近红外无创生化检测中不同光程的光谱等效性及校正模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血液的生化检测是健康诊断的重要手段。常规的抽血检验方法虽然能保证检测精度,但是存在以下不足:(1)有创伤;(2)检测周期长;(3)需用试剂。利用近红外光谱分析技术实现无创生化检测具有无痛苦、无感染、无需试剂、便于实现生化指标的实时监测等优点。但近红外无创生化检测实现起来却相当复杂,目前面临的难题主要有:(1)血液生化成分的信号微弱;(2)人体组织产生的强背景干扰。
     采用不同血流容积光谱相减的方法理论上能够消除人体组织产生的强背景干扰,得到纯净的血液光谱,因为在短时间(秒量级)内,人体的生理状态不变,包括人体组织结构、成分及血液的生化指标等都没有变,而血流容积却在脉搏搏动或血流阻断等自然或人为作用下发生变化。在这一短时间内,连续在人体某一部位测得一系列血流容积变化的近红外光谱,取不同血流容积的两幅人体光谱相减,就可以扣除人体组织产生的强背景干扰,得到一定血流容积的血液光谱。血流容积光谱相减法的目的是要对不含人体背景干扰的纯净血液光谱与其
     各生化成分的浓度信息建立多元校正模型,对未知血液生化指标的光谱进行预测,最终实现无创生化检测。然而由于自然或人为作用,血流容积发生变化时测得的人体光谱中所反映的血液光程是变化的,两幅人体光谱相减后得到的血液光谱的光程将是未知的,如果将各种未知光程的血液光谱直接建立多元校正模型,将会使模型的性能降低,这给血流容积光谱相减法带来了困难。需要注意的是,这些不同光程的血液光谱中生化成分的信息是不变的,变化的仅仅是光程信息。能否将各种不同光程的成分含量不变的血液光谱归一到一个不含光程信息的等效光谱上,也就是这些不同光程的血液光谱在反映血液生化成分信息的作用上是否是等效的,以及如何消除这些光程信息的影响并建立多元校正模型,这些问题是本论文所要研究的重要内容,也是不同血流容积光谱相减法能否得到实际应用的关键。
     本文围绕不同血流容积光谱相减法在实际应用中的关键问题展开了研究,包括不同光程的血液光谱等效性研究、不同光程光谱的多元校正模型研究、不同血流容积光谱相减性能的提升方法研究这三个方面。具体研究内容和主要结论如下:
     1)利用组织光学知识和化学计量学方法对不同光程光谱的等效性进行了研究。首先对不同血流容积光谱相减法的原理进行了推导,从原理上分析了不同光程血液光谱产生的原因及获取等效光谱的意义。对非散射介质中的不同光程的光谱等效性进行了研究,采用化学计量学方法能够得到归一化的等效光谱。通过对组织光学中光传输模型及修正的朗伯比尔定律的研究,认为不同光程的血液光谱同样是等效的。利用葡萄糖溶液和脂肪乳溶液的模拟实验对不同光程的光谱等效性进行了验证,并得到了各自的等效光谱。
     2)针对不同光程的近红外光谱在建立多元校正模型中遇到的问题,提出采用正交信号校正和各种校正空间的净信号分析方法用于提高多元校正模型的性能。通过对生物分子摩尔吸光系数建立的模拟光谱及各种葡萄糖模拟溶液进行分析,光程等干扰信息得到了抑制,所建立的多元校正模型性能得到了提高。
     3)通过模拟实验对不同血流容积光谱相减法在实际应用中的效果进行分析。采用光谱相减后同一光程光谱的欧氏距离平均值、标准差等指标来评价光谱相减的效果。针对光谱相减中的噪声干扰问题,分别采用Savitzky-Galay平滑滤波、小波变换滤波、经验模态分解滤波等滤波算法对噪声进行抑制,提升光谱相减的性能。经过实验验证,小波变换滤波、经验模态分解滤波对光谱相减的性能提升较为显著。
     本文的主要研究内容为血流容积光谱相减法在无创生化检测中的实际应用提供了理论和实验基础。
Blood biochemical sensing has been a significant method in clinical diagnostic field. The effectiveness of conventional blood testing methods, which ensure a high accuracy, has been hindered by the following defects: (1) invasion; (2) long detection period; (3) requirement of reagents. As a promising noninvasive biochemical monitoring method, near infrared absorption spectroscopy analytic technique has many obvious advantages. The testing is painless, reagentless, and has no risk of infections. Besides, the method makes it convenient to process the real-time monitoring of blood biochemical indexes. However, the realization of NIR noninvasive biochemical sensing is rather complicated. Some major obstacles are: (1) weak signal of blood biochemical components; (2) strong interference of human tissue background.
