高效油脂降解菌的筛选及其对油脂废水的强化处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油废水是一种量大而面广的污染源。如何经济、快速、合理地处理含油脂的废水、废物,解决油类污染物的环境问题,已成为一个急待解决的社会问题。目前常用的处理方法主要有物理、化学方法分离和回收废水中的油脂,但无法彻底消除废水的油脂,而且易造成二次污染。生物法是处理油脂污染物的一种最有效、最安全和最彻底的方法。生物流化床适用于高浓度有机废水的高效生物处理。生物强化技术可以充分发挥微生物的降解能力,它可以与不同的处理系统相结合,针对性地去除某种或某类目标污染物。
     针对含高浓度油脂的污染物,本研究通过筛选高效降解油脂的微生物菌株,进行了生物强化流化床生物反应器处理油脂废水的研究。通过驯化、富集培养,从不同来源的污水、污泥样品中筛选出三大类共106株菌株,对其中降解能力最强的6株菌进行了鉴定,其中X4菌为洋葱伯克霍尔德氏菌,J2菌为分解油脂酵母菌。
     研究了X4菌和J2菌降解油脂的最适条件。对X4菌,温度为30℃,pH为7.0;而对J2菌,温度为25℃,pH为5.0。对X4菌和J2菌降解油脂的特性研究表明:添加合适的氮源促进油脂的降解,硫酸铵为首选。C/N比在4:1和5:1时能分别促进X4菌和J2菌的生长和油脂降解。低浓度的表面活性剂能促进微生物的生长和油脂降解,对X4菌和J2菌来说,合适的Tween-80的浓度分别为600mg/L和900mg/L。加入H_2O_2能促进X4菌和J2菌降解油脂,适宜浓度为400mg/L。共基质培养表明,葡萄糖浓度为200mg/L时,能使X4菌株在24小时内的油脂降解率提高8%~10%。在油脂浓度≤2500mg/L时,X4菌对油脂的降解符合Monod动力学模型。
     未驯化的活性污泥对油脂的降解作用十分缓慢,在24小时内只降解9%的油脂。驯化后的活性污泥对油脂具有较好的去除能力,在24小时内对油脂的降解率为78%。在活性污泥中投加X4菌对含油脂废水进行强化处理,可以大大提高油脂的去除率。
     生物流化床反应器的流体力学特性研究结果表明,该反应器有良好的传质混合特性。生物流化床反应器经驯化挂膜后,电镜扫描显示,在载体的表面和内部孔隙分布有大量的微生物,说明反应器内陶瓷载体对微生物有良好的固着作用,在进行生物强化处理时有利于高效菌在反应器内的保持和强化效果的实现。
     对生物流化床反应器的操作参数的研究结果表明,随着水力停留时间的延长,油脂和COD_(Cr)的去除率明显增大;而进水COD_(Cr)的浓度的提高对COD_(Cr)和油脂的去除的影响并不一致,实验范围内COD_(Cr)的去除率随进水COD_(Cr)的浓度
Oil wastewater is one of the most widespread environmental pollution in the world. How to eliminate the contamination economically, rapidly and reasonably, has received much public attention and thus become a major social problem in the past several years. Current physical and chemical technologies such as flotation and sedimentation are often insufficient and easy to cause secondary pollution. Biological technology is the most effective, safe and reasonable method for oil pollutions treatment. Bio-fluidized bed is a high effective biological treatment technique and suitable for high concentration organic wastewater treatment. Bioaugmentation, which use selected microbes to degrade organic compounds, can combine with different treating systems to remove some objective pollutant.
    This study aims at the pollutants that contain high concentration of oil and applies bio-fluidized bed to treat oil wastewater by bioaugmentation with screened strains that can degrade oil effectively. With olive oil as the sole carbon source, one hundred and six strains were isolated from different oil contaminated wastewater, soil and sludge by enrichment and acclimation. And six of them with higher capability of oil degradation were identified. The strains X4 and J2 were identified as Burkholderia cepacia and Candida steatolytica respectively.
