陶瓷膜处理含油乳化废水的技术开发及传递模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油乳化废水是一种处理难度较大的废水,在大型钢铁企业、机械加工业中大量存在。虽然在近十几年里,处理技术得到了相应的提高,但随着各行各业对轧制板材的要求越来越高,各大型钢铁企业都在钢材表面涂层技术和钢材表面洁净技术上做了大量的技术改进,尤其是为了保证高附加值产品在轧制过程的质量稳定,所采用乳化液中的乳化油分子量越来越小,乳化剂组成越来越复杂,随之而来的轧钢废水的污染成分产生了质与量的变化,对现有的处理技术带来极大的困难和挑战。为此,本论文选择长期以来一直困扰着冶金系统的含油乳化废水的治理作为论文的选题和工业应用背景。
     论文在比较各种处理技术的优缺点基础上,选择了近年来发展迅速的膜法分离技术作为处理手段。针对国内引进的有机超滤膜装置,在处理含油乳化液废水中存在的问题,采用了能耐酸、碱和高温、化学稳定性好的管式陶瓷微滤膜装置,对含油废水的膜分离技术进行了深入的开发研究。论文从基础实验和理论上系统研究了关键参数对膜分离过程的影响,膜污染控制,探索了提高膜渗透通量和截留率的途径,提出强化传递和优化过程的手段,建立了通用的数学模型。本文主要进行了以下几方面的研究工作。
     在基础实验研究中,探讨了各参数对分离过程的影响,着重考察了膜孔径、膜材质、操作压差、膜面流速、料液温度、料液浓度及pH值等对膜通量和截留率的影响规律,由此确定合适的操作条件。实验结果表明:采用孔径为0.2μm氧化锆膜能获得较高的渗透通量(260Lh~(-1)m~(-2))和较高的截留率,渗透侧中油含量小于10mg/L。体系的压力控制区在0~0.15 MPa,过滤压力可在0.1~0.2 MPa范围选择。过高和过低的膜面流速都不利通量提高,但对截留率影响不大,适宜的膜面流速为5m/s左右。料液温度提高有利于通量的提高,但渗透液中油含量有增大趋势。料液浓度大于2~3%后,料液浓度对通量影响不大,但当料液浓度大于5%后,若不采取措施,渗透液中油含量将可能大于10mg/L。测定了膜的主要结构参数(孔径分布、孔隙率、表层厚度)和料液的基本性质。
     针对有机物对微量油含量的干扰特别提出了CPA—紫外分光光度法,较好地解决了含油量测不准的问题。测定了料液性质(粒径分布、粘度、膜面浓度等)和膜的结构参数(孔径分布、孔隙率、表层厚度)。
     对陶瓷膜处理含油乳化废水过程中膜污染阻力机理、膜污染控制、强化传质和膜的清洗方法进行了研究和分析。在本实验体系下,微滤过程的污染阻力主要
    
     摘 要
    是出浓差极化、凝胶层、膜孔污染和膜管本身四部分阻力组成,各阻力的分布分
    别为:凝胶层阻力占总阻力的58-65%、浓差极化占6-10%、膜孔污染占13-18
    %、膜本身阻力占13~17%,凝胶层为主要污染阻力。在膜管中置入缠绕式扰动
    元件能强化传质过程,在较低的流速下(膜面流速山 4~6m八降至 2~3m/s)可
    获得较高的膜通量(比空管提高 45%),定性地分析了扰动元件的强化机理。采
    用气顶液反冲技术能有效地控制膜污染,使过程维持在较高通量(比不采用反冲
    提高30%)下进行。为获得较好的反冲效果,反冲压力应大于0.3MPa,反冲周期
    应小于10分钟,反冲持续时间在l~2秒内。采用酸、碱、洗涤液交替清洗方法
    能有效地恢复膜通量,膜的纯水通量可恢复到80%,料液通量可基本恢复。
     在传递理论基础上,结合膜过程的传质方程和湍流的k一。模型,建立了适
    用于微滤和超滤过程的“沿膜管二维湍流膜分离数学模型”。类似的通用数学模
    型尚未见诸文献报道。用相关的文献数据和本文实测数据对模型进行了检验,模
    型的可靠性和准确性得到很好的验证。所建立的模型可方便地应用于过程的模拟
    计算和相关的模过程设计。在有渗透流的情况下,对速度、压力、浓度二维分布
    进行了模拟计算,讨论了这些参变量在膜入日段的沿截面和沿管程的变化规律。
    在此基础上考察了 Reynolds数、Schmidt数、Peclet数对传质系数和 Sherwood
    数的影响规律。利用通量衡算方程和本模型计算的膜面浓度建立了预测膜通量的
    方法,预测了在不同流量、温度。压力和料液浓度下的膜通量值及其变化规律,
    通量预测值与本文实验值吻合较好,通量预测方法的可行性和准确性得到较好的
    验证。过程的模拟计算和通量的预测为深入分析膜过程的传质机理和膜分离过程
    的优化提供了重要的手段。
     建立了一套每小时能处理12.5 立方米冷轧乳化废水的陶瓷膜工业试验装
    置,在武汉钢铁股份有限公司进行了冷轧含油废水的现场试验。经过2年多的连
    续运转,陶瓷膜装置经受了轧钢工艺条件和乳化液成分变化波动,长期运行稳定
    平均膜通量为80~100Lin-V,处理后的排放液中油含量小于10mg/L,清洗周期
    为3天左右。陶瓷膜装置处理每吨冷轧乳化废水的费用不超过5元人民币,约为
    进口设备处理费用的六分之一,具有与国外技术竞争的优势地位。
     本文的结论是,陶瓷膜处理含油乳化废水技术是一种先进的、高效的、经济
    的新技术,论文所提出的传递膜模型可川于膜过程设计,过程优化和膜
The oily emulsion wastewater by produced in large steel factories and machine works is the most difficult in the wastewater treatment. Although in recent decades the technologies have been improved much, all large-scale steel factories have been improved their technologies about coating and cleaning the surface of products in order to get stable quality in the rolling process and to gain high profits because of the higher demand to rolled plate from all fields. Thus, the molecular weight of emulsified oils is smaller and smaller, and the composition of emulsifiers is more and more complex, which results in dramatically change of the contaminative components in such wastewater. This brings forward us great difficulty and meanwhile gives us enormous challenges. So, it was chosen that the treatment of oily wastewater puzzled the metallurgical industry for long-term as the research subject of this thesis.