     Theoretically, the spectral subtraction approach with different blood volume can eliminate human tissue background interference and obtain effective spectrum information of blood. This is because in an extremely short time period (seconds), human physiological states, including human tissue background and blood biochemical indexes, barely change. Yet as the result of pulsation or vascular occlusion, blood volume is all the time changing. Therefore, by subtracting two blood spectra measured in a row within this short period, information of certain-volume blood spectrum can be obtained, with human tissue background interference eliminated.
     In order to realize noninvasive biochemical sensing, the spectral subtraction approach with different blood volume aims at establishing calibration models to predict the biochemical indexes of unknown blood samples. However, the obtained spectra of different blood volumes actually reflect different blood pathlengths. So by subtracting the two spectra, we obtain a blood spectrum with the pathlength unknown. In this case, the model will be insufficiently effective if established directly with pathlength-unknown spectra, which is a big problem of subtracted blood volume spectrometry. Notably, the information of blood biochemical components remains constant despite of the changing pathlength. In this paper, whether the spectral subtraction approach with different blood volume can be practical applied is discussed. To look into this point, the paper involves several key problems—whether it’s possible to normalize spectra, same in concentration but different in pathlength, to an equivalent spectrum with no pathlength information; whether spectra with different pathlength information perform equivalently on reflecting information of blood biochemical components; how to eliminate the interference of the pathlength variations and thus establishing multivariate calibration models.
     The paper focuses on the key problems of the approach application of spectral subtraction with different blood volume. Particularly, it involves the research of the equivalence of blood spectra with different pathlengths. Besides, the paper discusses different pathlength calibration models and also investigates into the performance promotion of subtracted blood volume spectrometry. The details and main conclusions of the researches are as follows:
     1) The research applies tissue optics and chemometrics method to the analysis of different pathlength spectra equivalence. Firstly, the principle of spectral subtraction approach with different blood volume is derived. The origin of different pathlength blood spectra and the meaning ofacquire equivalentspectrum are analyzed. Then the spectral equivalence of different pathlength in non-scattering media is studied, and the normalized equivalent spectrum can be obtained using chemometric methods. After that, by analyzing the optical transmissionmodel in tissueoptics and the modifiedLambert-Beer's law,the blood spectra with different pathlength is also equivalent. Finally, to prove the conclusion, experiments on glucose solution and intralipid were performed and equivalent spectra were obtained for each solution.
     2) To solve the problems occurred during the establishment of calibration models, a approach is proposed to improve the function of multivariate calibration model, which combines both orthogonal signal correction andnet analyte signal method. In this paper, analog spectrum is established with molar absorption coefficients of some biomolecules. The analyses of the analog spectra as well as various simulated solutions of glucose reveal that pathlength interference is restrained and the capability of multivariate calibration model is promoted.
     3) Analyze the practical performance of subtracted blood volume spectrometry through simulation solution experiment. To evaluate the effect of spectra subtraction, indicators such as mean Euclidean distance value and root-mean-square error are applied. To suppress the noise, algorithms of Savitzky-Galay smoothing, wavelet transform filtering and empirical mode decomposition filtering are adopted. Through these processes, the effect of spectra subtraction gets promoted. It is proves by related experiments that wavelet transform filtering and empirical mode decomposition filtering have an apparent advantage in the performance promotion.
     The researches of this paper provide both theoretical and experimental basis for the application of subtracted blood volume spectrometry in noninvasive biochemical sensing field.
引文
[1]陈星旦.近红外光谱无创生化检验的可能性[J].光学精密工程,2008,16(5):759-763.
    [2]丁海泉,卢启鹏,王动民,等.近红外光谱无创血糖检测中有效信号提取方法的研究[J].光谱学与光谱分析,2010,30(1):50-53.
