RNA干扰HIF-1α对食管癌放射敏感性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究食管鳞状细胞癌及正常食管组织中HIF-1α和VEGF的表达情况,两者表达的相关性及其与临床病理特征和放疗反应之间的关系;检测RNA干扰HIF-1α后HIF-1α和VEGF的变化、及其对细胞增殖、细胞周期的影响;通过体外和体内实验检查KYSE-150细胞在RNA干扰后放射敏感性的变化,初步探讨其影响放射敏感性的机制,为食管癌放射增敏及基因治疗提供新的靶点。
     方法:
     选取42例接受手术的食管鳞状细胞癌新鲜标本,通过实时定量PCR、免疫组化检查癌组织和正常组织中的HIF-1α及VEGF的表达情况,分析其相关性及与临床病理特征的联系;另选接受单纯放疗的食管癌标本60例,免疫组化检测HIF-1α及VEGF的表达,分析其与放射反应及预后的关系。针对HIF-1α基因的mRNA序列设计三个siRNA序列构建质粒,转染KYSE-150食管癌细胞系,潮霉素筛选获得稳定表达siRNA的细胞克隆,实时定量PCR、Western-blot方法检测细胞中HIF-1αmRNA及蛋白表达,验证干扰效果并筛选能够成功沉默HIF-1α的序列;实时定量PCR、Western-blot方法检测RNA干扰后VEGF的变化,MTT法、流式细胞仪检测siRNA对细胞增殖、细胞周期的影响;体外使用不同剂量的X线分别照射KYSE-150细胞和稳定表达siRNA的细胞克隆,平板克隆形成实验及MTT法检测放射线照射后的细胞存活情况。采用KYSE-150食管癌细胞及KYSE-150/HIF-1α(-)细胞建立裸鼠食管癌移植瘤模型,分组后进行不同剂量的放射线照射,建立生长曲线,对比研究两组肿瘤照射后的放疗反应,根据生长延缓和照射剂量分析其放射敏感性差异;对两种肿瘤标本进行HE及免疫组化染色,比较其HIF-1α、Ki67及CD34表达差异。
     结果:
     HIF-1α和VEGF在食管鳞状细胞癌中的表达率分别为50.0%和76.2%,而在正常食管黏膜组织中表达率为14.3%和33.3%,二者在食管癌中的表达存在强相关性,而在正常食管黏膜组织中弱相关。免疫组化显示食管鳞状细胞癌中HIF-1α蛋白在胞浆与胞核中均有阳性表达,但胞核较胞浆表达强;食管正常粘膜细胞中HIF-1α蛋白表达不稳定且表达较弱。食管鳞状细胞癌中HIF-1α蛋白表达与淋巴结转移及肿瘤组织分化相关,VEGF表达与临床病理特征无关,有淋巴结转移及肿瘤组织分化差者较无淋巴结转移及肿瘤组织分化好HIF-1α蛋白表达率高。HIF-1α和VEGF在接受单纯放疗的食管癌中的表达与放疗敏感性及预后有关,阴性表达较阳性表达放疗敏感性高,预后较好。成功构建了三个HIF-1α的靶向siRNA,并与pGCsi-H1/Hygro/GFP质粒连接,通过电转染食管癌KYSE-150细胞,经筛选后得到稳定的干扰后细胞,实时定量PCR、Western-blot结果证实shRNA3能够使HIF-1α表达沉默,并能抑制VEGF表达,MTT法示转染shRNA3组细胞在缺氧条件下增殖活力减弱,流式细胞仪检测示细胞周期中G0/G1期比例降低,而凋亡增加;平板克隆形成实验及MTT法示shRNA3组细胞照射后存活分数降低,计算结果放射敏感性提高。接种KYSE-150/HIF-1α(-)细胞的裸鼠皮下移植瘤生长明显慢于接种KYSE-150细胞组,两组移植瘤的免疫组化染色显示,接种KYSE-150/HIF-1α(-)细胞的肿瘤中HIF-1α、Ki67和CD34的表达均明显低于KYSE-150组。X线照射可以使两组移植瘤均出现生长缓慢甚至体积减小,KYSE-150/HIF-1α(-)组放射照射后生长延缓更加明显,计算结果SER大于1。
     结论:
     HIF-1α和VEGF在食管鳞状细胞癌中均呈高表达,且二者的表达呈强相关性。食管鳞状细胞癌中HIF-1α蛋白在胞浆与胞核中均有阳性表达,胞核较胞浆表达更强,更特异。食管鳞状细胞癌中HIF-1α表达与淋巴结转移及肿瘤组织分化有关,HIF-1α高表达时淋巴结转移率更高,肿瘤组织分化更差。在单纯接受放疗的食管癌中HIF-1α和VEGF的表达与放疗敏感性及预后有关,阴性表达较阳性表达放疗敏感性高,预后较好。在食管癌KYSE-150细胞中通过RNA干扰能够沉默HIF-1α的表达,抑制VEGF的表达,并能使其在缺氧条件下增殖活力减弱、凋亡增加、细胞周期的分布也发生改变。RNA干扰HIF-1α后能够在体内外抑制肿瘤的增殖和血管生成。RNA干扰HIF-1α有放射增敏作用,在体内外均能提高食管癌KYSE-150细胞的放疗敏感性,机制可能与其减少血管生成、延缓增殖有关。
Objective:
     To study the expression of HIF-1αand VEGF in esophageal squamous cell carcinoma (ESCC), the relationship between them, and their relationship with pathological features and radiotheraputic response. To study the changes of HIF-1αand VEGF after RNA interference, its effect on proliferation and cell cycle. To study the change of radiosensitivity of KYSE-150 cell after RNA interference in vivo and in vitro, explore the mechanisms of radiosensitization and provide a new target for enhancing radiosensitivity and gene therapy on esophageal cancer.