    Through comparison to many other methods, the membrane separation which developed fast in recent years was selected. According to the existing problems of organic ultrafiltration(UF) apparatus from USA, the ceramic microfiltration(MF) equipment was chosen, by means of which acid, alkali, high temperature and chemical property changes could be resisted. Systemic researches for ceramic technology to treat oily wastewater had been done in this thesis and the main conclusions are shown as follows.
    In the fundamental experiment part, the effects of parameters (including distribution of pore sizes, character of membrane materials, operational pressure, cross-flow velocity, feed temperature and concentration, pH value) on the membrane process, especially membrane permeability flux and retention rate were discussed in order to fix on a appropriate separation conditions. Experimental results show that zirconia membrane with pore size around 0.2 m owed high permeation flux(260Lh-1m-2) and high retention rate(99.9%), the oil content is less than 10mg/L in the permeated side. Operational pressure should be controlled in the range of 0.1-0.2 MPa. Too high or too low cross-flow velocity is no good to increase of the flux, but doesn't affect the retention rate and the proper velocity is about 5m/s. Higher temperature is good to increases of flux, but the retention rate decrease. The increase of the feed-in oil concentration has little effect to the flux when oil concentration is greater than 2-3%, but once oil
    concentration is above 5%, the permeated fluid's oil content may be higher than 10mg/L. pH value affects greatly flux, the proper pH
    
    
    
    
    should be selected by solution property.
    A new measuring method, CPA-ultraviolet spectrophotometry, was proposed for the determination of tiny oil concentration accurately, which could eliminate availably the disturbance of other organic matters. Main structure parameters of membrane (distribution of pore size, porosity, thickness of surface layer) and the basic characters of feed (distribution of oil size, temperature-viscosity curve, membrane surface's oil concentration) were determined.
    The resistance distribution of membrane, membrane fouling control, enhanced mass transfer and methods of membrane cleaning were studied and analyzed. In this experimental system, fouling resistance of ceramic MF mainly consists of four aspects: concentration polarization, gel layer, membrane pore adsorbed stain and membrane itself. Resistance distribution is respectively as follows: gel layer is 58-65% of total resistance, concentration polarization resistance is 6-10%, pore stain resistance is 13-18%, membrane resistance is 13-17%. So, gel layer resistance is the main resistance. Set some twist components to disturb flow in the membrane tube may strengthen the process of mass transfer, thus higher membrane flux (45% higher than hollow tube) could be got under lower flow rate (flow rate get down from 4~6m/s to 2-3m/s), qualitative analysis had been done to the strengthen mechanism of the disturbance components. The gas-liquid back-flush technology can control membrane fouling efficiently,
引文
1.徐南平.无机膜的发展现状与展望.化工进展.2000(4):5-9