    Optimal conditions for oil degradation were studied. For strain X4: the optimum temperature is 30℃ and the optimum pH is 7.0. For strain J2: the optimum temperature and the optimum pH is 25℃ and 5.0 individually. Detailed studies have been carried out on the characteristics of the strain X4 and J2 in oil degradation and the results as follows: Ammonia sulfate is the suitable nitrogen source for oil degradation. To promote oil degradation and the growth, the optimum C/N is 4:1 for X4 and 5:1 for J2 individually. Surfactants can promote oil degradation at low concentration, for X4 and J2, the proper concentration of Tween-80 is 600mg/L and 900mg/L individually. Olive oil co-substrate biodegradation with 200mg/L glucose can increase oil degradation rate by 8%~10%. When the concentration of oil is below 2500mg/L, oil biodegradation by X4 follows Monod kinetics model.
    The un-acclimated active sludge degraded oil very slowly and 9% of oil was degraded in 24h. But the acclimated active sludge could degrade 78% of oil in 24h. The capability of treating oil wastewater was enhanced greatly by bioaugmentation in active sludge system.
    The studies on the hydrodynamics of the bio-fluidized bed show that it has
引文
1.郭俊,张国萍.中国生物工程发展及国际走势.香港:中国数字化出版社,2000:111
    2.国家环境保护总局.2000中国环境状况公报.2001
    3.陈国华.水体油污染治理.北京:化学工业出版社,2002
    4.洪蔚.城市化进程中的几个环境问题.上海环境科学,1992,11(2):2-4
    5.杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略.给水排水.2001,27(19):4-101
    6.赖万东,杨卓如,陈焕钦.油脂废水的生物降解研究.工业用水与废水.2000,31(4):21-23
    7.袁惠民.含油废水的处理方法.化工环保,1998,18:146
    8.慎义勇.油制气废水毒害有机污染物控制技术初步研究.中科院博士论文,2000
    9.韦朝海,梁世中,吴超飞.废水处理生物流化床中O_2传递特性的研究.环境科学与技术,1996,(1):13-16
    10.北京水环境技术与设备研究中心,北京市环境保护科学研究院,国家城市环境污染控制工程技术研究中心.三废处理工程技术手册(废水卷).北京:化学工业出版社,2000
    11. Tabakin R B, Cheremisionff P N. Oil water separations: The option available, Part 1 and Part 2. Water Sew Works, 1978
    12. McDermott G N. Environmental aspects of animal and vegetable oil processing. In: Swern, (Ed): Bailey's Industrial Oil and Fat Products, vol, 2. Wiley, New York, 1982, 527-586
    13.高以煊,叶凌碧.膜分离技术在工业废水处理中的应用(续一).工业水处理,1987,7(1):7-12
    14.张相如,庄源益,王旭等.膜法处理含油废水研究进展.城市环境与城市生态,1999,10(1):59~61
    15. Mastsumooto M R, Jensen J N, Read B E et al. Physicochemical Processes. Wat Environ Res, 1996, 68(4): 431-450
    16.李发永,李阳初,孙亮等.含油污水的超滤法处理.水处理技术,1995,21(3):45-48
    17.张裕卿,丁键,常俊石.聚砜-Al_2O_3复合膜处理油田含油污水.工业水处理,2000,20(2):24-25
    18. Kleper M K, Turner R. Assessment of wastewater treatment alternatives for the??synthetic rubber manufacturing industry. The 3rd annual conference on treatment and disposal of industry wastewater and residues. Houston. 1978
    19.彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用.水处理技术,1999,29(2):63-69
    20.徐根良,曾静,翁建庆.含油废水处理综述.水处理技术,1991,17(1):1-12
    21. Singh B P. Correlation between Surface Film Pressure and Stability of Emulsion. Energy Sources, 1997, 19: 783-788