     Methods:
     To choose 42 fresh specimens from patients performed resection for ESCC, detect the expression of HIF-1αand VEGF by immunohistochemistry and real-time PCR, analysis the corelation between them and their relationship with pathological features. To choose 60 specimens from patients received radiotherapy for ESCC, detect the expression of HIF-1αand VEGF by immunohistochemistry, and analysis their relationship with radiotheraputic response and prognosis. To design three short hairpin sequences targeting HIF-1αand construct recombinant plasmids expressing HIF-1αshRNA, transfect them into KYSE-150 cell, screen stable transfected cells with Hygromycin. To detect the expression of HIF-1αand validate the effect of RNAi by real-time PCR and Western-blot, detect the expression of VEGF by real-time PCR and Western-blot. To analyse the proliferation and cell cycle distribution of KYSE-150 cells after transfection by MTT assay and flow cytometry. Irradiated with different doses of X-rays, the survival fraction of KYSE-150 cells were examined by MTT and clonogenic assays. The subcutaneous xenograft models in nude mice were established with KYSE-150 and KYSE-150/HIF-1α(-) cell lines and irradiated with single doses of 5Gy,10Gy and 20Gy. To observe the tumor inhibitions by radiotherapy between two models, analyse the improvement of radiosensitivity on KYSE-150 cell after HIF-1αsiliencing by tumor growth delay and radiation dose. To detect the expression of HIF-1α, Ki67 and CD34 by immunohistochemistry between two models.
     Results:
     The positive expression rates of HIF-la and VEGF were 50.0% and 76.2% in ESCC respectively, while 14.3% and 33.3% in normal tissues. The expression of HIF-1αwas positively correlated with VEGF in ESCC with a very high degree, while a very weak positive relationship was found in normal tissues. HIF-1αcan be seen in the cytoplasm and nucleus of ESCC, which in the nucleus it is stronger than in the cytoplasm. The expression of HIF-1αin normal esophageal tissues is unstable and low. The expression of HIF-1αin ESCC was related with lymphatic metastasis and histological differentiation, the expression rate of HIF-1αin the cancers with lymphatic metastasis and worse differentiation was higher than that in the cancers with no lymphatic metastasis and better differentiation. The expression of HIF-1αand VEGF were related with radiosensitization and prognosis of ESCC after radiotherapy, those with negative expression had good radiosensitization and prognosis. Three HIF-1αshRNA were constructed and linked to pGCsi-Hl/Hygro/GFP plasmids, which were transfected into KYSE-150 cell. The stable transfected cells RNAi were screened. Real-time PCR and Western-blot confirmed that shRNA3 can silence HIF-1αand inhibit the expression of VEGF, MTT assay and flow cytometry showed that the proliferation attenuated, the ratio of G0/G1 stage cell decreased, and apoptosis increased in shRNA3 group. MTT and clonogenic assays showed the survival fraction in shRNA3 group after irradiation was lower than control group, which showed that the radiosensitivity was improved. The tumor xenografts derived from KYSE-150/HIF-1α(-) cell grew slowly than that from KYSE-150 cell. The result of immunohistochemistry showed the staining of HIF-1α, Ki67 and CD34 in KYSE-150/HIF-1α(-) tumors was weaker than in KYSE-150 tumors. Irradiation can inhibit the growth of both tumors, and decrease the volume of the tumors. The tumor growth delay was more obvious in KYSE-150/HIF-1α(-) group than KYSE-150 group, its sensitivity enhancement ratio was larger than 1.
     Conclusion:
     The expression rates of HIF-1αand VEGF were both high in ESCC, there was a strong correlation between them. HIF-la can be seen in the cytoplasm and nucleus of ESCC, while its expression is stronger and more characteristic. The expression of HIF-1αin ESCC was related with lymphatic metastasis and histological differentiation, the cancers with higher expression rate of HIF-1αhad more lymphatic metastasis and worse differentiation. The expression of HIF-1αand VEGF were related with radiosensitization and prognosis of ESCC received simple radiotherapy, those with negative expression had good radiosensitization and prognosis. In KYSE-150 cell the RNAi can silence the expression of HIF-1α, inhibit the expression of VEGF, attenuate the proliferation, increase apoptosis and change the distribution of cell cycle in hypoxia. RNAi on HIF-1αcan inhibit the proliferation and angiogenesis of tumor in vitro and in vivo. It can also enhance radiosensitization of KYSE-150 cell in vitro and in vivo, which mechanisms may be related with the inhibition on proliferation and angiogenesis.
引文
[1]Jemal A, Murray T, Ward E, et al. Cancer statistics,2005[J].CA Cancer J Clin, 2005,55:10-30.
    [2]Parkin DM. Global cancer statistics in the year 2000[J]. Lancet Oncol.,2001,2(9):533-43.
    [3]邹小农.食管癌流行病学[[J].中华肿瘤防治杂志,2006,13(18):18-21.
    [4]肖泽芬,食管癌.见殷蔚伯,谷铣之主编[M].肿瘤放射治疗学.2002年,第三版,中国协和医科大学出版社,p598-622.
    [5]Semenza GL,Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biochem,1992,12:5447-5554.
    [6]Jiang BH, Rue E, Wang GL, et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1[J]. J Biol Chem,1996, 271(30):17771-17778.
    [7]Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factorl levels vary exponentially over a physiologically relevant range of O2 tension[J]. Am J Physiol,1996,271(4Ptl):1172-1180.