    [3]丁海泉.无创血糖检测中的近红外血流容积光谱基本问题研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2010:1-2.
    [4]丁海泉,卢启鹏,彭忠琦,等.近红外光谱技术用于无创生化检验研究的进展[J].光谱学与光谱分析,2010,30(8):2107-2110.
    [5]梁旭燕,张凤秋.高血脂症的危害和治疗[J].中国疗养医学,2007,16(1):19-20.
    [6]诸骏仁.血脂异常防治研究的现状与展望[J].中华心血管病杂志,2002,(11):4-5.
    [7]苏蓉,于德水.高脂血症的危害及防治[J].中国当代医药,2009,16(8):128-129.
    [8]张洪艳.近红外光谱技术在人体血糖无创检测中的应用研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2005:3-7.
    [9]刘庆珍.近红外光谱法无创测量人体血红蛋白浓度的研究[D].天津大学硕士学位论文,2005:3-7.
    [10]卢启鹏.近红外无创血糖检测中的生理背景问题[J].光机电信息,2010,27(12):44-48.
    [11]丁海泉,卢启鹏,朴仁官,等.土壤有机质近红外光谱分析组合波长的优选[J].光学精密工程,2007,15(12):1946-1951.
    [12]高洪智,卢启鹏,丁海泉,等.基于连续投影算法的土壤总氮近红外特征波长的选取[J].光谱学与光谱分析,2009,29(11):2951-2954.
    [13]黄富荣,潘涛,张甘霖,等.应用近红外漫反射光谱快速测定土壤锌含量[J].光学精密工程,2010,18(3):586-592.
    [14]郑咏梅,张军,陈星旦,等.短波近红外光谱的整粒小麦蛋白质PLS方法的定量分析[J].光谱学与光谱分析,2004,24(9):1047-1049.
    [15]曹璞,潘涛,陈星旦.小型近红外玉米蛋白质成分分析仪器设计的波段选择[J].光学精密工程,2007,15(12):1952-1959.
    [16]陈华才,吕进,陈星旦,等.基于径向基函数网络的茶多酚总儿茶素近红外光谱检测模型的研究[J].光学精密工程,2006,14(1):58-62.
    [17]张军,陈星旦,朴仁官,等.用于食品成分分析的双探测器近红外光谱仪[J].光学精密工程,2008,16(6):986-992.
    [18]潘涛,梁家杰,陈星旦,等.近红外漫反射光谱技术在白砂糖快速分析中的应用[C];第十五届全国分子光谱学术报告会论文集,2008.
    [19]胡愉华,潘涛,陈星旦,等.甘蔗初压汁锤度近红外光谱分析的波段优选[J].光谱实验室,2009,26(1):90-95.
    [20]梁家杰,潘涛,陈星旦,等.白砂糖色值近红外光谱分析的波段选择[J].红外技术,2009,31(2):90-94.
    [21]刘福莉,王志岚,郑驰原,等.食用调和油中花生油含量的近红外光谱分析[J].激光生物学报,2007,16(6):759-762.
    [22]刘洪欣,张军,黄富荣,等.近红外光谱快速测定啤酒的主要品质参数[J].光谱学与光谱分析,2008,28(2):313-316.
    [23]卢启鹏,丁海泉.人参成分的近红外光谱定量分析[J].光谱仪器与分析,2009,Z1:181-184.
    [24] Qipeng Lu,Hongzhi Gao.Identify the growing ages of wild ginseng using near infrared spectroscopy[C].The Second Asian NIR Symposium,2010,10.
    [25] Hongzhi Gao, Qipeng Lu.Identify the shame wild ginseng using near-infrared spectroscopy[C].The Second Asian NIR Symposium,2010,10.
    [26]芦永军,曲艳玲,冯志庆,等.人参总糖的近红外光谱定量分析[J].光谱学与光谱分析,2006,26(8):1457-1459.
    [27]陈斌,李军会,臧鹏,等.六味地黄丸指纹图谱的近红外光谱分析方法的建立[J].光谱与光谱分析,2010,30(8):2124-2128.