    22. Mathavan G N, Viraraghavan D. Use of peat in the treatment of oily waters. Water Air and Soil Pollution, 1989, 45: 17-26
    23. Harpur G, Wayth N J. Destabilisation of Water in Oil Emulsions under the Influence of an A. C. Electric Field: Experimental Assessment of Performance. J Eletrosstatics, 1997, 40-41: 135-140
    24. Secerov A D. Effect of working conditions on bed coalescence of an oil-in-water emulsion using polyurethane foam bed. Ind Eng Chem Res. 1997, 36:4949-4953
    25.高宝玉,刘总纲,岳钦艳等.聚硅硫酸铝混凝的性能研究.中国化学会第五届水处理化学学术研讨会会议论文集.北京:国化学会第五届水处理化学学术研讨会筹委会,2000:95-103
    26.陈伟红,李明玉,唐启红等.无机高分子混凝剂聚硅硫酸铝混凝的性能研究.中国化学会第五届水处理化学学术研讨会会议论文集.北京:国化学会第五届水处理化学学术研讨会筹委会,2000:104-109
    27.唐受印.废水处理工程.北京:化学工业出版社,1998:99
    28.朱亦仁.环境污染处理技术.北京:中国环境科学出版社,1998:187-194
    29.陈传好,谢波,任源等.Fenton试剂处理废水中影响因子的作用机制.环境科学,2000,21(3):180-183
    30.韦朝海,陈传好,王刚等.Fenton试剂催化氧化降解含硝基苯废水的特性.中国化学会第五届水处理化学学术研讨会会议论文集.北京:中国化学会第五届水处理化学学术研讨会筹委会,2000:172-178
    31. Bossmann S H. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reaction. J Phys Chem A, 1998, 102 (28): 5542-5550
    32.乌锡康.有机化工废水治理技术.北京:化学工业出版社,1999:8-52
    33.钟理,张浩.催化氧化法降解废水过程.现代化工,1999,19(5):16-18
    34.刘秀珍.负载型纳米光催化氧化剂的研究进展.污染防治技术.2000,2:79-82
    35. Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chem Rev. 1993, 93(2): 671-68936.胡斌,陈翼孙.气浮法净水机理的研究与应用.水处理技术,1984,10(4):31-33
    37.刘炳泗,袁维富,赵晓红.磁分离技术净化含油污水技术.工业水处理,1991,19(5):6-9
    38.张相如,庄溢源,朱坦等.吸附法处理含油污水和水面溢油的吸附剂研究进展.环境科学进展,1997,5(1):76-78
    39.吴敦虎,吕福荣,许涛等.硼泥处理含油废水.水处理技术,1996,22(2):115-118
    40.陈伟国.电催化产生H_2O_2和·OH及去除废水中有机污染物的应用.中国环境科学,1998,18(2):54-58
    41.朱富祥.膜法工艺处理炼油综合污水探索中试研究.环境污染与防治,1993,15(3):11-15
    42.林稚兰,熊小燕,钱存柔.应用生物降解处理石油化工废水.环境化学,1986,5(4):7-12
    43.关为省,曾涛,朱浚黄.A/O生物法处理石化废水的研究.中国环境科学,1995,15(5):363-367
    44. Daniel K C, Junes S, David S. Treatment Technologies-Biological Treatment. Wat Envir Res, 1997, 69(4): 676-687
    45. Chern J M. Volatile organic compounds emission rate from diffused aeration systems. 1. Mass transfer modeling. Chem Res. 1995, 34(8): 2634-2643
    46. Pankhania M, Brindle K, Stephenson T. Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation, Chem Eng. 1999, 73(2): 131-136
    47.贾立敏.食用植物油工业废水处理工艺研究.给水排水,1998,24(6):29~34
    48. Andrew L G. Novel membrane bioreactor for detoxifying industrial wastewater: Ⅰ. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnol Bioeng. 1993, 41(10): 915-926
    49. Kolb F R, Wilderer P A. Activated carbon membrane bioofilm reactor for the degradation of volatile organic pollutants. Wat Sci Tech 1995, 31(1): 19-21
    50. Pavasant P, Pistikopoulos E N, Livingston A Get al. Prediction of axial concentration profiles in an extractive membrane bioreactor and experimental verification. J Membrane Sci, 1997, 23(1): 85-89
    51. Bischof F, Durst F. Theoreetical considerations about the development of efficient aeration systems for activated sludge treatment. American Society of Mechanical Engineers, Fluids Engineering Division (Publication), 1994, 187(19):??27—38