    [8]Kimura S, Kitadai Y, Tanaka S, et al. Expression of hypoxia-inducible factor (HIF)-1 alpha is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma[J]. Eur J Cancer,2004,40(12):1904-1912.
    [9]Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factorl is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J]. Proc Natl Acad Sci USA,1995,92:5510-5514.
    [10]Semenza GL. Regulation of mammalian homeostasis by hypoxia-in-ducible factor 1[J]. Annu Rev Cell Dev Biol,1999,15:551-578.
    [11]Brown JM. The hypoxic cell:a target for selective cancer therapy-eighteenth Bruce F. Cain Memorial Award lecture[J]. Cancer Res,1999,59:5863-5870.
    [12]Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology[J]. Semin Radiat Oncol,2001,14:198-206.
    [13]Semenza GL. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer,2003,3: 721-732.
    [14]Garcia-Barros M., Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis[J]. Science,2003, 300:1155-1159.
    [15]Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors:role of reoxygenation, free radicals, and stress granules[J]. Cancer Cell,2004,5:429-441.
    [16]Fire A, Xu S, Montgomery MK, Kostas SA, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391(6669):806-811.
    [17]Mounier R, Pialoux V, Cayer A, et al. Leukocyte's Hif-1 expression and training-induced erythropoietic response in swimmers[J]. Med Sci Sport Exer,2006,38 (8):1410-1417.
    [18]Livak KJ, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 22-△△CT method[J]. Methods,2001,25: 402-408.
    [19]Vaupel P, Mayer A. Hypoxia in cancer:significance and impact on clinical outcome[J]. Cancer Metastasis Rev,2007,26:225-239.
    [20]Talks KL, Turley H, Gatter KC, et al. The expressionand distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in normalhuman tissues, cancers, and tumor-associated macrophages[J]. Am J Pathol,2000, 157:411-421.
    [21]Dai S, Huang ML, Hsu CY, et al. Inhibition of hypoxia inducible factor lalpha causes oxygen-independent cytotoxicity and induces p53 independent apoptosis in glioblastoma cells[J]. Int J Radiat Oncol Biol Phys,2003,55 (4):1027-36.
    [22]Beasley NJ, Leek R, Alam M, et al. Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer:relationship to tumor biology and treatment outcome in surgically resected patients[J]. Cancer Res,2002,62 (9): 2493-7.
    [23]Zhong H, Semenza GL, SimonsJW, et al. Up-regulation of hypoxia inducible factor 1 alpha is an early event in carcinogenesis[J]. Cancer Detect Prev,2004, 28(1):88-93.
    [24]Osada R, Horiuchi A, Kikuchi N, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindauprotein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclearexpression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma[J]. Hum Pathol,2007,38:1310-1320.
    [25]Shibaji T, Nagao M, Ikeda N, et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer[J]. Anticancer Res,2003, 23:4721-4727.
    [26]Winter SC, Shah KA, Han C, et al. The relation between hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression with anemia and outcome in surgically treated head and neck cancer[J]. Cancer,2006,107:757-766.
    [27]Hui EP, Chan AT, Pezzella F, Turley H, To KF, Poon TC, et al. Coexpression of hypoxiainducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival[J]. Clin Cancer Res,2002,8:2595-2604.
    [28]Yoshimura H, Dhar DK, Kohno H, et al. Prognostic impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression[J]. Clin Cancer Res,2004,10:8554-8560.
    [29]Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, et al.Overexpression of hypoxia-inducible factor 1 alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer [J]. Clin Cancer Res,2002,8:1831-1837.
    [30]Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G, et al. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer[J]. Cancer Res, 2000,60:4693-4696.
    [31]Yang QC, Zeng BF, Dong Y, Shi ZM, Jiang ZM, Huang J. Overexpression of hypoxiainducible factor-1 alpha in human osteosarcoma:correlation with clinicopathological parameters and suvival[J]. Jpn J Clin Oncol,2007,37: 127-134.
    [32]Mizokami K, Kakeji Y, Oda S, Maehara Y. Relationship of hypoxia-inducible factor 1alpha and p21WAF1/CIP1 expression to cell apoptosis and clinical outcome in patients with gastric cancer[J]. World J Surg Oncol,2006,4:94.
    [33]Bangoura G, Liu ZS, Qian Q, Jiang CQ, Yang GF, Jing S. Prognostic significance of HIF-2alpha/EPAS 1 expression in hepatocellular carcinoma[J]. World J Gastroenterol,2007,13:3176-3182.
    [34]Theodoropoulos VE, Lazaris ACh, Sofras F, et al. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer[J]. Eur Urol,2004,46:200-208.
    [35]Irie N, Matsuo T, Nagata I. Protocol of radiotherapy for glioblastoma according to the expression of HIF-1 [J]. Brain Tumor Pathol 2004,21:1-6.
    [36]Semenza GL. HIF-1:mediator of physiological and pathophysiological responses to hypoxia[J]. J Appl Physiol,2000,88:1474-1480.
    [37]Lee S, Garner EIO, William R, et al. Over-expression of hypoxia-inducible factor 1alpha in ovarian clear cell carcinoma[J]. Gynecol Oncol,2007,3 (41) 1-7.
    [38]Wang DP, Li HG,Li YJ, et al. Hypoxia-inducible factor la cDNA cloning and its mRNA and protein tissue specific expression in domestic yak(Bos grunniens) from Qinghai-Tibetan plateau[J]. Biochem Bioph Rex Co,2006,348:310-319.
    [39]Rojas DA, Perez-Munizaga DA, Centanin L. Cloning of hif-1α and hif-2β and mRNA expression pattern during development in zebraWsh[J]. Gene Expression Patterns,2007,7:339-345.