    [28]王动民,金尚忠,陈华才,等.棉-涤混纺面料中棉含量的近红外光谱分析[J].光学精密工程,2008,16(11):2051-2054.
    [29]钱平,孙国琴,张存洲.基于近红外光谱技术的石油组分定量分析新方法[J].光谱学与光谱分析,2008,28(12):2851-2854.
    [30]徐广通,袁洪福,陆婉珍.傅立叶变换近红外光谱测定柴油芳烃含量[J].石油化工,1999,28(4):263-267.
    [31] Jeffrey W Hall,Alan Pollard.Near-infrared spectroscopic determination of serum total proteins,albumin,globulins,and urea[J].Clin Biochem,1993,26(6):483-90.
    [32] Kevin H Hazen,Mark A Arnold,Gary W Small.Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy[J].Analytica Chimica Acta,1998,371(2-3):255-267.
    [33] Sang-Joon Hahn,Gil-Won Yoon,Gun-Shik Kim,et al.Reagentless determination of human serum components using infrared absorption spectroscopy[J].Journalof the Optical Society of Korea,2003,7(4):240-244.
    [34] S Kasemsumrana,Y P Du,K Murayamab,et al.Near-infrared spectroscopic determination of human serum albumin,γ-globulin,and glucose in a control serum solution with searching combination moving window partial least squares[J].Analytica Chimica Acta,2004,512(2):223-230.
    [35] N Kang,S Kasemasumran,Y A Woo,et al.Optimization of informative spectral regions for the quantification of cholesterol,glucose and urea in control serum solutions using searching combination moving window partial least squares regression method with near infrared spectroscopy[J].Chemometrics and Intelligent Laboratory Systems,2006,82:90-96.
    [36]陈华才,杨仲国,李惠英,等.人血清中胆固醇近红外光谱快速检测初步研究[J].激光生物学报,2004,13(6):429-432.
    [37]陈华才,杨仲国,陈星旦,等.傅里叶变换近红外光谱法快速检测人血清生化成分[J].分析实验室,2005,24(7):17-20.
    [38] Hongzhi Gao,Qipeng Lu,Furong Huang.Reagentless near-infrared determinationof cholesterol in undiluted human serum using interval Partial Least Square[C].IEEE International Conference on Future Biomedical Information Engineering,2010,12.
    [39]杨皓旻,卢启鹏.血清中胆固醇的近红外光谱测量及模型适用性研究[J].光谱学与光谱分析,2011,31(2):375-378.
    [40]杨皓旻,高洪智,王动民,等.血清中胆固醇、甘油三酯近红外水窗波段光谱检测研究[C],全国第二届近红外光谱学术会议论文集,2008,11.
    [41] H M Heise,R Marbach.Multivariate determination of blood substrates in human plasma by FT-NIR spectroscopy[J].SPIE,1991,1575:507-508.
    [42] A Bittner,R Marbach,H M Heise.Multivariate Calibration for Protein,Cholesterol and Triglyceride in Human Plasma Using Short-Wave Near Infrared Spectrometry[J].Journal of Molecular Structure,1995,349:341-344.
    [43] H M Heise,R Marbach,A Bittner,et al.Clinical chemistry and near infrared spectroscopy:multicomponent assay for human plasma and its evaluation for the determination of blood substrates[J],Journal of Near Infrared Spectroscopy,1998,6:361-374.
    [44] Paulo A da Costa Filho,Ronei J Poppi.Determination of Triglyceride in human plasma using near-infrared spectroscopy and multivariate calibration methods[J].Analytica Chimica Acta,2001,446:39-47.
    [45] David M Haaland,M Ries Robinson,Gary W Koepp.Reagentless Near-infrared determination of glucose in whole blood using multivariate calibration [J].Applied Spectroscopy,1992,46(10):1575-1578.
    [46] Aira K Amerov,Jun Chen,Marl A Arnold.Scattering and Absorption Effects in the Determination of Glucose in Whole Blood by Near-Infrared Spectroscopy [J].Anal Chem,2005,77:4587-4594.
    [47] Yoen-Joo Kim,Gilwon Yoon.Prediction of glucose in whole blood by near-infrared spectroscopy: influence of wavelength region,preprocessing,and hemoglobin concentration[J].Joural of Biomedical Optics.2006,11(4):041128.