    52.赵立军,滕登用,刘金玲等.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备,2001,2(5):58-66
    53.金梁.石油降解菌的分离、鉴定及其降解能力的研究.应用与环境生物学报,1995,5(增):127-129
    54.谢思琴.利用动胶菌D2菌株处理含油废水的中间试验研究.应用与环境生物学报,1995,5(增):91-93
    55.黄钧,白威,李毅军.3株油脂化工废水降解菌的分离鉴定.应用与环境生物学报,1999,5(增):74-76
    56. Shirai K, Tanaka H, Nishijiima M. Screening of microorganisms in bioremediation of oiled shoreline. Mizu Kankyo Gakkaishi. 1998, 99(1): 37-43
    57.慎义勇,黄志立,韦朝海等.油脂高效降解菌处理含油污水的试验研究.环境科学研究,2000,13(5):4-7
    58.黄志立,任源,韦朝海等.1株好氧菌对不同油脂的降解.环境污染与防治,2001,23(4):197-199
    59. Sef J, Heijiinen, Arnold M et al. Large-scale anaerobic/aerobic treatment of complex industrial wastewater using immobilized biomass in fluidized bed and air-lift suspension reactors. Chem Eng Technol 19990, 13:202-208
    60.韦朝海.三重环流生物流化床基本特性及苯胺与硝基苯类废水生物降解的理论与应用研究.华南理工大学博士学位论文,1997
    61.(美)L S范著.蔡平,俞芷青,金涌译.气液固流态化工程.北京:中国石化出版社,1993:276-280
    62. Phillip C, Wright, Judy A et al. Areview of parameters involved in fluidized bed bioreactors. Chem. Eng. Technol. 1996, 19:50-64
    63.北京水环境技术与设备研究中心,北京市环境保护科学研究院,国家城市环境污染控制工程技术研究中心.三废处理工程技术手册(废水卷).北京:化学工业出版社,2000:611-621
    64. Hirata A, Noguchi M, Takeuchi et al. Kinetics of biological treatment of phenolic wastewater in three-phase fluidized bed containing biofilm and suspended sludge. Wat. Sci. Tech. 1998, 38(8-9): 205-212
    65.郑礼胜,施汉昌,钱易.内循环三相生物流化床处理生活污水.中国环境科学,1999,19(1):51-54
    66.韦朝海,谢波,吴超飞.高浓度印染废水处理工程工艺条件与实例分析.重庆环境科学,1998,20(5):14-17
    67.韦朝海,谢波,任源等.高浓度印染废水处理工程的设计审计与运行结果分??析.环境工程,1999,17(3):14-18
    68.李平.新型生物流化床反应器处理垃圾渗滤液的理论与应用研究.华南理工大学博士学位论文,2002
    69.周平,钱易.内循环生物流化床处理丙烯酸废水的实验.环境科学,1995,16(1):58-61
    70.周平,汪诚文,吴晓磊.内循环生物流化床处理石化废水的中试研究.环境科学.1997,18(1):26-29
    71. Galli R. Biodegradation of dichloromethane in wastewater using a fluidized bed bioreactor. Appl Microbiol Biotechnol, 1987, 27:206-213
    72. Huppe P, Hoke H, Hemple D C. Biological treatment of effluents from a coal tar refinery using immobilized biomass. Chem Eng Technol, 1990, 13:73-79
    73. Heijnen J J, van Loosdrecht M C. Scale up of aerobic airlift suspension biofilm reactor. International Symposium Environmental Biotechnology. 22-25 April, Osteend, Belgium, 1991:211-217
    74. Benthum van W A J, Loosdrecht M D M et al. Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor. Biotechnol. Bioeng, 1997, 53: 397-405
    75. Fennell D E, Nelson Y M, Underhill S E et al. TCE degradation in a methanotrophic attached-film bioreactor. Biotechnol. Bioeng, 1993, 42: 859-872
    76. Young C Y. The use of Enzymes and Biocatalytic additives for wastewater treatment process. Water pollut. Control Fed. Highlights, 1976, 13: 5
    77. Anon. Superbugs rescue waste plant. Cchemical Week. 1997, 30: 47
    78.全向春,刘佐才,范广裕等.生物强化技术及其在废水治理中的应用.环境科学研究,1999,12(3):22-27
    79. Selvaratnam S, Schoedel B A, McFarland B L et al. Application of the polymerase chain (PCR) and reverse transcriptase/PCR for determing the fate of phenol-degrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batcg reactor. Appl Microbiol Biotechnol, 1997, 47:236-240
