation[R]. Geneve: WHO, 1995.
    [52] FAO/WHO. Risk Management and Food Safety, Report of a Joint FAO/WHO Consulation[R]. Rome : WHO, 1997.
    [53] FAO/WHO. The Application of Risk Communication to Food Standards and Safety Matters, Report of a Joint FAO/WHO Expert Consultation[R]. Rome: WHO, 1998.
    [54] FAO/WHO.食品安全风险分析-国家食品安全管理机构应用指南[M].陈君石,樊永祥,译.北京:人民卫生出版社,2008:4-7.
    [55]王大宁主编.食品安全风险分析指南[M].北京:中国标准出版社,2004:28-90.
    [56]钱永忠,李耘,周德庆,等.农产品质量安全风险评估-原理、方法和应用[M].北京:中国标准出版社,2007.
    [57]钱永忠,李耘,陈晨.应用于农药残留对人体暴露评估的蒙特卡洛方法及其进展[J].农业质量标准. 2007,5:44-47.
    [58]宋怿主编.食品风险分析理论与实践[M].北京:中国标准出版社,2005:86-87.
    [59]罗祎,陈冬东,唐英章,等.论食品安全暴露评估模型[J].食品科技,2007,2:21-24.
    [60] Boon P E, vander Voet H, van K laveren J D. Validation of a probability model of dietary exposure to selected pesticides in Duth infants[J]. Food Additives and Contaminants, 2003, 20 (Suppll): 36-49.
    [61]刘潇威.农产品中重金属风险评估的研究进展[J].农业环境科学学报,2007,26(1):15-18.
    [62]王永杰,贾东红.健康风险评价中的不确定性分析[J].环境工程,2003,21(6):66-69.
    [63]叶文慧,张东杰. Monte Carlo对大米为来源的镉膳食暴露风险评估的初步研究[J].中国酿造,2008,(10):52-54.
    [64]曾庆祝,冯力更主编.食品安全保障技术[M].北京:中国商业出版社,2008:63-75.
    [65]李洁,张磊,徐晨.水发产品中甲醛的危险性评估[J].上海预防医学杂志. 2006,18(4):174-176.
    [66]白艳玲.龙头鱼甲醛含量的调查研究[J].中国热带医学,2003,3(5):670-671.
    [67] Sotelo, C.G., Pineiro, C., Perez-Martin, R.I. Denaturation of fish proteins during frozen storage: role of formaldehyde[J]. Lebensmittel Untersuchung and Forschung, 1995, 200:14-23.
    [68]李晓川,王联珠,李兆新. SC/T 3016-2004水产品抽样方法[S].北京:中国农业出版社,2004.
    [69]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社,1987.
    [70]朱元鼎,张春霖.东海鱼类志[M].北京:科学出版社,1963.
    [71]林洪,刘勇.国际贸易图谱[M].青岛:中国海洋大学出版社,2008.
    [72] Tolerance reassessment advisory committee. Regulating risk from undetected residues in food[R]. Washington DC, USA: Office of pesticide programs. Environmental Protection Agency ,1998.
    [73] GEMS/Food-WHO. Reliable evaluation of low-level contaminant of food, workshop in the frame of GEMS/Food-EURO[R]. Kulmbach, Germany: WHO,1995: 26-27.
    [74]周德庆,于维森,李昭勇,等.水产品质量安全与检验检疫实用技术[M].北京:中国计量出版社,2007,79-81.
    [76]马敬军,周德庆,张双灵.水产品中甲醛本底含量与产生机理的研究进展[J].海洋水产研究,2004,25:85-89.
    [77] Anthoni U., Borresen T., Christophersen C. et al. Is trimethylamine oxide a reliable indicator for the marine origin of fish? [J]. Comp. Biochem Physiol, 1990, 97B (3): 569-571.
    [78] Leelapongwattana, K., Benjakul, S., Visessanguan, W., Howell, N.K.. Physicochemical and biochemical changes during frozen storage of minced flesh of lizardfish (Saurida micropectoralis) [J]. Food Chemistry ,1995, 90: 141-150.
    [79] Parking K.L , Hultin H.O.. Some factors influencing the production of dimethylamine and formaldehyde in minced and intact red hake muscle [J]. Food Process Preserv, 1982, 6: 73-97.