    [48] D Haaland,M Robinson,G Koepp,Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,Applied Spectroscopy,1992,46(10):1575-1578.
    [49] Furong Huang,Jianhui Yu,Shiping Li,et al.Optimal waveband and mathematical model for analysis of human whole blood hlucose by near infrared transmission spectroscopy ,Advanced Optical Manufacturingand Testing Technologies 2010,2010.4.
    [50]黄富荣,张军,罗云瀚,等.近红外光谱快速检测丙氨酸氨基转移酶[J].光谱学与光谱分析,2010,30(10):2620-2623.
    [51] Furong Huang,Zhe Chen,Jianhui Yua.Feasibility study for rapid determination of alanine aminotransferase concentration in whole bood by using visible and near infrared spectroscopy,Photonics Asia 2010,2010.10.
    [52]陈明进,许锡铭.脉搏血氧饱和度仪的发展及应用[J].现代医学仪器与应用,1995,7(1):5-10.
    [53]青柳卓雄.耳式血氧计的改良(日文)[C].第13回日本ME学会大会资料集,1974,90-91.
    [54]青柳卓雄.血氧浓度的光学测定现状[J].国外医学生物医学工程分册,1991,14(2):88-93.
    [55] Y MENDELSON.Pulse oximetry:Theory and applications for noninvasive monitoring [J].Clinical Chemistry,1992,38(9):1601-1607.
    [56] F F Jobsis.Non invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J].Science,1977,198:1264-7.
    [57] C C Piantadosi,T M Hemstreet,F F Jobsis.Near infrared spectrophotometric monitoring of oxygen distribution to intact brain and skeletal muscle tissue [J].Critical Care Med,1986,14(8):698-706.
    [58] E Fox,F F Jobsis,M H Mitnick.Monitoring cerebral oxygen sufficiency in anaesthesia and surgery Adu Exp Med Biol,1984:9-54.
    [59] M Ferrari,E Zanette,I Giannini,et al.Effects of carotid artery compression test on regional cerebral blood volume,hemoglobin oxygen saturation and cytochrome-C-oxidase redox level in cerebrovascular patients.Adv Exp Med Biol,1986,200:213-22.
    [60] J E Brazy,D V Lewis,M H Mitnick,et al.Noninvasive monitoring of cerebral oxygenation in preterm infants:Preliminary observations Paediatrics 1985,75(2):217-25.
    [61] K Norris.Possible medical applications of NIR[M].Making light work: Advances in near infrared spectroscopy,Edited by Murray I & Cowe I A UK: Ian Michael Publication,1992:596-602.
    [62]刘蓉,徐可欣,陈文亮,等.光学无创血糖检测中的主要问题及研究进展[J].中国科学G辑:物理学力学天文学,2007,37(增刊):124-131.
    [63] C Dahne,D Gross.Spectrophotometric method and apparatus for the non-invasive determination of glucose in body tissues,USP4655225,1987.
    [64]谷筱玉.近红外无创血糖检测中背景减小方法的理论和实验研究[D].天津大学博士学位论文,2007:1-2.
    [65] J T Kuenstner,K H Norris.Near infrared hemoglobinometry[J].Near Infrared Spectrosc,1995,3:11-18.
    [66] Katsuyasu Saigo,Shion Imoto,Makoto Hashimoto,et al.Noninvasive Monitoring of Hemoglobin[J].American journal of clinical pathology,2004,121:51-55.
    [67] Sonoko ljichi,Takashi Kusaka,Kenich Isobe.Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia[J].Journal of Biomedical Optics,2005,10(2):024026.
    [68] Joseph M Schmitt,Guan-Xiong Zhou,Justin Miller,Measurement of blood hematocrit by dual-wavelength near-IR photoplethysmography,Proc SPIE,1992,1641(2):150-161.
    [69] Gil-Won Yoon and Kye-Jin Jeon,Noninvasive Hematocrit Monitoring Based on Parameter-optimization of a LED Finger Probe[J].J Opt Soc Korea,2005,9:107-110.
    [70] Songbiao Zhang,Babs R Soller,Shubjeet Kaur,et al.Investigation of noninvasivein vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-squares regression[J].Appl Spectrosc,2000,54:294-299.