    80. Chambers J V. Improving waste removal performance reliability of a wastewater treatment system trough bioaugmentation. Proc 36th Ind Waste Conf, Purdue University, 1981, 631-643
    81. Hung Y T, Lo H H. Effect of bioaugmentation on activated sludge treatment of potato wastewater. Intern J Environ Studies, 1994, 45: 89
    82. Steffensen W S. Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates. Appl Environ Microbiol 1995, 61:??382-393
    83. Munakata-Marr J, Matheson V G, Forney L J et al. Long-Term of biodegradation trichloroethylenne influenced by bioaugmentation and dissolved oxygen in aquifer microcosma. Environ Sci Technol, 1997, 31: 786-791
    84. Munakata-Marr, Maccrty P L, Shiields M S et al. Enhancement of trichloroethylene degradation in aquifer microcosms bioaugmentation with wild type and genetically altered Burkholderia (Pseudomonas) cepacia G4 and Prl. Environ Sci Technol, 1996, 30: 2045-2052
    85. Nuβlein B, Maris D, Timmis K et al. Expression and transfer of engineered catabolic pathways harboured by Pseudomonas sp. Introduced into activated sludge microcosma. Appl Environ Microbiol, 1992, 58: 3380-3386
    86. McClure N C, Fry J C, Weightman A J. Survival and catabolic activity of natural and genetically engineered bacteia in a laboratory-scale activated sludge unit. Appl. Environ. Microbiol. 1991, 57: 366-216
    87. Meer J R, van der Vos W M de, Harayama S et al. Molecular mechanisms of genetic adaption to xenobiootic compounds. Microbiol Rev, 1992, 56: 677-694
    88. Lerbach P R, Zeyer J J. Enzyme recruitment in vitro: use of cloned genes to extended the range of haloaromatics degraded by Pseudomonas sp. Strain B13. J. Bacteria, 1984, 158: 1025
    89. Babcock R W J, Cchen W, Ro K S et al. Development of an off-line enricher-reactor process for activated sludge degradation of hazardous waste. Wat. Environ. Res. 1992, 64(6): 782-788
    90. Bouchez T, Patureau D, Dabert P et al. Reasons for failure of the bioaugmentation of a nitrifying reactor: monitoring the fate of the added bacteria and the responses of the microbial community. Environ Microbial, 2000, 2(2): 179-190
    91. Zaidi B R, Murakami Y, Alexander M. Factors limiting success of inoculation to enhance biodegradation of low concentration of organic chemicals. Environ Sci Technol, 1988, 22: 1419-1425
    92. Zaidi B R, Murakami Y, Alexander M. Predation and inhibitors in lake water affect the success of inoculation to enhance biodegradation of low concentration of organic chemicals. Environ Sci Technol, 1989, 23: 859-863
    93. Ramadan M A, El-tayeb O M, Alexander M. Inoculum size as a factor limiting success of inoculation for biodegradation. Appl Environ Microbiol, 1990, 55(5): 1392-139694. Patureau D, Godon J J, Rustrian E et al. Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula Aerodenitrificans. Wat Res 2001, 35(1): 189-197