    2.徐南平,邢卫红,王沛.无机膜在工业废水处理中的应用与展望.膜科学与技术.2000 20(3):23-28
    3.俞建峰.含油污水处理.过滤与分离.1999(4):20-23
    4.刘兴国.油气田采出水的回注.天然气化工.1995 15(5):72-76
    5. Garbutt C. F. Innovative treating processes allow steamflooding with poor quality oilfield water., SPE Annual technical conference, San Antonio, Texas, USA. 1997: 38799
    6. Madian E. S. et al. Treating of produced water for surface discharge at the Arun Gas Condensate Field. SPE Intemation Symposium on Oilfield Chemistry, San Antonio Texas, USA. 1995: 28946
    7.陈进富.油田采出水处理技术与进展.环境工程.2000 18(1):18-20
    8.何桂华,张生.膜分离技术在油田应用前景.膜在石油领域应用研讨会.南京.1997:37
    9.国家环保局.钢铁工业废水治理.中国环境科学出版社.1992
    10.陈梦樵.冷轧不锈钢含油废水处理工艺简介.上海冶金设计.1999(4):19-23
    11.曹洪勋,刘秋欣.轧钢废水全循环综合利用经济效益分析.辽宁城乡环境科技.2001 21(3):30-32
    12.王新海.轧制油乳化液的分析与研究.1994 26(3):23-27
    13.苑智,汪立,汪为民,2002,马钢含油废水处理技术应用综述,冶金动力,92(4):76-78
    14.朱锡恩,徐正,朱辉.轧钢含油废水处理方法的探索.冶金环境保护.2002(2):26-28
    15.李友琥.全国冶金轧钢废水处理与利用技术交流会闭幕式的发言.2001(2):4-5
    16.戴军,袁惠新,俞建峰.膜技术在含油废水处理中的应用.膜科学与技术.2002 22(1):59-64
    17.成文,赵立和等.乳化液废水处理技术的试验研究.华南师范大学学报.2002(1):108-112
    18.穆宏.化学法处理废乳化液研究.上海宝钢工程设计.2001(3):46-48
    19.时忠明,范训慧等.切削液的使用和环境保护.江苏机械制造与自动化.1999(6):24-26
    20.张康夫.乳化切削液与水剂清洗液的使用与废水处理.腐蚀与防护.199818(2):31-32
    21.李如松.工业清洗液中清洗液的净化处理.组合机车与自动化加工技术.1993(12):39-44
    22.奚祥福.炼油厂污水处理油份在线分析.炼油化工自动化.1994(3):41-44
    23.尹先清,蔡世启.炼油厂废水处理回注的研究.工业水处理.1998 18(2):22-24
    24.王义刚.陶瓷膜处理含丁苯胶乳废水的实验研究.研究生论文.2001
    25.韩伟,卢鑫.油脂生产加工过程中的废水处理.1998 23(6):20-21
    26.张立伟,段国聪.精练油厂含油废水的处理工艺及效果.中国油脂.2001 26(3):6-8
    27.贾立敏.食用植物油工业废水处理工艺研究.1998 24(6):29-32
    
    
    28.周刚.乳化液废水处理浅议.有色金属加工.2001 163(1):16-19
    29.哈罗德 R.琼斯.石油工业中的污染控制.北京.石油工业出版社.1981
    30.国家环境保护局.膜法分离技术及其应用[M].北京.中国环境科学出版社.1991
    31.崔志澄,何为庆.工业废水处理.冶金工业出版社.北京.1989:67
    32. Thew M. T. et al. Development and performance of oil-water hydrocyclone separators, The Institution of Mining and Metallurgy. 1998: 77-83
    33.宋振东.水力旋流器用于含油废水处理.中国有色金属学报.1999 9(3):610-614
    34.贺杰.膜在石油领域应用研讨会.南京.1997:150
    35. Seureau J. J. et al. A three-phase Separator for the removal of oil solid from produced water, SPE Annual Technical Conference and Exhibition, New Orleans LA USA 1994: 25-28
    36.袁惠民.含油废水处理方法.化工环保.1998 18(3):146-149
    37.陈淑云.泥炭处理含油废水的初步研究.吉林石油化工.1982 (3):23-26
    38.周锐久.焦碳处理含油废水效果研究.贵州师范大学学报.1999 17(2):47-19
    39.高效吸油材料开发成功.化工环保.20(1):63
    40.徐根良,曾静,翁建庆.含油废水处理技术综述.水处理技术.1991 17(1):1-12
    41.刘刚,梅教宗.超声波在废水处理中的应用研究.化工科技.2000 8(5):55-59
    42. Fittpaldi F. Particle coagulation by means of ultrasonics, Acoustica. 1979 41(3): 263-266
    43.孙宝江,颜大椿等.乳化原油的超声波脱水研究.声学学报.1999 24(3):327-331
    44.陈洪斌,庞小东.悬浮填料生物接触氧化法处理炼油废水.中国给水排水.2002 18(9):42-44
    45.邹克华,隋峰.高温优势菌生物膜处理采油废水.城市环境与城市生态.2002 15(5):32-34
    46.王志强等.胜利油田采油废水污染现状及达标处理技术探讨.油气田环境保护.2002 12(12):26-31
    47.肖昌胜,李晓东等.桩西联采油废水氧化塘的逗留时间分布研究.油田化学.2002 19(3):279-281
    48.唐述虞等.炼油厂微型生态塘有机物生物降解模型及净化机理研究.污染防治技术.1997 10(1):13-18
    49.陈繁忠.废水净化的电化学技术进展.重庆环境科学.1997 19(6):19-32
    50. Tennakoon C. L. K. Electrochemical treatment of human wastes in a packed bed reactor. J. Appl. Electrochem. 1996(26)2: 99-104
    51.韩洪军.含油废水电解气浮理论与实践.环境工程.1993 11(3):7-10
    52.丁传伟 译.环境污染治理文集.1981(3):61
    53.王蓉沙,邓皓.电絮凝法处理油田污水.环境科学研究.1999 12(4):30-32
    54.熊英健.一种新型水处理技术——絮凝床现状与展望.工业水处理.1996 16(3):4-7
    55.严应政.含油污水的处理.西北建筑工程学院学报.1997(2):43-47