    [71] K Yamakoshi,Y Yamakoshi.Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry[J].Journal of Biomedical Optics,2006,11(5):054028.
    [72]李刚,王焱,李秋霞,等.动态光谱法对提高近红外无创血液成份检测精度的理论分析[J].红外与毫米波学报,2006,25(5):345-348.
    [73]李刚,李晓霞,林凌,等.消除个体差异的动态光谱及其频域提取法的研究[J].光谱学与光谱分析,2006,26(2):263-266.
    [74]李刚,李尚颖,林凌等.基于动态光谱的脉搏血氧测量精度分析[J].光谱学与光谱分析,2010,26(10):1821-1824.
    [75]李刚,王慧泉,赵喆等.动态光谱数据质量的评价[J].光谱学与光谱分析,2010,30(10):2802-2806.
    [76]张志勇,门剑龙,李刚,等.动态光谱法用于人体血红蛋白浓度的无创测量[J].光谱学与光谱分析,2010,30(1):150-153.
    [77]贾萍,张宝菊,张志勇,等.动态光谱和PLS在人体血液红细胞无创测量中的应用[J].红外与毫米波学报,2010,29(2):132-135.
    [78]陈文亮,徐可欣,李宇,等.基准波长法提高近红外葡萄糖测量精度的基础研究[J].中国光学快报,2007,5(12):706-708.
    [79]罗云翰,谷筱玉,徐可欣,等.基准波长法在混浊介质光谱数据处理中的应用研究[J].光谱学与光谱分析,2006,26(8):1416-1418.
    [80]杨越,陈文亮,史振志,等.血糖监测的浮动基准方法中基准点的研究[J].中国光学快报,2010,8(4):421-424.
    [81] Orna Amir,Daphna Weinstein,Silviu Zilberman.Continuous Noninvasive Glucose Monitoring Technology Based on“Occlusion Spectroscopy”[J].Journal of Diabetes Science and Technology,2007,1(4):463-469.
    [82]王学琳,苏淑萍,铁梅.傅里叶变换近红外光谱进展[J].现代仪器,1999,6:1-3.
    [83]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用发展[J].光谱学与光谱分析, 2000,20(2):134-142.
    [84]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社,2007:1-11.
    [85] Ramesh Raghavachari.Near-infrared applications in biotechnology[M].MARCEL DEKKER,INC.,2001:293-321.
    [86]褚小立,许育鹏,陆婉珍.用于近红外光谱分析的化学计量学方法研究与应用进展[J].分析化学,2008,5:702-709.
    [87]严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005:44-81.
    [88]许禄.化学计量学方法(第二版)[M] .北京:科学出版社,2004.
    [89] R J Barnes,M S Dhanoa,Susan J Lister.Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J].Applied Spectroscopy,1989,43(5):772-777.
    [90] T Fearn,C Riccioli,Ana Garrido-Varoet,et al.On the geometry of SNV and MSC[J].Chemometrics and Intelligent Laboratory Systems,2009,96(1):22-26.
    [91]赵强,张工力,陈星旦.多元散射校正对近红外光谱分析定标模型的影响[J].光学精密工程,2005,13(1):53-58.
    [92]王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.
    [93] Ye Shengfeng,Wang Dong,Min Shungeng,et al.Successive projections algorithm combined with uninformative variable elimination for spectral variable selection[J] . Chemometrics and Intelligent Laboratory Systems 2008 ,91(2):194-199.
    [94] S Xiang,F Nie,C Zhang,et al.Learning a Mahalanobis distance metric for data clustering and classification[J] . Pattern Recognition 2008 ,41(12):3600-3612.
    [95]徐荣,孙素琴,刘友刚,等.红外光谱与聚类分析法无损快速鉴别肉苁蓉[J].光谱学与光谱分析,2009,29(7):1860-1863.
    [96]于海燕.黄酒品质和酒龄的近红外光谱分析方法研究[D].浙江大学博士学位论文,2007.
    [97] S Verboven , M HubertR . LIBRA: A MATLAB library for robust analysis [J].Chemometrics and Intelligent Laboratory Systems,2005,75:127-136.