    95. Guiot S R, Tawfiki-Hajji K, Lepine F. Immobilization strategies for bioaugmentation of anaerobic reactors treating phenolic compounds. Wat Sci Tech 2000, 42(5-6): 245-250
    96. Bitondo M. Cold water treatment. Ind Waste, 1980, 26(1/2): 29
    97. Hung Y T, Horsfall F L, Wong J. Bio-conversion of accumulated sludge with bacterial augmentation process in aerated lagoons for municipal wastewater treatment. Inter. J. Environmental Studies. 1986, 28: 41-56
    98. Rittmann B E, Whiiteman R. Bioaugmentation: A coming of age. Water Quality International Engineering. 1994, 1: 12-16
    99. Yah Y L, Hung Y T. Bioaugmented activated sludge treatment of potato wastewater. Acta. Hydrochim Hydrobiol, 1988, 16: 223-230
    100. Abllah N F N, Lee A H. A batch activated sludge study of pineapple wastewater using a bioaugmentation process. Wat Sci Technol, 1991, 24: 223-240
    101. Gaiek R L. The effects of bioaugmentation under steady and non-steady state influent conditions. Proc. A.S.C.E. 4~(th) Environ Special Conference. 1988: 130-136
    102. Watanabe K. Effects of exogenous phenol-degrading bacteria on performance and ecosytem of activated-sludge. J Fermentation Bioeng, 1996, 82(3): 291
    103. Wilderer P A, Rubio M A, Davis L. Impact of the addition of pure cultures on the performance of mixed culture reactors. Wat Res, 1991, 25(11): 1307-1313
    104. Ying W C, Bonk R R, Lloyd V J et al. Biological treatment of a landfill in sequencing batch reactors. Environ Progress, 1986, 5: 41-50
    105. Bela E, Smith P G. The bioaugmentation of sequencing batch reactor sludges for biological phosphorus removal. Wat Sci Tech, 1997, 35(1): 19-26
    106. Ro K S, Babcock R W, Stenstrom M K. Demonstration of bioaugmentation in a fluidized-bed process treating 1-Naphthylamine. Wat Res, 1997, 31(7): 1687-1693
    107. Jacobsen B N, Arvin E. Biodegradation kinetics and fate modeling of pentachlorophenol in bioaugmented activated sludge reactors. Wat Res, 1996, 30(5): 1184-1194
    108. Christiansen N, Ahring B K. Introduction of a de-Novo bioremediation activity into anaerobic granular sludge using the deechlorinating bacterium DCB-2.??Antoniie Van Leeuwenhoek. Microobiology, 1996(a), 69(1): 61-66
    109. Kennedy M S, Grammas J, Arbuckle W B. Parachlorophenol degradation uses bioaugmentation research. J Water Pollut Control Fed, 1990, 62:227-233
    110. Chin K K, Ong S L, Poh L H et al. Wastewater treatment with bacterial augmentation, Wat Sci Tech, 1996, 33(8): 17-22
    111. Yu Z T, Mohn W W. Bioaumentation with resin-acid degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Wat Res, 2001, 35(4): 883-890
    112. Ghyoot W, Spriingael D, Dong D et al. Bioaugmentation with the c/c-element carrying Pseudomonas pudita BN210 in a membrane seperation bioreactor. Wat Sci Tech, 2000, 41(10-11): 279-286
    113. Tan N C G, Borger A, Slenders P et al. Degradation of azo dye Mordant Yelloe 10 in a sequential anaerobic and bioaugmented aerobic bioreactor. Wat Sci Technol, 1999-2000, 42(5): 337-344