    56.董声雄.超滤膜技术处理含油废水.福建环境.1996 13(1):11-12
    
    
    57.王春梅,谷和平.含油废水处理方法.化工时刊.2000(11):1-4
    58.郑领英,袁权.展望21世纪的膜分离技术.水处理技术.1995.21(3):125-131
    59. Vigo F., Uliana C.ang Lupino P. The performance of a rotation module in oily emulsions ultrafiltration. Sep. Sci.Technol. 1985(20): 213-230
    60. Bailey P. A. The treatment of waste emulsified oil by ultrafiltration. Filtration & Separation. 1977(14): 53-55
    61. Mueller J., Yen Y., Davis R. H. Crossflow microfiltration of oily water. J. of Membrane Science. 1997(129): 221-235
    62.梁立军,陈大年,蒋可觐等.大庆油田回注水过滤净化的研究.膜科学与技术.1998(2):22-24
    63. Soobok L., Yves A. and Henry R. Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil. J. of Membrane Science. 1984(19): 23-38
    64.吕晓龙,李新民,胡成松等.中空纤维微孔膜在油田注水净化处理中的应用.膜科学与技术.1998(2):33-36
    65.李发永,李阳初,孙亮等.含油废水的超滤法处理.水处理技术.1995 21(3):145-148
    66.王生春,温建志,王海等.聚丙烯中空纤维微孔滤膜在油田含油污水处理中的应用.膜科学与技术.1998(2):28-31
    67. Kirjassoff D., Grace W. R., Pinto et al. Ultrafiltration of wster latex solutions. Chem. Eng. Prog. 1980 76(2): 58-61
    68. Lin. L., Rhee K. C., Koseoglu S. S. Bench-scale membrane degumming of crude vegetable oil: pross optimization. J. of Membrane Science. 1997(134): 101-108
    69. Belkacem M., Matamores H., Cakassud C., Cotteret J. New results in mental working wastewater treatment using membrane technology. J. of Membrane Science. 1995(106): 195-205
    70. Bodzek M. et al. The use of ultrafiltration membranes made of various polymers in the treatment of oil-emulstion wastewater. Waste Manage. 1992 12(1): 75-84
    71. Plalipp, Lee C. H., Fane A. G. and Fell C. G. D. A fundamental study of the ultrafiltration of oil-water emulsions. J. of Membrane Science. 1988(36): 161-177
    72.沈晓林,扬晶.超滤技术处理轧钢含油废水.冶金环境保护.2002(2):29-31
    73.李发永,李阳初,孙亮等.含油污水的超滤法处理.水处理技术.1995 21(3):145-148
    74.王同生,刘燕华.微孔膜技术在油田注入水处理中的应用.工业水处理.1997(17)4:10-12
    75.吕晓龙,李新民,石君等.聚偏氟乙烯中空纤维膜的应用及清洗方法.膜科学与技术.2000 20(5):5-9
    76.何桂华.聚砜中空纤维超滤膜在油田注入水处理中的应用.膜科学与技术.1998 18(2):16-21
    77.王静荣,吴光夏,吴开芬等.中空纤维超滤膜处理油田含油污水的研究.膜科学与技术.199818(2):25-27
    
    
    78. Cheryan M., Rajagopalan. Membrane processing of oily steams wastewater treatment and waster reduction. J. Membrane Sci. 1998(151): 13
    79.王金渠.无机分离膜.化工进展.1993(5):4-10
    80. Chen. A. S. C., Flynn. J. T., Cook.R.G. at al. Removal of oil, grease and suspended solids from produced water with ceramic crossflow microfiltration. SPE Production Engineering. 1991(5): 131-136
    81. Villarroel L.R., Elmaleh S., Ghaffor N. Cross-flow ultra-filtration of hydrocarbon emulsion. J. Membrane Sci. 1995(102): 55-64
    82. Lahiere R. J. and Goodboy K. P. Ceramic membrane treatment of petrochemical wastewater. Environmental progress. 1993 12(2): 86-96
    83. Bransal I. R. Ultrafiltration of oily wastes from process industries. AIChE. Symp. Ser. 1975 71(15): 93-99
    84. Bransal I.R. Concentration of oily and latex waste waters using ultra-filtration inorganic membranes. Ind. Water Engr. 1976 13(5): 6-11
    85. Bhave R. R., Fleming H. L. Removal of oily contaminants in wastewater with microporous alumina membrane. AIChE. Symp. Ser. 1988. 84(261): 19-27
