粗粒化技术处理含油废水试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国大部分油田已进入石油开采的中期和后期,原油含水率达70~80%,有的油田甚至高达90%。油水分离产生大量的含油污水,如不经处理直接排放,会对环境造成污染危害,严重时将威胁人民的生命安全,造成经济损失。因此,开发适合我国油田实际情况、高效经济的污水处理及回用技术已成为油田污水处理站改造和新建的重要问题。利用粗粒化方法对含油废水进行一级处理,可以大大降低含油量,再进行二级处理和深度处理,能使油份及各项指标达到低渗透油藏对回注水水质的要求。
     本课题通过粗粒化材料的确定、反应器的选型的对比实验,发现疏油性陶瓷填料的粗粒化性能明显优于其他材料,并且陶瓷填料堆积式粗粒化反应器的除油率高于斜板式反应器,且有效周期也要明显较长。根据实验结果,探讨分析了聚结反应机理及其动力学,得出当聚结机理为润湿聚结和碰撞聚结同时作用时,聚结效率可得到大幅度的提高的结论,并提出聚结填料的表面性质和空间构成是影响聚结效率的重要因素。
     为了更清楚的了解粗粒化技术,本课题进行了影响因素的试验。结果表明,1~3mm的填料粒径可得到较好的粗粒化效果;碱性、高温有利于聚结;上向流更有利于粗粒化;在流速为6m/h时,可得到较好的粗粒化效果。
     结合试验确定的参数,设计了内循环连续流粗粒化反应器。通过实验室试验和油田现场试验得出,该反应器在选用1.6~3mm的疏油性陶瓷填料,上升流速为6m/h时,油份去除率高达80%,且持续12个小时以上。另外,将整个填料层反冲洗干净的时间约为20min,单独反冲洗有效粗粒化填料层的时间为5~8min。
     与传统的粗粒化装置相比,这种装置具有截污量大,周期长,反洗水耗小等特点。该装置处理过的油田水大大降低了含油量,减轻了后续工艺的负荷,能够满足低渗透油藏对回注水水质提出的更高要求。
At present, most oilfields in china have entered into mid-late oil exploitation stage. Crude oil moisture content was generally 70-80%, even reach 90%. Large amount of oily wastewater was produced from oil-water phase separation process. Discharge of untreated wastewater would put hazardous risk to environment and public health. Therefore, development of highly effective economical treatment and reusing technologies has become an important problem of the modification and establishment of oily wastewater processing station. The per-treatment of oily wastewater by coalescence can reduce the oil content greatly, and then secondary and deep treatment can make oil content and other indexes reach the standard of water quality for reinjection in the low permeability oil reservoir.
     Through the comparison experiment on the selection of coalescence material and reactor type, this paper discovered the efficiency of coalescence of ceramic packing is better than others significantly, and the oil removal efficiency of heap type reactor is higher than swash plate type as well as effective particle velocity period. The mechanism and reaction dynamics of coalescence were explored through the experimental results. Results showed that as the collision coalescence and the wetting coalescence mechanism were coexistence and the efficiency of coalescence was enhanced remarkably. The surface property and spatial constitution form of the fillers had important effect on the oil removal efficiency of coalescence.
     In order to understand coalescence technology more clearly, the experiment of influence factors was carried out. The results showed that there will be better efficiency of coalescence at particle size of l~3mm; alkaline condition and high temperature favored coalescence reaction; up-flow direction can accelerate coalescence; it's resulted the better efficiency of coalescence at 6m/h.
     Combined with the parameters determined by experiment, internal recycling continuous flow reactor for coalescence was designed. The oil removal efficiency of this reactor can be high up to 80% for over 12 hours, when particle size of ceramic packing at 1.6-3mm and the velocity of the up-flow at 6m/h. Otherwise, it takes about 20 minutes to make the total packing layer clean by backwashing, and 5-8 minutes to backwash the effective packing layer for coalescence.
     Compared with traditional coalescence equipments, this equipment has advantages of larger capacity of pollutant removal, longer period, and no medicine needed. The oil content in oilfield water treated by the equipment was greatly decreased, which relieved the loading of the sequenced processes, and the quality of the effluent water satisfied the higher requirement of injected water in exploiting low-permeability reservoir.
引文
[1] 韩长锦.水中石油烃污染的特点及监测分析中若干问题.环境科学与技术,1998(3).
    [2] 美国环保局编,许宗仁译.水质评价标准.北京:中国建筑工业出版社,1981.
    [3] Edwars J Calabrese, Paul T Kostecki. Principles and practices for contaminated soils. London: LEWIS PULISHERS, 1993.
    [4] 金志刚.污染物生物降解.上海:华东理工大学出版社,1997.
    [5] 俞建峰.含油污水处理,过滤与分离.1999(4):20~23.
    [6] 刘兴国.油气田采出水的回注.天然气化二仁.1995,15(5):72~76.