    [40]Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Hypoxiainducible factor (HIF1a and HIF2a), angiogenesis and chemoradiotherapyoutcome of squamous cell head-and-neck cancer[J]. Int J Radia Oncol Biol Phys,2002,53:1192-1202.
    [41]Kurokawa T, Miyamoto M, Kato K, et al. Overexpression of hypoxia-inducible-factor 1alpha (HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage[J]. Br J Cancer,2003,89 (6):1042-1047.
    [42]Xueguan L, Xiaoshen W, Yongsheng Z, Chaosu H, Chunying S, Yan F. Hypoxia inducible factor-1 alpha and vascular endothelial growth factor expression are associated with a poor prognosis in patients with nasopharyngeal carcinoma receiving radiotherapy with carbogen and nicotinamide[J]. Clin Oncol (R Coll Radiol).2008 Oct,20(8):606-12.
    [43]Dellas K, Bache M, Pigorsch SU, Taubert H, Kappler M, Holzapfel D, Zorn E, Holzhausen HJ, Haensgen G. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer[J]. Strahlenther Onkol. 2008,184(3):169-74.
    [44]Sohda M, Ishikawa H, Masuda N, et al. Pretreatment evaluation of combined HIF-1alpha, p53 and p21 expression is a useful and sensitive indicator of response to radiation and chemotherapy in esophageal cancer[J]. Int J Cancer,2004,110(6):838-844.
    [45]Liu LX, Lu H, Luo Y, et al. Stablization of vascular endothelial growth factor mRNA by hypoxia-inducible factor[J]. Biochem Biophys Res Commun,2002, 291(4):908-914
    [46]Loncaster JA,.Cooper RA, Logue JP, Davidson SE, Hunter RD, West CM. Vascular endothelial growth factor (VEGF) expression is a prognostic factor for radiotherapy outcome in advanced carcinoma of the cervix [J]. Br J Cancer. 2000,83(5):620-625.
    [47]Brieger J, Kattwinkel J, Berres M, Gosepath J, Mann WJ. Impact of vascular endothelial growth factor release on radiation resistance[J]. Oncol Rep. 2007,18(6):1597-1601.
    [48]Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature,2001, 411(6836):494-498.
    [49]Carmell MA, Hannon GJ. RNase III enzymes and the initiation of gene silencing [J]. Nat Struct Mol Biol,2004,11(3):214-218.
    [50]Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing [J]. Cell,2001,107(4):465-476.
    [51]Shi Y. Mammalian RNAi for the masses[J]. Trends Genet,2003,19(1):9-12.
    [52]Genc S, Koroglu TF and GencK. RNA interference in neuroscience[J]. Mol Brain Res,2004,132 (2):260-270.
    [53]Brummelkamp T.R., Bernards R., Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science, 2002,296(5567):550-553.
    [54]Sharp PA. RNA interference-2001[J].Genes and development,2001, 15(5):485-490.
    [55]Brown D, Jarvis R, Pallotta V, et al. RNA interference in mammalian cell culture:design, execution and analysis of the siRNA effect[J]. Ambion TechNotes,2002,9(1):3-5.
    [56]Randy L J, Brian T R, Kum W, et al. Inhibition of hypoxia inducible factor-1a (HIF-1a) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas[J]. Journal of Neuro-Oncology,2006,78: 233-247.
    [57]潘克俭,罗凤鸣,刘小菁,等.HIF-1α基因表达下调对人结肠癌SW480细胞增殖和VEGF表达的影响[J].第四军医大学学报,2007,28(17):1583-1586.
    [58]Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, Semenza GL Expression of hypoxia-inducible factor-1alpha:a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer[J]. Cancer Res,2001,61:2911-2916.
    [59]Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger H. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor[J]. BMC Cancer,2005,5:84.
    [60]Vordermark D, Katzer A, Baier K, et al. Cell type-specific association of hypoxia-inducible factor-1 alpha (HIF-1 alpha) protein accumulation and radiobiologic tumor hypoxia[J]. Int J Radiat Oncol Biol Phys, 2004,58(4):1242-1250.
    [61]Moeller BJ, Dewhirst MW. HIF-1 and tumour radiosensitivity [J]. Br J Cancer. 2006,95(1):1-5.
    [62]Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, Dewhirst W. Leiotropic effects of HIF-1 blockade on tumor radiosensitivity[J]. Cancer Cell, 2005,8:99-110.
    [63]Griffiths JR, McSheehy PM, Robinson SP, et al. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1 beta (HIF-1beta):evidence of an anabolic role for the HIF-1 pathway[J]. Cancer Res,2002,62:688-695.
    [64]Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia[J]. Mol Cell Biol,2003,23:359-369.
    [65]Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R. Tumor response to radiotherapy regulated by endothelial cell apoptosis[J]. Science,2003,300:1155-1159.
    [66]Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, et al.Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J]. Cancer Res,1999,59:3374-3378
    [67]Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R.Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice[J]. Science, 2001,293:293-297.
    [68]Zhang X, Kon T, Wang H, Li F, Huang Q, Rabbani ZN, Kirkpatrick JP, Vujaskovic Z, Dewhirst MW, Li CY. Enhancement of hypoxiainduced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha[J]. Cancer Res,2004,64: 8139-8142.
    [69]Williams KJ, Telfer BA, Xenaki D, Sheridan MR, Desbaillets I, Peters HJ, Honess D, Harris AL, Dachs GU, van der Kogel A, Stratford IJ. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1[J]. Radiother Oncol,2005,75:89-98.