    114. Glaancer-Soljan M, Ban S, Dragicevic T L et al. Granulated mixed microbial culture suggesting successful employment of bioaugmentation in the treatment of process wastewaters. Chem Biochem Eng Q, 2001, 15(3): 87-94
    115. Lewandowski G, Hartman J R, Chong N M et al. Constraint of bioaugmentation in enhancing biological treatment process performance. Proc 42nd Ind Waste Conf, Purdue University, 1988: 275-284
    116. Digiovanni G D, Neilson J W, Pepper I L. Gene-Transfer of alcaligenes-eutrophus jmp134 plasmid pTP4 to indigenous soil recipients. Appl Environ Microbiol, 1996, 62(7): 2521-2529
    117. Winker J, Timmis K N. Tracking the response of Burkholderia cepacia G4-5223 Prilinaquifer microcosms. Appl Environ Microbiol, 1995, 61(2): 448-459
    118. Furukawa K, Miyazaki T. Cloning of gene cluster encloding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteria, 1986, 166:392-398
    119. Khan A, Walia S. Cloning of Bacterial Genes Specifying Degradation of 4-Chlorbiphenyl from Pseudomonas putida OU83 Appl Environ Microbiol, 1989, 55(4): 798-805
    120.国家环境保护局编,国家“七·五”科技攻关环境保护项目成果汇编.北京:科学技术出版社,1993:171-173
    121. Kolenc R J. Transfer and expression of mesophilic plasmid mediated degradative capacity in a Psychrotrophic Bacterium. Appl Environ Microbiol, 1988, 54:??1981-1992
    122.罗如新,张素琴,李顺鹏.邻苯二酚1,2双加氧酶(C120)基因的定位、克隆和表达.应用与环境生物学报,1999,5(2):208~211
    123. Streber W R, Timmis K N, Zenk M H. Analysis, cloning and high level expression of 2,4 dichlorophenoxyaceate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacerial, 1987, 169(7): 2950-2955
    124. Muttray A F, Mohn W W. Quantitation of the population size and metabolic activity of aresinacid degrading bacterium in activated sludge using slot blothybridization to measure the rRNA:rDNA ratio. Microbiol Ecol, 1999, 38(4): 348-357
    125. Pollard P C. Estimating the growth rate of a bacterial species in a complex mixture by hybridization of genomic DNA. Microbiol Ecol, 1998, 36(2): 111-120
    126. Bernard L, Courties C, Duperray C et al. A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystem. Cytometry, 2001, 43(4): 314-321
    127. Vainio E J, Moilanen A, Koivula T T. Comparision of partical 16SrRNA gene sequences obtained from activated sludge bacteria. Appl Microbiol Biotechnol, 1997, 48: 73-79
    128. Sentchilo V S, Perebituk A N, Zehnder A J Bet al. Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolisim in Pseudomonas strains isolated from different contaminated sites in Belarus. Appl Environ Microbiol, 2000, 66(7): 2842-2852
    129. Selvaranam S, Schoedel B A, Mefarland B L et al. Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol degrading sequencing batchreactor. Appl Environ Microbiol, 1995, 61(11): 3981-3985
    130. Erb R W, Wagner D I. Detection of polychlorinated biophenyl degradation genes in polluted sediments by direc DNA extraction and Polymerase Chain Reaction. Appl Environ Microbiol, 1993, 59(12): 4065-4073