    [80] Meiko Kimura, Ikuo Kimura, Nobuo Seki. TMAOase, trimethylamine-N-oxide demethylase, is a thermostable and active enzyme at 80℃[J]. Fisheries Science, 2003, 69: 414-420.
    [81] Aren V W. Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production [J]. Comp Biochem Physiol, 1988, 91B (2): 207-228.
    [82] Hebard, C.E., Flick, G.J., Martin, R.E. Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish [M]. Westport: AVI Publishing Company Connecticut, 1982:149-304.
    [83]沈月新.水产食品学[M].北京:中国农业出版社,2001:30.
    [84] Norifumi Niizeki, Toshiko Daikoku, Morihiko Sakaguchi et al. Mechanism of biosynthesis of trimethylamine oxide from choline in the teleost tilapia, Oreochromis niloticus, under freshwater conditions[J]. Comparative Biochemistry and Physiology Part B, 2002, 131: 371-386.
    [85] Spinelli J,Koury B.J.None-enzymic formation of dimethylamine in dried fishery products[J].1979,45-49.
    [86]宋丹阳,周德庆,杜永芳,等.氧化三甲胺酶研究进展[J].食品科学,2007,28:350-353.
    [87] Phillippy B.Q., Hultin H.O. Distribution and some characteristics of TMAOase activity of red hake muscle[J]. J Food Biochem, 1993, 17: 235-250.
    [88] Yamagada M, Low L.K. Banana shrimp, penaeus merguiensis, quality changes during icedand frozen storage[J]. Journal of Food Science, 1995, 60 (4): 721.
    [89] USEPA, 1991. Risk Assessment Guidance for Superfund (RAGS), vol.1. Human Health Evaluation Manual Supplemental Guidance: Standard Default Exposure Factors. OSWER Directive 9285.6-03[R]. United States Environmental Protection Agency, Washington DC, Office of Emergency and Remedial Response.
    [90] World Health Organization, 2007. Global Environment Monitoring System– Food Contamination Monitoring and Assessment Programme (GEMS/Food). Available from: .
    [91]金水高主编.中国居民营养与健康状况调查报告之十2002营养与健康状况数据集[M].北京:人民卫生出版社,2008:42-51.
    [92] US EPA. Guidelines for Exposure Assessment, EPA/600/Z-92/001[R]. Washington DC: US. Environmental Protection Agency, Risk Assessment Forum, 1992.
    [93] Shirley Teng, Kristin Beard, Jalal Pourahmad, et al. The formaldehyde metabolic detoxification enzyme systems and molecular cytotxic mechanism in isolated rat hepatocytes[J]. Chemico-Biological Interactions, 2001, 130(12): 285-296.
    [94] ICPS/WHO. Formaldehyde Environmental Health Criteria [R]. Geneva: World Health Organization, 1989.
    [95]风险简讯-食物中含甲醛[EB/OL].香港:香港特别行政区政府食物安全中心,2009 (2009-01-05) http://sc.info.gov.hk/gb/www.cfs.gov.hk/tc_chi/programme/programme_rafs/p rogramme_rafs_fa_02_09.html
    [96] Xiaojiang Tang, Yang Bai, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment International, 2009(35): 1210-1224.
    [97]金征宇,胥传来,谢正军,等.食品安全导论[M].北京:化学工业出版社,2005,146.
    [98] QT. Jiang, N. Hanari, Y. Miyake, Y. Okazawa, R.K.F. Lau, K. Chen, B. Wyrzykowska, M.K. So, N. Yamashita and P.K.S. Lam. Health risk assessment for polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated naphthalenes in seafood from Guangzhou and Zhoushan China[J]. Environ. Pollut, 2007(148): 31–39.
    [99]梁鹏.广东省市售水产品中汞含量分布及人体摄入量评估[D].北碚:西南大学,2008.
    [100]吴雪原.茶叶中农药的最大残留限量及风险评估研究[D].合肥:安徽农业大学,2007.
    [101]郭淼,陶澍,杨宇,等.天津地区人群对六六六的暴露分析[J].环境科学,2005,(1):164-167.
    [102]魏益民.食品安全学导论[M].北京:科学出版社,2009,50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700