    [70]Dewhirst MW, Cao Y, Li CY, Moeller B. Exploring the role of HIF-1 in early angiogenesis and response to radiotherapy [J]. Radiother Oncol, 2007,83(3):249-255.
    [71]Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis andmetastasis: correltion in invasive breast carcinoma[J]. New Eng J Med,1991,24(1):18.
    [72]Kelsen D. Preoperative chemoradiotherapy for esophageal cancer[J]. J Clin Oncol,2001,19:283-85.
    [73]Rygaard Povlsen CO. Heterotransplantation of a human malignant tumor to "nude" mice[J].Acta Path Microbiol scand,1969;77:758-760.
    [74]Young-Suk Cho, Jae-Moon Bae, Yang-Sook Chun, et al. HIF-1α controls keratinocyte proliferation by up-regulating p21(WAF1/Cip1) [J]. Biochimica et Biophysica Acta,2008,1783:323-333.
    [75]Lily Yang, Won-Kyung Kang. The Effect of HIF-1α siRNA on Growth and Chemosensitivity of Mia-paca Cell Line [J]. Yonsei Med J,2008,49(2):295-300.
    [76]Gillespie DL, Whang K, Ragel BT, Flynn JR, Kelly DA, Jensen RL. Silencing of hypoxia inducible factor-1 alpha by RNA interference attenuates human glioma cell gr owth in vivo. Clin Cancer Res[J],2007,13(8):2441-2448.
    [77]Wei Gao, Gail Ferguson, Paul Connell, et al. High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1α-dependent pathway [J]. Journal of Molecular and Cellular Cardiology, 2007,42:609-619.
    [78]L Li, X Lin, M. Staver, A Shoemaker, D Semizarav, SW Fesik, et al. Evaluating hypoxia-inducible factor-lalpha as a cancer therapeutic target via inducible RNA interference in vivo[J]. Cancer Res,2005 (65):7249-7258.
    [79]Schluter C, Duchrow M, Woblenberg C, et al. The cell proliferation-associated antigen of antibody Ki67:a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins [J]. J Cell Bio,1993,123 (3):513-522.
    [80]Gerdes J, Lemke H, Baisch H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki67[J]. J Immunol,1984,133 (4):1710-1715.
    [81]Yasuo Miyazaki, Alira Hara, Keizo Kato, et al. The effect of hypoxic microenvironment on matrix metalloproteinase expression in xenografts of human oral squamous cell carcinoma[J]. Int J Oncol,2008,32:145-151.
    [82]Pelicano H Martin OS, Xu RH, Huang P. Glycolysis Inhibition for anticancer treatment[J]. Oncogene,2006,25:4633-4646.
    [83]FantlnVR, St-PlerreJ, Leder P. Attenuation of LDHA expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance [J]. Cancer Cell,2006,9:425-434.
    [84]Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia Inducible factor-1α. (HIF-1α.) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas[J]. J Neurooncol, 2006,78:233-247.
    [85]Pugh CM, Ratclife PJ. Regulation of angiogenesis by hypoxia:role of the HIF system[J]. Nat Med,2003,9:677-684.
    [86]Mazure NM, Brabimi Horn MC, Pouyssgur J. Protein kinase and the hypoxia inducible factor-1, two switchs in angiogenesis[J]. Curr Pharm Des,2003,9:531-541.
    [87]Yamazaki K, Abe S, Takekawa H, et al. Tumor angiogenesis in human lung adenocarcinoma[J]. Cancer,1994,74:2245-2250.
    [88]Zolota V, Gerokosata A, Melachrinou M, et al. Microvessel density, proliferating activity, p53 and bcl-2 expression in situ ductal carcinoma of the breast [J]. Anticancer Res,1999,19(4B):3269-3274.
    [89]Zeng W, Chen G, Kajigaya S, et al. Gene expression profiling in CD34 cells to identify differences between aplastic anemia patients and healthy volunteers [J]. Blood,2004,103 (1):325-332.
    [90]Zhang X, Kon T, Wang H, Li F, et al. Enhancement of hypoxia-induced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxiainducible factor-1alpha[J]. Cancer Res,2004,64:8139-8142.
    [91]Tan C, de Noronha RG, Roecker AJ, Pyrzynska B, Khwaja F,Zhang Z, Zhang H, Teng Q, Nicholson AC, Giannakakou P,Zhou W, Olson JJ, Pereira MM, Nicolaou KC, Van Meir EG. Identification of a novel small-molecule inhibitor of the hypoxiainducible factor 1 pathway[J]. Cancer Res,2005,65:605-612.
    [92]Brieger J, Kattwinkel J, Berres M,et al. Impact of vascular endothelial growth factor release on radiation resistance[J].Oncol Rep,2007,18:1597-1601.
    [93]Li J, Huang S, Armstrong EA, et al. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade [J]. Int J Radiat Oncol Biol Phys,2005,62(5):1477-1485.
    [94]Lee CG, Heijn M, di Tomaso E, et al. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions[J].Cancer Res,2000;60(19):5565-5570.
    [1]Hockel M, Vaupel P. Tumor hypoxia:definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst,2001,93(4):266-276.
    [2]Thomlinson RH, Dische S, Gray AJ, et al. Clinical testing of the radiosensitiser Ro-07-0582. Ⅲ. Response of tumours[J]. Clin Radiol,1976,27(2):167-74.
    [3]Koch, CJ. Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5[J]. Methods Enzymol, 2002,352:3-31.
    [4]Koch CJ, Evans SM, Lord EM. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide]: analysis of drug adducts by fluorescent antibodies vs bound radioactivity[J]. Br J Cancer,1995,72:869-874.