    [7] Garbutt C. F. Innovative treating processes allow steam flooding with poor quality oilfield water, SPE Annual technical conference, San Antonio, Texas, USA.1997:38799.
    [8] Madian E. S. et al. Treating of produced water for surface discharge at the Arun Gas Condensate Field. SPE Intemation Symposium on Oilfield Chemistry, San Antonio, Texas, USA.1995:28946.
    [9] 陈进富.油田采出水处理技术与进展.环境工程.2000,18(1):18~20.
    [10] 何桂华,张生.膜分离技术在油田应用前景.膜在石油领域应用研讨会,1997:37.
    [11] 奚祥福.炼油厂污水处理油份在线分析.炼油化工自动化.1994,(3):41~44
    [12] 尹先清,蔡世启.炼油厂废水处理回注的研究.工业水处理.1998,18(2):22~24
    [13] 王义刚.陶瓷膜处理含丁苯胶乳废水的实验研究.博士研究生论文.2001.
    [14] 韩伟,卢鑫.油脂生产加工过程中的废水处理.中国油脂.1998,23(6):20~21
    [15] 张立伟,段国聪.精练油厂含油废水的处理工艺及效果.中国油脂.2001,26(3):6~8
    [16] 贾立敏.食用植物油工业废水处理工艺研究.给水排水.1998,24(6):29~32
    [17] 周刚.乳化液废水处理浅议.有色金属加工.2001,163(1):16~19
    [18] 哈罗德R.琼斯.石油工业中的污染控制.北京:石油工业出版社.1981
    [19] 国家环境保护局.膜法分离技术及其应用.北京:中国环境科学出版社.1991
    [20] 崔志澄,何为庆.工业废水处理.北京:冶金二正业出版社.1989:67
    [21] Thew M. T. et al. Development and performance of oil-water hydro cyclone separators, The Institution of Mining and Metallurgy. 1998:77~83
    [22] 宋振东.水力旋流器用于含油废水处理.中国有色金属学报.1999,9(3):610~614
    [23] 贺杰.膜在石油领域应用研讨会.南京.1997:150
    [24] Seureau J.J. et al. A three-phase Separator for the removal of oil solid from produced water, SPE Annual Technical Conference and Exhibition, New Orleans LA USA 1994:25~28
    [25] 袁惠民.含油废水处理方法.化二仁环保.1998,18(3):146~149
    [26] 陈淑云.泥炭处理含油废水的初步研究.吉林石油化工.1982,(3):23~26
    [27] 周锐久.焦碳处理含油废水效果研究.贵州师范大学学报.1999,17(2):47~19
    [28] 高效吸油材料开发成功.化工环保.20(1):63
    [29] 刘刚,梅教宗.超声波在废水处理中的应用研究.化二仁科技.2000,8(5):55~59
    [30] FittPaldi F. Particle coagulation by means of ultrasonies, Acoustica.1979, 41(3):263~266
    [31] 孙宝江,颜大椿.乳化原油的超声波脱水研究.声学学报.1999,24(3):327~331
    [32] 陈洪斌,庞小东.悬浮填料生物接触氧化法处理炼油废水.中国给水排水.2002,18(9):42~44
    [33] 邹克华,隋峰.高温优势菌生物膜处理采油废水.城市环境与城市生态.2002,15(5):32~34
    [34] 王志强.胜利油田采油废水污染现状及达标处理技术探讨.油气田环境保护.2002,12(12):26~31
    [35] 肖昌胜,李晓东.桩西联采油废水氧化塘的逗留时间分布研究.油田化学.2002,19(3):279~281
    [36] 唐述虞等.炼油厂微型生态塘有机物生物降解模型及净化机理研究.污染防治技术.1997,10(1):13118
    [37] 陈繁忠.废水净化的电化学技术进展.重庆环境科学.1997,19(6):19~32
    [38] Tennakoon C. L. K. Electrochemical treatment of human wastes in a packed bed reactor. J. Appl. Electrochem.1996, (26)2:99~104
    [39] 韩洪军.含油废水电解气浮理论与实践.环境工程.1993,11(3):7~10
    [40] 丁传伟译.环境污染治理文集.1981(3):61
    [41] 王蓉沙,邓皓.电絮凝法处理油田污水.环境科学研究.1999,12(4):30~32
    [42] 熊英健.一种新型水处理技术——絮凝床现状与展望.工业水处理.1996,16(3):4~7
    [43] 董声雄.超滤膜技术处理含油废水.福建环境.1996,13(1):11~12
    [44] 王春梅,谷和平.含油废水处理方法.化二仁时刊.2000(11):1~4
    [45] 严应政.粗粒化操作中的主要影响因素.西北建筑工程学院学报.1994,4:37~41
    [46] 刘蓉,张大年.粗粒化法处理乳化食用油脂废水的研究.环境科学.2002,20(7):331~334
    [47] 顾大明,王吟,宋中健.粗粒化聚并法油水分离技术.哈尔滨建筑大学学报.2005,35(2):65~67
    [48] 李孟,陈义春.油田废水改性陶瓷滤球粗粒化装置的试验研究.中国给水排水,2006,23(12):65~67
    [49] 谢振国,刘真让.含油废水处理技。污染防治技术.1999,12(1):29~31
    [50] 张鹏飞,杨连成,汪九山等.高效复合聚结板式油水分离器数学模型.化学工程.2004,32(1):37~42
    [51] 王艺,陈雷.聚结除油反应机理及其动力学分析.环境污染治理技术与设备.2006,7(1):59~63
    [52] 李雪斌,袁惠新.旋流器内液滴聚结机理的研究.矿山机械.2006,34(7)
    [53] 张敏,袁惠新.聚结分离过程的机理、方法及应用.过滤与分离.2003,13(1):44~46
    [54] 袁惠新,张新周.旋流场中聚结过程研究.化学工程.2005,33(5):30~33
    [55] 马自俊.乳状液与含油污水处理技术.北京:中国石化出版社.2006:8~10