    86. Gaeta S.N.,and Fedele U. Application of Membrane processes to the treatment of wastewater from oily oil industries. Proceedings of the fifth world filtration congress, Nice France 1990
    87. Goodboy K. P. and Louy G. C. Theory and Operational results of crossflo microfiltration for produced and seawater injection. Proceedings of the water management offshore conference, Dyce/Aberdeen, Scotland. 1989
    88. Hsieh H. P. Inorganic Membranes. AIChE Symposium Series261. 1988(84): 1-18
    89. Richard J. L. Kenneth P. G. Ceramic membrane treatment of petrochemical wastewater. Environmental Progress 12(2): 86-96
    90. Leenaars A. F. M. and Burggraaf A. J. The preparation and characterization of alumina membranes with Ultra-Fine Pores. Part3-The permeability for pure liquids. J. Membrane Sci. 1985(24): 245-260
    91. Shimizu Yasntoshi, Shamyn Takashi. Treatment of oil-containing wastewate. Jpn Kokyo Koho. 1992 05 245 427
    92. Simms K. M., Liu T. H., Zaidi S. A. Recent advances in the application of membrane technology to the treatment of produced water in Canada. Water. Treat. 1995(10): 135-144
    93. Humphery J. L., Goodboy K. P., Casaday A. L. Ceramic membranes for the treatment of produced waters by oil wells. Am Chem. Soc. 197th. National Meeting, Dallas. 1989
    94.王怀林,王忆川,姜建胜等.陶瓷微滤膜用于油田采出水处理的研究.膜科学与技术.1998(2):59-64
    95.谷和平.《齐鲁公司橡胶厂外排水含胶乳废水的陶瓷膜处理技术研究》.公司结题报告 2002
    96.王虹,谷和平,王义刚等.膜分离技术处理含胶乳废水的研究.江苏化工.2001 29(6):
    
    40-43
    97.邢卫红,张伟,徐南平.陶瓷微滤膜脱除焦化废水中的焦粉的研究.南京化工大学学报.1998 20(3):10-13
    98. Stanley R. K., Miched M. An examination of paybacks for an aqueous cleaner recovery. Planting and Surface Finishing. 1993(9): 56-58
    99. Chen. A. S. C. Evaluting a ceramic ultrafiltration system for aqueous alkaline cleaner recyling. Report to U S EPA, 68-CO-0003. 1994
    100. Chen. A. S. C. Using ceramic crossflow filtration to recycle spent nonionic aqueous-based metal-cleaning solutions. Report to US Naval Facilities Engineering Service Center, CR-96.004. 1994
    101. Chen. A. S. C. Using ceramic crossflow filtration to recycle a nonionic aqueous-based metalcleaning solutions. Pilotscale testing. Report to US Naval Facilities Engineering Service Center, CR-97.004. 1994
    102.张国胜,谷和平,邢卫红等.无机陶瓷膜处理冷轧乳化液废水工艺研究.高校化学工程学报.1998 12(3):287-291
    103.张国胜,谷和平,邢卫红等.氧化锆微滤膜处理冷轧乳化液废水的研究.水处理技术.2000 26(2)71-75
    104.王春梅,谷和平.无机陶瓷微滤膜处理含油乳化液废水的污染机理讨论.化工时刊.2000(11):23-26
    105.王春梅,谷和平,王义刚等.陶瓷微滤膜处理含油废水的工艺研究.南京化工大学学报.2000 22(5):38-42
    106.王春梅,谷和平.用微滤膜处理含油废水过程的数学模型及验证.南京师范大学学报.2001 1(2):42-48
    107.钟璟.陶瓷微滤膜过滤微米、亚微米级颗粒体系的基础研究和应用开发.博士论文 1998
    108.樊栓狮,王金渠.无机膜处理含油废水.大连理工大学学报.2000 40(1):61-63
    109. Krasnor B. P. et al. A treatment of oil-emulstion wastewater at the OtsM Plant by ultrafiltration. Tsvetn. Met. 1992(1): 50-51
    110.刘茉娥.超滤膜污染机理的研究.水处理技术.1989 15(13):163-168
    111. Raker R. W., Koros W. J., Cussler E. L. Membrane separation systems. Recent development future directions. Park Ridge, New Jersey, U.S.A. 1991 360-394
    112.王萍,朱宛华.膜污染与清洗.合肥工业大学学报.24(2):230-233
    113. Amjad Z. Advances in membrane cleaners for reverse osmosis systems. Ultrapure Water. 1989 6(6): 38-42
    114.王晓琳.膜的污染和劣化及其防治对策.工业水处理.2001 21(9):1-5
    115.郑成.膜的污染及其防治.膜科学与技术.1997 17(2):5-14
    116.孙洪贵,夏海平,蓝伟光.分离膜材料的污染与清洗.功能材料.2002 33(1):26-32
    117.中尾真一.高分子分离膜性能变化原因防止法.化学技术志.