    [5]Koch CJ, Evans S M. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically'labeled 2-nitroimidazoles[J].Adv Exp Med Biol. 2003,510:285-292.
    [6]Padhani AR, Krohn KA, Lewis JS, Alber M. Imaging oxygenation of human tumours[J]. Eur Radiol,2007,17:861-872.
    [7]Braun RD, Lanzen JL, Snyder SA, Dewhirst MW. Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents[J]. Am J Physiol Heart Circ Physiol,2001,280:2533-2544.
    [8]Vaupel P, Thews O, HockelM. Treatment resistance of solid tumors:Role of hypoxia and anemia[J]. Medical Oncology,2001,18,243-259.
    [9]Vaupel P, Hockel M.Tumor hypoxia and therapeutic resistance. In M. R. Nowrousian (Ed.), Recombinant Human Erythropoietin (rhEPO) in clinical oncology (2002, pp127-146). Berlin Heidelberg New York:Springer.
    [10]Vaupel P, Mayer A, Hockel M. Tumor hypoxia and malignant progression[J]. Methods in Enzymology,2004,381:335-354.
    [11]Vaupel P, Briest S, Hockel M. Hypoxia in breast cancer:Pathogenesis, characterization and biological therapeutic implications [J]. Wiener Medizinische Wochenschrift,2002,152:334-342.
    [12]Vaupel P, Mayer A.. Hypoxia in cancer:significance and impact on clinical outcome. Cancer Metastasis Rev,2007,26:225-239.
    [13]Dewhirst MW, Ong ET, Braun RD,et al. Quantification of longitudinal tissue pO2 gradients in window chamber tumours:impact on tumour hypoxia[J]. Br J Cancer,1999,79:1717-1722.
    [14]Secomb TW, Hsu R, Dewhirst MW, Klitzman B,Gross JF. Analysis of oxygen transport to tumor tissue by microvascular networks [J]. Int J Radiat. Oncol Biol Phys,1993,25:481-489.
    [15]Secomb TW, Hsu R, Park EY, Dewhirst MW. Green's function methods for analysis of oxygen delivery to tissue by microvascular networks[J]. Ann Biomed Eng,2004,32:1519-1529.
    [16]Dewhirst MW, et al. Microvascular studies on the origins of perfusion-limited hypoxia[J]. Br J Cancer Suppl,1996,27:247-251.
    [17]Erickson, K. et al. Effect of longitudinal oxygen gradients on effectiveness of manipulation of tumor oxygenation[J]. Cancer Res,2003,63:4705-4712.
    [18]Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development[J]. J Biomed Opt.2005,10:44004.
    [19]Ljungkvist AS, Bussink J, Rijken PF, et al. Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas[J]. Int. J. Radiat. Oncol. Biol. Phys.2002,54:215-228.
    [20]Devasahayam N, et al. Strategies for improved temporal and spectral resolution in in vivo oximetric imaging using time-domain EPR[J]. Magn Reson Med, 2007,57:776-783.
    [21]Wijffels KI, Kaanders JH, Rijken PF, et al.Vascular architecture and hypoxic profiles in human head and neck squamous cell carcinomas[J]. Br J Cancer, 2000,83:674-683.
    [22]Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation[J]. Br. J. Radiol.1979,52(620), 650-656.
    [23]Reinhold HS, Blachiwiecz B, Blok A.Oxygenation and reoxygenation in 'sandwich'tumours[J]. Bibl Anat,1977:270-272.
    [24]Yamaura H, Matsuzawa T. Tumor regrowth after irradiation, an experimental approach[J]. Int J Radiat Biol. Relat Stud Phys Chem. Med. 1979,35(3):201-219.
    [25]Dewhirst M W. Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting[J]. Cancer Res,2007,67:854-855.
    [26]Durand RE, Aquino-Parsons C. Clinical relevance of intermittent tumour blood flow[J]. Acta Oncol,2001,40:929-936.
    [27]Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours[J]. Nature,1996,379 (6560):88-91
    [28]Brizel DM, Scully SP, Harrelson JM,et al. Tumor oxygenation predicts for the likelihood of distant-metastases in human soft tissue sarcoma[J]. Cancer Res, 1996,56 (5):941-943.
    [29]Munoz-Najar UM, Neurath KM, Vumbaca F, et al. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation[J]. Oncogene,2006,25 (16):2379-2392.
    [30]Potter C, HarrisAL. Hypoxia inducible carbonic an hydrase Ⅸ, marker of tumour hypoxia, survival pathway and therapy target [J]. Cell Cycle,2004,3 (2):164-167
    [31]Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment [J]. Cancer Res,1996,56 (24):5754-5757.
    [32]Kondo A, Safaei R, Mishima M, et al. Hypoxia2induced enrichment and mutagenesis of cells that have lost DNA mismatch repair[J]. Cancer Res,2001,61 (20):7603-7607.
    [33]Johns DR. Mitochondrial DNA and disease.N Engl j Med,1995,333 (10):638.
    [34]Dombro shiBA. Isolation of an active human transposable element. Science, 1991,254 (3):1805.
    [35]Gatenby RA, Kessler HB, RosenblumJS, et al. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy[J]. Int J Radiat Oncol Biol Phys,988,14 (5):831-838.
    [36]Brizel DM, Sibley GS, Prosnitz LR, et al. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck[J]. Int J Radiat Oncol Biol Phys, 1997,38(2):285-289.
    [37]陈延治,李建军,顾菲,等.缺氧对肝癌BEL7402细胞周期及放疗敏感性的影响[J].中华肿瘤防治杂志,2006,13(10):737-739.