    [98]胡小邦,吕进,刘辉军,等.基于近红外透射光谱的黄酒酒精度、酸度检测模型研究[J].光电工程,2010,37(10):122-127.
    [99]成忠,张立庆,刘赫扬,等.连续投影算法及其在小麦近红外光谱波长选择中的应用[J].光谱学与光谱分析,2010,30(4):949-952.
    [100]刘飞,张帆,方慧,等.连续投影算法在油菜叶片氨基酸总量无损检测中的应用[J].光谱学与光谱分析,2009,29(11):3079-3083.
    [101] R K H Galv?o,M C U Araújo,W D Fragoso.A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm [J].Chemometrics and Intelligent Laboratory Systems,2008,92(1):83-91.
    [102] R K H Galv?o,M C U Araújo,G E Jose,et al.A method for calibration and validation subset partitioning[J].Talanta,2005,67:736-740.
    [103] L N?rgaard,A Saudland,J Wagner.Interval Partial Least Squares Regression (iPLS):a comparative chemometric study with an example from near-infrared spectroscopy[J].Applied Spectroscopy,2000,54:413-419.
    [104] R Leardi,L N?rgaard.Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions[J].Journal of Chemometrics,2004,18 (11):486-497.
    [105]关堂兵.基于蒙特卡罗传输模型的组织光学参数重构方法的研究[D].天津大学硕士学位论文,2007:8-21.
    [106]李靖瑶.基于多光程的高散射体物质光学参数的测量及其应用[D].天津大学硕士学位论文,2009:5-9.
    [107]徐可欣,高峰,赵慧娟.生物医学光子学[M].北京:科学出版社,2007:8-74.
    [108]张镇西.生物医学光子学新技术及应用[M].北京:科学出版社,2008:10-32.
    [109]来建成.生物组织的光学描述与光传输规律研究[D].南京理工大学博士学位论文,2005:5-18.
    [110] B C Wilson,G Adam.A Monte Carlo model for the absorption and flux distributions of light in tissue[J].Medical Physics,1983,1O(6):24-30.
    [111] Lihong Wang,Steven L Jacques,Liqiong Zheng.MCML-Monte Carlo modeling of light transport in multi-layered tissues[J].Computer Methods and Programsin Biomedicine,1995(47):131-146.
    [112]陆红艳.生物组织等效散射颗粒模型及其对光传输的影响[D].南京理工大学硕士学位论文,2005:27-35.
    [113] M Cope,D T Delpy.System for long term measurement of cerebral blood and tissue oxygenation on newborn infants by near infrared transillumination[J].Med Biol Eng Comput,1988,26(3):289-94.
    [114] D T Delpy,M Cope,P van der Zee.Estimation of optical pathlength through tissue from direct time of flight measurement[J].Physics in Medicine and Biology,1988,33(12):1443-1442.
    [115]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010.
    [116]张琳,张春平.组织模拟液Intralipid-10%的吸收系数和各向异性因子的测量[J].发光学报,2009,30(6):858-861.
    [117]任芊,解国玲,董守龙,等.OSC-PLS算法在近红外光谱定量分析中应用的研究[J].北京理工大学学报,2005,25(3):272-275.
    [118] S Wold,H Antti,F Lindgren,et al.Orthogonal signal correction of near-infrared spectra.Chemometrics and Intelligent Laboratory Systems,1998,44:175-185.
    [119] Johan A Westerhuis,Simen de Jong,Age K Smilde.Direct orthogonal signal correction[J] . Chemometrics and Intelligent Laboratory Systems , 2001 ,56:13–25.
    [120]宋宁,徐晓轩,王斌,等.基于正交信号校正和iPLS的烃源岩红外漫反射光谱定量分析.光谱学与光谱分析,2009,29(2):378-381.
    [121]侯瑞,吉海彦,张录达.基于OSCAvraham Lorber.Error propagation and figures of merit for quantification by solving matrix equations[J].Anal Chem,1986,58:1167-1172.
    [123] Avraham Lorber.Net Analyte Signal Calculation in Multivariate Calibration [J].Anal Chem,1997,69:1620-1626.
    [124] Avraham Lorber,Bruce R Kowalski.The effect of intererfence and calibration design on accurary:implications for sensor and sample selection[J].Journal of Chemometrics,1998,2:67-79.