    
    1985 23(1)21-25
    118.渡边氏.膜分析.MRC New.1989 1(1):16
    119. Toshikazu M., Kanako S., Atsushi K., et al. Development of moisture-proof thin and large QFP with copper lead frames. Proceedings Electronic Components and Technology Conference May. 1998: 1125-1131
    120. Bhave R. R. Inorganic membranes: Synthesis, Characteristics and Application. Van Nostrand Reinhold. 1991 New York
    121. Marshall A. D., Munro P. A., and Tragardh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review. Desalination. 1993(91): 65-108
    122. Giiell G., Robert H., Davis. J. Membrane Sci. 1996(119): 269-284
    123.陆晓峰,陈仕意,刘光全等.中国膜工业协会首届学术报告会论文集.1995:106-109
    124. Ousman M. Bennasar rain suspension through in organic membranes. J. Membrane Sci. 1995(105): 1-21
    125. Kang T. G. Park I. S. Kim J. H., et al. Characterization of oxidized copper lead frames and copper/epoxy molding compound interface adhesion in plastic package, adhesive joining and coating technology in electronics manufacturing, 1998 Proceedings of 3rd international conference on 1998. 106-111
    126. Broom G. P., Squires R. C., Simpson M. P. J. and Martin I. The treatment of heavy metal effluents by crossflow microfiltration. J. Membrane Sci. 1994(87): 87-219
    127. Harris and Dobos. J. L., Enhanced ultrafiltration flux rates by enzymatic hydrolysis in protein recovery from wheat starch effluent. J. Membrane Sci. 1989(41): 87
    128. Muralidhara H. S., Membrane fouling: techno-economic implications Proc. 2nd Intl. Conf. On Inorganic Membranes. Montpellier, France. 1991: 301
    129.张国俊,刘忠洲.膜过程中超滤膜污染机制的研究及其技术进展.膜科学与技术.2001 21(4):39-45
    130.徐晓虹,张英,吴建峰等.掺杂对γ-Al_2O_3薄膜的改性研究.佛山陶瓷.2002 8(65):11-13
    131.邵德益,刘洪谦,王平诸.超滤膜的改性与清洗技术的研究.现代化工.1995(8):20-22
    132. Neuman P., Robting R., KM. Determination of various hydraulic resistances during cross-flow filtration of starch gobsto B. A., et al. Metallic membranes Filtration Sep. 1998 35(1): 40-42
    133. Bauser A., Biederman R. R., Ma Y. H. and Clark W. M. Protein adsorption and fouling of ceramic membranes as measured by scanning electron microscopy with digital X-ray mapping. Chem. Eng. Commun. 1991(108): 365
    134.吴惠珍,Vicki C.,孙培松,Fane A.G.阴离子表面活性剂对降低超滤膜污染的影响.水处理技术.1994 20(2):85-88
    135. Brink L. E. S., Elbers S. J. G., Robbertsen T. ea al. The anti-fouling action of polymers
    
    preadsorbed on ultrafiltration and microfiltration membranes. J. Membrane Sci. 1993 (76) :281
    136. Dumon S., Barnier H. Ultrafiltration of protein solutions on ZrO2 membranes. The inflence of surface chemistry and solution chemistry on adsorption. J. Membrane Sci. 1992 (74) :289
    137. 王洪生,陆雍森.国外膜技术进展及其在处理中的应用.膜科学与技术.1999 19(4) :17-22
    138. Genne I., Doyen W., Adriansens W. et al. Organ-mineral ultrafiltration membrane. Filtration Sep. 1997 34(9) :964-966
    139. Visvanathan C. ang Ben Aim R. Application of an electricfield for the reduction of particle and colloidal membrane fouling in crossflow microfiltration. Sep. Sci. & Tech. 1989 (24) :383-398
    140. Stumpe M. Redeker B., Werner U. The use of electrostatic interactions to improve the backflushing effect in crossflow microfiltration. Filtr. & Sep. 1993 (6) :331
    141. Wakeman R. J. and Tarleton E. S. Membrane fouling prevention in crossflow microfiltration by the use of electric fields. Chem. Eng. Sci. 1987 (42) :829
    142. Belfort G, Mikulasek P., Pimbley J. M., Chung K. Y. Diagnosis of membrane fouling using a rotating annular filter. 2. Dilute particle suspensions of known particle size. J. Membrane Sci. 1993 (77) :23
    143. Kroner H., Nissinen V. Dynamic filtration of microbial suspensions using an axially rotating filter. J. Membrane. Sci. 1985 (36) :85-100
    144. Michaels A. S. Membrane, membrane process, and their application: Needs, unsolved problems, and challenges of the 1990's. Desalination. 1990 (77) :5
    145. Robertson g. h., Olieman J.J., Farkas D.F. Concentration-polarization reduction in a centrifugally driven membrane separator. AIChE Symposium Series: Food and Eng. 1982 (78) :218
    146. Tarleton E. S., Wakeman R.J. Microfiltration enhancement by electrical and ultrasonic force fields. Filtr. & Sep. 1990 (27) : 192
    147. Laborie S., Cabassud C., Durand-Boulier L., et al. Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibers for drinking water production: effects of slug flow on cake structure. Filtration Sep. 1997 34(8) :887-891
    148. Li Q. Y., Ghosh R., Cui Z. F., et al. Enhancement of ultrafiltration with flow sheet membrane modules by gas sparging. Book of abstracts, Euromembrane 97, "Progress in membrane Science and Technology". The Netherlands: University of Twente. 1997 :92-94
    149. Kennedy T. J., Merson R. L., Mccoy B. J. Improving permeation flux by pulsed reverse osmosis. Chem. Eng. Sci. 1974 29(9) :1927-1937
    150. Bouzaza A.K., Jaffrin M. Y, Gupta B. B. The pulse cleaning methods about membrane separation. TCIM.89, Montpellier. 1989