    [56] David Tambe and Mukul M. Sharma.Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅲ Measurement of the Rheologieal Properties of Colloid-Laden Interfaces, Journal of Colloid and interface Science, 1995, 171:456~462
    [57] David Tambe and Mukul M. Sharma.Factors Controlling the Stability of Colloid-Stabilized Emulsions Ⅱ A Model for the Rheologieal Properties of Colloid-Laden Interfaces, Journal of Colloid and Interface Science, 1994, 162: 1~10.
    [58] Noskov B.A., Grigoriev D.O., and Miller R..Dynamie Surface Properties of Solutions of Phosphine Oxides: A Capillary Wave Study, Journal of Colloid and Interface Science, 1997, 188:9~15
    [59] Foyeke O. OPawale and Diane J. Burgess.Influence of Interfacial Properties of Lipophilic Surfactants on Water-in-oil Emulsion Stability, Journal of Colloid and Interface Science. 1998, 197:142~150
    [60] Hyang Mok Lee, Jin Woo Lee, and O Ok Park.Rheology and Dynamies of Water-in-oil Emulsions under Steady and Dynamic Shear Flow, Journal of Colloid and Interface Science, 1995, 185:297~305
    [61] Lakatos-Szabo J., and Lakatos I..Effeet of Alkaline Materials on Interfacial Rheologieal Properties of Oil-Water Systems, Colloid Polym Sci, 1999, 277:41~47
    [62] 李孟,金建华.新型水处理材料的理论与应用研究.武汉:武汉理工大学出版社.2005:144~147
    [63] 李葵英,界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社,1998.
    [64] H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯.流变学导引.北京:中国石化出版社,1992.
    [65] Jumaa M., Muller B.W.Influence of the Non-ionic Surfactant PEG-660-12-HYdroxy Stearate, on the Surface properties of phospholipids Monolayers and Their Effect on Lipid Emulsion Stability, Colloid Polym Sci, 1999, 277:347~353.
    [66] Folkersma R., van Diemen A.J.G.Stein H.N., Understanding the Influence of Gravity on Perikinetic Coagulation on the Basis of the DLVO theory, Advances in Colloid and Interface Science, 1999, 83:71~84
    [67] Scott G. Flicker, Jennifer L. Tipa, and Stacy G. Bike.Quantifying double-layer Repulsion between a Colloidal Sphere and a Glass Plate Using Total Internal Reflection Microscopy, Journal of Colloid and Interface Science. 2000. 158:317~325.
    [68] GB/T8929-1988,原油水含量测定方法[S]
    [69] 朱步瑶,赵振国.界面化学基础.北京:化学工业出版社,1996.
    [70] 方开泰,马长兴.正交与均匀实验设计.北京:科学出版社,2001.144~152.
    [71] Thieme J., Abend S., Lagaly G.Aggregation in Pickering Emulsions, Colloid Polym Sci, 1999, 277:257~260.
    [72] Sjoblom J., Emulsions and Emulsion Stability, New York: Mareel Dekker, Inc, 1996.
    [73] Yarranton H.W. and Masliyah J. H..Numerical Simulation of Ostwald Ripening in Emulsions, Journal of Colloid and Interface Science, 1997, 196:157~169
    [74] Rajinder Pal, Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids, Journal of Colloid and Interface Science, 2000, 225:359~366
    [75] 许保玖,安鼎年,给水处理理论与设计.北京:中国建筑二正业出版社.1992:293~296
    [76] Sharifi H·, Shaw J·M. Secondary drop production in packed-bed coalescers, Proceeding of International Conference on Environment Pollution Control Technologies. Saskatchewan Canada, 1996
    [77] [德]莱思哈特 毕力特.填料塔。北京:化学工业出版社,1998:26~28
    [78] 王树楹.现代填料塔技术指南.北京:中国石化出版社,1997:160~162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700