    [38]Cooper RA, Wilks DP, Lngue JP, et al. High tumour angiogenesis is associated with poorer survival in carcinoma of the cervix treated with radiotherapy[J]. Clin Cancer Res,1998,4 (Ⅱ):2795-2800.
    [39]Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol,1992,12 (12):5447-5454.
    [40]Wang GL, Jiang BH, Rue EA et al. Hypoxia-inducible factor 1 is abasic-helix-loop-helix-PAS heterodimer regulated by cellular 02 tension[J]. Proc Natl Acad Sci USA,1995,92:5510-5514.
    [41]Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1[J]. J Biol Chem,1995,270(3):1230-1237.
    [42]Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression[J]. Crit Rev Biochem Mol Biol,2000,35:71-103.
    [43]Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factorl levels vary exponentially over a physiologically relevant range of O2 tension[J]. Am J Physiol,1996,271(4):1172-1180.
    [44]Jewell UR, Kvietikova I, Scheid A, et al. Induction of HIF-1α in response to hypoxia is instantaneous [J]. FASEBJ,2001,15(7):1312-1314.
    [45]Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor-la is mediated by an oxygen-dependent domain via the ubiquitin-proteasome pathway[J]. Proc Natl Acad Sci,1998,95(14):7987-7992.
    [46]Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis[J]. Nature,1999,399(6733):271-275.
    [47]Ivan M, Kaelin WG. The von Hippel-Lindau tumor suppress protein[J].Curr Opin Genet Dev,2001,11(1):27-34
    [48]Ivan M, Kondo K, Yang H, et al. HIF-la targeted for VHL-mediated destruction by proline hydroxylation:implications for 02 sensing[J]. Science,2001, 292(5516):464-468.
    [49]Zhu H, Jackson T, Bunn HF. Detecting and responding to hypoxia[J]. Nephrol Dial Transplant,2002,17(Suppl 1):3-7.
    [50]Bhattachrya S, Micnels CL, Leung MK, et al. Functional role of P35srj, a novel P300/CBP binding protion,during transactivatio by HIF-1 [J]. Genes Dev, 1999,13(1):64-75.
    [51]Blagosklonny MV,An WG, Romanova LY, et al. p53 inhibits hypoxia-inducible factor-stimulated transcription[J]. J Biol Chem,1998,273:11995-11998.
    [52]Ravl R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha[J]. Gene Dev,2000,14:34-44.
    [53]Birner P, Schindl M, Obermair A, et al. Overexpression of hypoxia-inducible factor 1 alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res,2000,60:4693-4696.
    [54]Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1 in hypoxia mediated apoptosis, cell proliferation and tumor angiogenesis [J]. Nature, 1998,394(6692):485-490.
    [55]Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases[J]. Cancer Res,1999,59:5830-5835.
    [56]Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor la expression by the epidermal growth factor/phosphandylmostol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapies[J]. Cancer Res. 2000,60(6):1541-1545.
    [57]Semenza GL.Hypoxia-inducible factor 1:master regulator of 02 homeostasis[J]. Curr Onin Genet Dev,1998,8(51):588-594.
    [58]Wang GL, Jiang BH, Semenza GL. Effect of in kinase and phosphatase Inhibitors on expression of hypoxia-inducible factor 1[J]. Biochem Biophys Res Commun,1995,216(2):669-675.
    [59]Jiang BH, Agani F, Passaniti A, et al. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1:involvement of HIF-1 in tumor progression[J]. Cancer Res 1997,57(23):5328-5335.
    [60]Leek RD, Hunt NC, Landers RJ, et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer[J]. J Pathol, 2000,190:430-436.
    [61]Pugh CM, Ratclife PJ. Regulation of angiogenesis by hypoxia:role of the HIF system[J]. Nat Med,2003,9:677-684.
    [62]Mazure NM, Brabimi Horn MC, Pouyssgur J. Protein kinase and the hypoxia inducible factor-1, two switchs in angiogenesis [J]. Curr Pharm Des,2003,9:531-541.
    [63]Semenza GL, Jiang BH, Leung SW, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1[J]. J Biol Chem, 1996,271:32529-32537.
    [64]Koshiji M, Kageyama Y, Pete EA, et al. HIF-1 alpha induces cell cycle arrest by functionally counteracting Myc[J]. EMBO J,2004,23(9):1949-1956.
    [65]Yu EZ, Li YY, Liu XH, et al. Antiapoptotic action of hypoxia-inducible factor-1 alpha in human endothelial cells[J]. Lab Invest,2004,84(5):553-561.
    [66]Costa A, Coradini D, Carrassi A, et al. Re:Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis[J]. J Natl Cancer Inst, 2001,93:1175-1177.
    [67]Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia[J]. Proc Natl Acad Sci USA,2000,97(16):9082-9087.
    [68]Piret JP, Lecocq C, Toffoli S, et al. Hypoxia and CoC12 protect HepG2 cells against serum deprivation-and t-BHP-induced apoptosis:a possible anti-apoptotic role for HIF-1 [J]. Exp Cell Res,2004,295:340-349.
    [69]Ciaeeia AJ. Hypoxia srtess Proteins:survival of the fittest[J]. Setllin in Rdiat Oncol,1996,6:46-58.
    [70]Hoekel M, Sehlenger K, MiZet M, et al. Hypoxia and radiation response in hmuan tumors[J]. Semin in Rdiat Oncol,1996,6:3-9.
    [71]Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors:role of reoxygenation, free radicals, and stress granules[J]. Cancer Cell,2004,5(5):429-41.
    [72]Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1[J]. Cancer Cell.2004,5(5):405-406.