    151. Bauser H., Stron N., Walitza E. Interfacial effect with microfiltration membrane. J.
    
    Membrane Sci. 1982 (11) :321-332
    152. Jaffrin M. Y., Gupta B. B. Energy saving pulsatile mode crossflow filtration. J. Membrane Sci. 1994(86) :281-290
    153. Gupta B. B., Blanpain P., Jaffin M. Y. Permeate flux enhanced by pressure and flow and flow pulsation in microfiltration with mineral membrane. J. Membrane Sci. 1992 (70) :257-266
    154. Rodgers V. G. J., Sparks R. E. Effect of transmembrane pressure pressure pulsating on concentration polarization. J. Membrane Sci. 1992 (68) : 149-168
    155. Rodgers V. G. J., Sparks R. E. Reduction of membrane fouling in the ultrafiltration of binary protein mixtures AIChE. 1991 (37) :1517-1528
    156. Ilias S., Govind R. A dynamic model for UF membrane fouling by dilute suspensions. Proc. 2nd Intl. Conf. on Sep. Sci. and Tech. Vol.1, Hamilton, Ontario, Canada. Paper. 1989 No.S1-1a.
    157. Brunner G. Okoro E. Reduction of membrane fouling by means of an electric field during ultrafiltration of protein solution. Bcr Bunsen-Ges Phys Chen. 1989 93(9) :1026-1032
    158. Pupuna L., Rios G. M., Joulie R. et al. Electronanofiltration: A new process for ion separation. Sep Sci. Technol. 1998 33(1) :67-68
    159. 赵宗文,钟富优,王书伟等.电场作用下的十字流膜滤初探.过滤与分离.1995(4) :14-16
    160. Kobayashi T. Ultrasound effect on permeat flux of polyacrylonitrile ultrafiltration membrane. Preprints of international Conference on Membrane Science and Technology. Beijing, China. 1998 196-197
    161. Thomas D. G. Forced convection mass transfer in hyperfiltration membrane. Ind. & Eng. Chem. Fundam. 1973 12(4) :396-405
    162. Mavrov V., Nikolov N. D., Islam M. A., Nikolova J. D. An investigation on the configuration of inserts in tubular ultrafiltration module to control concentration polarization. J. Membrane Sci. 1992(75) :197-201
    163. Gupta B. B., howell J. A., Wu D., Field R. W. A helical Baffle for cross-flow microfiltration. J. Membrane Sci. 1995 (102) :31-42
    164. Walker G, Millward H. R., Bellhouse B. J. Screw thread flow promoter: an experimental study of ultrafiltration and microfiltration performance. J. Membrane Sci. 1995 (106) :269-279
    165. Najarian S., Bellhouse B.J. Eahanced microfiltration of blood using a tubular membrane with a screw-threaded insert and oscillatory flow. J. Membrane Sci. 1996 (112) ;249-261
    166. Broussous L., Ruiz J. C., Larbort A. et al. Stamped ceramic porous tubes for tangential filtration. Sep. Purif. Technol. 1998 14(1-3) : 53-57
    167. Jeffree M.A., Peakock J. A., Sobey I. J., Belhouse B. J. Gel layer limited haemofiltration rates can be increased by vortex mixing. Clin. Dias. Apherrasis. 1981 (5) :373-380