    [125] Joan Ferre,F Xavier Rius.Detection and Correction of Biased Results of Individual Analytes in Multicomponent Spectroscopic Analysis,Anal Chem,1998,70:1999-2007.
    [126]刘蓉,吕丽娜,陈文亮,等.净信号在近红外光谱分析中的应用研究[J].光谱学与光谱分析,2004,24(9):1042-1046.
    [127]张海东,赵杰文,刘木华.利用净分析物预处理法简化苹果糖度预测模型.光谱学与光谱分析,2004,24(9):1042-1046.
    [128] Jonathon T Olesberg,Lingzhi Liu,Valerie Van Zee,et al.In Vivo Near-Infrared Spectroscopy of Rat Skin Tissue with Varying Blood Glucose Levels [J].Analytical Chemistry,2006,78(1):215-223
    [129] J T Olesberg,M A Arnold,Shih-Yao B Hu.Temperature-insensitive near-infrared method for determination of protein concentration during protein crystal growth[J].Anal Chem,2000,72(20):4985-4990.
    [130] Mark R Riley,Mark A Arnold,David W Murhammer.Effect of sample complexityon quantification of analytes aqueous samples by near-infrared spectroscopy [J].Applied Spectroscopy,2000,54(2):255-261.
    [131] Mark A Arnold,Gary W Small,Dong Xiang.Pure component selectivity analysis of multivariate calibration models from near-infrared spectra[J].Anal Chem,2004,76(9):2583-2590.
    [132]刘蓉,陈文亮,谷筱玉,等.人体血糖无创测量中净信号的提取方法[J].纳米技术与精密工程,2008,6(3):207-211.
    [133] Hector C Goicoechea,Alejandro C Olivieri.A comparison of orthogonal signal correction and net analyte preprocessing methods.Theoretical and experimental study[J].Chemometrics and Intelligent Laboratory Systems,2001,56:73-81.
    [134] Airat K Amerov,Jun Chen,Gary W Small.Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared Spectrum.Applied Spectroscopy,2004,58(10):1195-1204.
    [135]邵学广,庞春艳,孙莉.小波变换与分析化学信号处理[J].化学进展,2000,12(3):233-244.
    [136]卢小泉,莫金恒.分析化学计量学中的新方法-小波分析[J].分析化学,1996,24(9):1100-1106.
    [137]郝勇,陈斌,朱锐.近红外光谱预处理中几种小波消噪方法的分析[J].光谱学与光谱分析,2006,26(10):1838-1841.
    [138]董长虹.Matlab小波分析工具箱原理及应用[M].北京:国防工业出版社,2004.
    [139]毕卫红,陈俊刚,李林,等.小波分析及其在土壤成分的近红外分析中的应用[J].红外,2006,27(8):16-19.
    [140]夏俊芳,李小昱,李培武.小波变换在脐橙维生素C含量近红外光谱预测中的应用,中国农业科学,2007,40(8):1760-1766.
    [141]田高友,袁洪福,褚小立,等.小波去噪-微分法用于近红外光谱分析汽油辛烷值[J].光谱仪器与分析,2003,(4):13-19.
    [142]田高友,袁洪福,褚小立,等.结合小波变换与微分法改善近红外光谱分析精度[J].光谱学与光谱分析,2005,25(4):516-520.
    [143] Norden E HUANG.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Procedures of the Royal Society of London,1998,A454(3):903-995.
    [144] Norden E Huang,Man-Li C Wu,Steven R Long,et al,A confidence limit for the Empirical Mode Decomposition and Hilbert spectral analysis[J].Proc Royal Soc London A,2003,459:2317-2345.
    [145]行鸿彦,许瑞庆,王长松.基于经验模态分解的脉搏信号特征研究[J].仪器仪表学报,2009,30(3):596-602.
    [146]蔡剑华,王先春.基于经验模态分解的近红外光谱预处理方法[J].光学学报,2010,30(1):267-271.
    [147]周振宇,杨宏宇,龚辉,等.基于希尔伯特-黄变换的近红外脑功能成像信号分析[J]光学学报,2007,27(2):307-312.
    [148]成礼智,王红霞,罗永.小波的理论与应用.北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700