    [73]Quintero M, Mackenzie N, Brennan PA. Hypoxia-inducible factor 1 (HIF-1) in cancer[J]. Eur J Surg Oncol.2004,30(5):465-468.
    [74]Weinmann M, Marini P, Jendrossek V, et al. Influence of hypoxia on TRAIL-induced apoptosis in tumor cells[J]. Int J Radiat Oncol Biol Phys. 2004,58(2):386-396.
    [75]Sasabe E, Zhou X, Li D, et al. The involvement of hypoxia-inducible factor-1alpha in the susceptibility to gamma-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells[J]. Int J Cancer,2007,120(2):268-277.
    [76]Diaz-Gonzalez JA, Russell J, Rouzaut A, et al. Targeting hypoxia and angiogenesis through HIF-lalpha inhibition[J]. Cancer Biol Ther, 2005,4(10):1055-1062.
    [77]Williams KJ, Telfer BA, Xenaki D, Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1[J]. Radio Oncol,2005,75(1):89-98.
    [78]Kerbel RS. New targets, drugs, and approaches for the treatment of cancer:an overview. Cancer Metastasis Rev,1998,17:145-147.
    [79]Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor la in common human cancers and their metastases[J]. Cancer Res,1999,59:5830-5835.
    [80]Talks KL, Turley H, Gatter KC, et al. The exp ression and distribution of the hypoxia inducible factors HIF-1 alpha and HIF-2alpha in normal human tissues, cancers, and tumoassociated macrophages[J]. Am J Pathol,2000,157(2): 411-421.
    [81]Bimer P, Schindl M, Obermair A, et al. Over expression of hypoxia-inducible factor 1 is a marker for an unfavorable prognosis in early-stage invasive cervical cancer[J]. Cancer Res,2000,60 (17):4693-4696.
    [82]SchindlM, Schoppmann SF, Samonigg H, et al. Overexp ression of hypoxia inducible factor 1 alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer[J]. Clin Cancer Res,2002,8 (6):1831-1837.
    [83]Urano N, Fujiwara Y, Doki Y, et al. Overexp ression of hypoxia-inducible factor-1 alpha in gastric adenocarcinoma [J]. Gastric Cancer,2006,9 (1): 44-49.
    [84]Koukourakis MI, Giatromanolaki A, Skarlatos J, et al. Hypoxia inducible b factor (HIF-1α and HIF-2α) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy[J].J Can Res,2001,61(5):1830-1832.
    [85]Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1 alpha or in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis[J]. Nature,1998,394:485-490.
    [86]Oritz W,Meier F, Stroka DM, et al. Apoptosis in hypoxic human pancreatic islets correlates with HIF-lalpha expression[J]. FASEB J,2002,16:745-747.
    [87]Volm M, Koomagi R. Hypoxia-inducible factor and its relationship to apoptosis and proliefartion in lung cancer[J]. Anticancer Res, 2000,20(3):1527-1533.
    [88]Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, Semenza GL Expression of hypoxia-inducible factor-1 alpha:a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer [J]. Cancer Res,2001,61:2911-2916.
    [89]Dellas K, Bache M, Pigorsch SU, Taubert H, Kappler M, Holzapfel D, Zorn E, Holzhausen HJ, Haensgen G. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer [J]. Strahlenther Onkol. 2008,184(3):169-174.
    [90]Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger H. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor[J]. BMC Cancer,2005,5:84.
    [91]Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex Ⅲ stabilize hypoxia-inducible factor-1 alpha during hypoxia:a mechanism of 02 sensing[J]. J Biol Chem, 2000,275:25130-25138.
    [92]Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B. Nitric oxide impairs normoxic degradation of HIF-1 alpha by inhibition of prolylhydroxylases[J]. Mol Biol Cell,2004,14:3470-3481.
    [93]Wouters BG, van den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C. Control of the hypoxic response through regulationof mRNA translation[J]. Semin Cell Dev Biol,2005,16:487-501.
    [94]Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of HIF-2 alpha to the assembly of mammalian stress granules[J]. J Cell Biol,1999,147:1431-1442.
    [95]Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, Dewhirst W. leiotropic effects of HIF-1 blockade on tumor radiosensitivity[J]. Caner Cell, 2005,8:99-110.
    [96]Griffiths JR, McSheehy PM, Robinson SP, Troy H, Chung YL, Leek RD, Williams KJ, Stratford IJ, Harris AL, Stubbs M. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta):evidence of an anabolic role for the HIF-1 pathway[J]. Cancer Res,2002,62:688-695.
    [97]Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS. Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia[J]. Mol Cell Biol,2003,23:359-369.
    [98]Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R. Tumor response to radiotherapy regulated by endothelial cell apoptosis[J]. Science,2003,300:1155-1159.
    [99]Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, Seetharam S, Koons A, Hari DM, Kufe DW, Weichselbaum RR.Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J]. Cancer Res,1999,59:3374-3378.
    [100]Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R.Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice[J]. Science, 2001,293:293-297.
    [101]Zhang X, Kon T, Wang H, Li F, Huang Q, Rabbani ZN, Kirkpatrick JP, Vujaskovic Z, Dewhirst MW, Li CY. Enhancement of hypoxiainduced tumor cell death in vitro and radiation therapy in vivo by use of small interfering RNA targeted to hypoxia-inducible factor-1alpha[J]. Cancer Res,2004,64: 8139-8142.
    [102]Williams KJ, Telfer BA, Xenaki D, Sheridan MR, Desbaillets I, Peters HJ, Honess D, Harris AL, Dachs GU, van der Kogel A, Stratford IJ.Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1[J]. Radiother Oncol,2005,75:89-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700