    168. Holeschovsby U. B. Quantitative description of ultrafiltration in a rotating filtration device.
    
    AIChE J. 1991 37(18): 1219-1226
    169. Kroner H., Nissinen V., Ziegler H. Whirlpool membrane model. Bio/Technology. 1987(5): 921
    170.刘难生,董宇红等.旋转同心圆Couette-Taylor流动的数值模拟.中国科技大学学报.2002 32(1):91-97
    171. Murase t., Ivitani E., Chidhong P., et al High-speed microfiltration using a rotating cylindrical ceramic membrane. Int. Chem. Eng. 1991 3(2):370-378
    172. Moulin P., Rouch J. C., Serra C. et al. Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes. J. Membrane Sci. 1996(114): 235-244
    173.阎建民,袁其朋,马润宇.用缠绕式膜组件强化传递过程的研究.膜科学与技术.2001 21(4):13-16
    174. Heinz B., Winzeler, Belfort G. Enhanced performance for pressure driven membrane process: the argument for fluid instabilities. J. Membrane Sci. 1993(80): 35-47
    175. Chung K. Y., Edelstem W. A., Belfort G. Dean vortices with wall flux in a curved channel membrane system 6: Two dimensional magnetic resonance imaging of the velocity field in a curved impermeable slit. J. Membrane Sci. 1993(81): 151-162
    176. Chen V., Fane A. G., Fell C. J. D. The use of anionic surfactants for reducing fouling of ultrafiltration membranes: their effect and optimization. J. Membrane Sci. 1992(67): 249-261
    177.松本干治,中尾真一.酵母分离.发酵工学.1987(65):455
    178. Tarleton E. S., Wakeman R. J. Understanding flux decline in crossflow microfiltration: Part Ⅱ-effects of process parmeters. Chem. Eng. Res. & Design. Part A. 1994(72): 431-440
    179. Maartens A., Suart P., Jacobs B. P. J. Membrane Sci. 1996(119): 9-16
    180. Wisston W. S., Sirkar K. K. Membrane Handbook. Van Nostrand Reinhold, New York. 1992
    181. Winfield B, A. Water Res. 1979(13): 561
    182.江原胜也.膜洗净.化学工场.1976(65):69
    183. Lindau J. Jonsson A. S. J. Membrane Sci. 1994(87): 71-78
    184.钱俊青,陈铭.膜科学与技术.1998 18(3):58-61
    185. Sheikholeslami R. Fouling mitigation in membrane processes. Desalination. 1999 123(1): 45-53
    186. Nabetain H. Study on characteristics of membrane separation systems for food processing. Naku. 1998 23(6): 294-299
    187. Van den Berg G. B. and Smolders C. A. Flux decline in ultrafiltration processes. Desalination. 1990(77): 101
    188. Van den Berg G. B. and Smolders C. A. Flux decline in membrane processes. Filtr. & Sep. 1988 (34): 115
    189. Kleinstreuer C. and Chin T. P. Analysis of multiple particle trajectories and deposition layer growth in porous conduits. Chem. Eng. Commun. 1984(28): 193
    190.董声雄,张济宇.中空纤维低压超滤处理含油废水的数学模型.化工学报.2000 51(3):320-325
    191. Bentrcia M. and Drew D. Fouling layer growth and distribution at the interface of pressure-driven membranes. Chem. Eng. Sci. 1990(45): 1235
    
    
    192. Ilias S., Govind R. Simulation of flux decline due to particulate fouling in ultrafiltration. Part. Sci. Technol. 1989 7(3) :187-199
    193. Lu W. M. Ju S. C. Selective particle deposition in cross-flow filtration. Sep. Sci. & Tech. 1989(24) :517
    194. Altmann J. and Ripperger S. Particle deposition and layer formation at the cross-flow microfiltration. J. Membrane Sci. 1997 (124) : 119
    195. Stamatakis K. and Tien C. A simple model of cross-flow filtration based on particle adhension. AIChE J. 1993 (39) : 1292
    196. Hermans P. H. and Bredee H.L. Principles of the mathematical treatment of constant-pressure filtration. J. Soc. Chem. Ind. 1936 (1) :557
    197. Grace H. P. Structure and performance of filtrate media. AIChE J. 1956 (2) :307
    198. Iritani E., Mukai Y., Tanaka Y. et al. Flux decline behavior in dead-end microfiltration of protein solutions. J. Membrane Sci. 1995 (103) : 181
    199. Shirato M., Aragaki T, Iritani E. Blocking filtration laws for filtration of power-law non-Newtonian fluids. J. Chem. Eng. Jpn. 1979 (12) :162
    200. Blanpain P., Hermia J., and Lenoel M. Mechanisms governing permeat flux and protein rejection in the microfiltration of beer with a Cyclopore membrane. J. Membrane Sci. 1993 (84) :37
    201. 王志,甄寒菲,王世昌等.膜过程中防治膜污染强化渗透通量技术进展(I)操作策略,膜科学与技术,1999 19(1) :1-6
    202. Delgrang N., Cabassud C., Cabssud M., et al. Neural network modeling of trans membrane pressure duing ultrafiltiong for drinking water production. Preprints of International Conference on Membrane Science and Technology (ICMS'98) . Beijing, China. 1998:79-80
    203. 伍艳辉.王志,伍登熙等.膜过程中防治膜污染强化渗透通量技术进展(II)膜组件及膜系统的结构设计.膜科学与技术.1999 19(4) : 12-22
    204. Dornier M., Decloux G., Trystram, et al. Dynamic modeling of crossflow microfiltration using networks. J. Membrane Sci. 1997 (198) :263-273
    205. Lohscheidt M., Rautenbach R. Modeling of mass transfer in NF/RO membrane by using neural networks. Preprints of International Conference on Membrane Science and Technology (ICMS'98) . Beijing, China. 1998:81-82
    206. Flora J. R. V. Stotchasic approach to modeling surface fouling of ultrafiltration membranes via surface flurination J. Membrane Sci. 1993 76(1) :85-88
    207. Li S. L., Chou K. S., Lin J.Y., et al. Study on the microfiltration of Escherichia coil-containing fermentation broth by a ceramica membrane filer. J. Membrane Sci. 1996 (110) :203
    208. Warren R. K., Macdonald D. C. and Hill G. A. Cross-flow microfiltration of Saccharomyces cerevisiae. Process Biochem. 1991 (26) :337
    209. Ilias S., Govind R. Potential application of pulsed flow for minimizing concentration polarization in ultrafiltration. Separation Science and Technology. 1990 (25) :1307-1324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700