    131.徐亚同,史家粱,张明.污染控制微生物工程.北京:化学工业出版社,2001
    132. http://www.focus.cn/newscenter/n.ecgi?v1=1121687
    133. Kallel M, Malesieux Q, Gousailles M. Biological removal of fat waste after saponification. Tech Sci. Methods Genie Urban-Genie Rural, 1994, 11:619-623
    134. Borja R, Gonzalez A. Comparison of anaerobic filter and anaerobic contact??process for olive mill wastewater previously fermented with Geotrichum candidum. Process Biochem, 1994, 29(2): 139-144
    135.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    136.沈叔平,汪小梅.废水中动植物油脂的紫外分光光度测定法.中国环境监测,1994,10(3):4-7
    137.J A巴尼特,R W佩恩,D亚罗.胡瑞卿译,方善康校.酵母菌的特征与鉴定手册.青岛:青岛海洋大学出版社,1991
    138. Chigusa K, Hasegawa T, Yamamoto Net al. Treatment of wastewater from oil manufacturing plant by yeasts. Wat Sci Tech, 1996, 34(11): 51-58
    139.(德)B施特尔马赫著.钱嘉渊译.酶的测定方法.北京:中国轻工业出版社,1992
    140.陈小泉,夏纪鼎.碱性脂肪酶与表面活性剂的相互作用.日用化学工业,1995,4:165-169
    141.李季伦,张伟心,杨启瑞等编著.微生物生理学.北京:北京农业大学出版社,1993
    142.彭立凤.微生物脂肪酶研究进展.生物技术通报,1999,2:17-22
    143.马友光,汪晓红,成弘等.表面活性剂对气液传质的影响.化工学报,1998,49(3):358-367
    144.张胜利,陈贵连.微生物胞外脂肪酶研究进展.工业微生物,1990,20(5):29-37
    145.李书良,焦鹏,曹竹安.流加H_2O_2对提高供氧及微生物代谢的影响.微生物学报,2002,42(1):129-132
    146.顾夏声.废水生物处理数学模式.北京:清华大学出版社.1993
    147.张元兴,许学书.生物反应器工程.上海:华东理工大学出版社,2001
    148.滕农,徐虹,欧阳平凯.油脂废水生物治理法.南京化工大学学报,1999,21(3):58-61
    149.郑国锠,谷祝平.生物显微技术(第二版).北京:高等教育出版社,1993
    150.张尚通,许崇任.转基因微生物生态学及大田释放风险评价研究.应用生态学报,1994,5(3):325-330
    151. Amann R I, Ludwig W, Schleiffer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59:143-169
    152. Jesus G M, Silvia GA, Francisco R V J. Use of 16S-23S ribosomal gene spacer region in studies of prokaryotic diversity. Microbiol Methods, 1999, 36:55-64
    153. Anton A I, Martinez M AJ, Rodriguez V F. Sequence diversity in the 16S-23S??intergenic spacer region (ISR) of the rRNA operons in representatives of the Escheri-chia coli ECOR collection. J Mol Evol, 1998, 47:62-72
    154. Lindstrom E S. Bacterioplankton community composition in a boreal forest lake. FEMS Microbiol Ecol, 1998, 27:163-174
    155. Riemann L, Steward G F, Fandino L B. Bacterial community composition during two consecutive NEM on soon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep Sea Res, 1999, 46: 1791-1811
    156. Pisabarro A, Correia A, Martin J. Characterization of the rrnB operon of the plant pathogen Rhodococcus fascians and targeted integrations of exogenous genes at rrn loci. Appl Environ Microbiol, 1998, 64: 1276-1282
    157.陈纪新,黄邦钦,郑微云.海洋超微型浮游植物多样性研究方法进展.海洋科学,2002,26(8):34-39
    158. Satchanska G, Kanmming K. Molecular bacterial diversity in soil and waters of two East German uranium mining waste piles. Bacterial-metal/radaionuclide interaction, 1999, 252:96-98
    159.陈坚.环境生物技术.北京:中国轻工业出版社,1999
    160.李小松,余扬帆.微生物油脂.食品科技,1997,5:8-9
    161.大连轻工业学院,华南理工大学,郑州轻工业学院等合编.食品分析,北京:中国轻工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700