调整自噬表达对食管癌EC9706细胞化疗敏感性的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:自噬相关蛋白在食管鳞癌中的表达及其临床意义
     目的已有研究表明细胞自噬水平的变化与肿瘤的发生、发展有关。本研究探讨自噬相关蛋白Beclin1和LC3食管鳞状细胞癌中的表达情况,并分析其与各种临床病理因素之间的相关性。
     方法51例食管鳞癌病例标本和30例癌旁正常食管组织均来自华中科技大学同济医学院附属协和医院病理科2008年3-12月在手术切除存档蜡块。采用免疫组织化学检测自噬相关蛋白Beclin1和LC3的表达,使用SPSS13.0软件进行统计学分析。
     结果Beclin1和LC3的阳性表达率分别为43.1%和39.3%。食管鳞癌组Beclin 1和LC3的表达明显低于癌旁组织(86.7%和83.3%),且差异具备有统计学意义(P<0.05)。Beclin 1和LC3的表达强度与肿瘤TNM分期和临床分期相关(P值均<0.05);Beclin1与LC3在食管鳞癌中的表达呈正相关(P<0.01)。
     结论Beclin 1和LC3在食管鳞癌中的表达下调;自噬活性的下调可能与食管癌的发生、发展相关,并在食管癌的侵袭和转移中发挥重要作用。
     第二部分:顺铂诱导食管癌细胞EC9706自噬的研究
     目的检测顺铂对食管癌EC9706细胞增殖的抑制作用,观察在这一过程中细胞自噬水平的变化,并初步探讨影响白噬可能的机制。
     方法采用CCK-8法检测顺铂对EC9706细胞增殖的抑制作用,MDC荧光染色检测细胞内自噬囊泡的数量。Western blot法检测Beclin1和LC3蛋白的表达,RT-PCR检测顺铂对EC9706细胞Beclin1 mRNA的表达。
     结果顺铂对EC9706细胞有着显著的增殖抑制作用。顺铂处理EC9706细胞24h后,MDC染色显示DDP组细胞内出现明显的绿色荧光颗粒,说明顺铂能够诱导EC9706细胞产生自噬囊泡;而无论是mRNA还是蛋白水平,EC9706在顺铂处理后自噬水平明显提高,此变化一直持续到给药24h,且给药后6h表达最强,而对照组自噬改变不明显。
     结论顺铂对食管癌EC9706细胞有明显的生长抑制作用。顺铂可以诱导EC9706细胞发生自噬,此变化一直持续到给药24h,且给药后6h表达最强,其机制可能与Beclin1蛋白有关。
     第三部分:自噬在顺铂诱导食管癌细胞死亡中的作用
     目的观察顺铂联合自噬特异性抑制剂3-MA对EC9706增殖抑制的影响,探讨自噬在顺铂诱导的食管癌EC9706细胞死亡中的作用。
     方法CCK-8法测定顺铂联合3-MA对EC9706细胞增殖作用的影响;流式细胞仪检测3-MA联合顺铂作用EC9706细胞作用过程中细胞凋亡和细胞周期的改变;Western blot法检测顺铂对EC9706细胞PI3KⅢ和细胞色素c蛋白表达的影响。
     结果3-MA联合顺铂处理EC9706细胞24h后,MDC染色显示在加用3-MA组细胞内的绿色荧光颗粒与DDP单独处理组相比明显减少,提示这一自噬过程能够被自噬特异性抑制剂3-MA所抑制。CCK-8结果显示24h处理后DDP+3-MA组细胞死亡率较DDP组显著提高。流式细胞仪结果显示DDP+3-MA组细胞凋亡率较DDP单独处理组明显升高,并且DDP+3-MA组细胞周期中S期细胞的比例明显升高,同时伴随着G2/M期细胞的降低。Western blot结果显示与DDP组相比,DDP+3-MA组PI3KⅢ蛋白的表达受到了明显的抑制;cyt-c蛋白的释放明显增加;说明在顺铂诱导EC9706细胞自噬的过程中,自噬可能是通过Ⅲ型PI3K通路来实现的,而细胞凋亡主要是通过促进线粒体内cyt-c蛋白向细胞胞浆内释放来实现的。
     结论自噬特异性抑制剂3-MA能够通过抑制自噬提高顺铂对食管癌EC9706细胞的细胞毒性,其上游机制可能是激活Ⅲ型PI3K通路;而顺铂诱导EC9706细胞的凋亡下游主要是通过细胞内cyt-c的释放和将细胞周期阻滞在S期来实现,这说明抑制自噬可能是食管癌治疗的一个新的治疗方向。
PART I:Expression and Clinical Significance of Autophagy-related Proteins in Esophageal Squamous Cell Carcinoma
     Objective:Many studies have indicated that the change of autophagy might be related with the growth and development of tumor. This study was to investigate the expression and implication of atuophagy-related gene Beclinl and microtubule-associated protein 1 light chain 3 (LC3) in esophageal squamous cell carcinoma (ESCC) and their relationships with clinical pathological features of ESCC.
     Methods:Immunohistochemistry was used to detect the expression of Beclin 1 and LC3 proteins in 51 ESCC tissues and 30 normal para-cancerous tissues. And the correlations of their expression to the clinicopathologic characterisics were analyzed by SPSS 13.0.
     Results:The positive rates of Beclinl and LC3 were 62.7%(32/51) and 66.7%(34/51) respectively. The expression of Beclinl and LC3 protein was detected in a significantly greater proportion in ESCC carcinoma tissues than that in para-cancerous tissues (15.7% and 9.80%, P<0.05). The positive rates of Beclinl and LC3 were correlated with lymph node metastasis and TNM stage. There was no relationship was between the two factors and age, sex, pathological subtypes and histological grades. Beclinl expression was associated with LC3 expression (P<0.05). Beclin 1 and LC3 were over-expressed in ESCC.
     Conclusion:LC3 and Beclinl expresson are up-regulated in ESCC. The increase of autophagic capacity may be involved in the carcinogenesis of ESCC, and play an important role in invasion and metastasis of ESCC.
     PartⅡ:Role of Autophagy in Esophageal Carcinoma Cell Line induced by Cisplatin
     Objective:To explore the expression of autophagy in EC9706 cell line with treatment of Cisplatin, and study whether the expression level of autophagy is related to the death induced by Cisplatin.
     Methods:CCK-8 assays were used to detect the growth inhibition rate, and MDC staining was used to examine the autophagosome. Western bolt was used to detect the protein expression of Beclinl and LC3. RT-PCR analysis was used to dectect the expression of Beclin 1 mRNA.
     Results:DDP can evidently inhibit the growth of EC9706 cell line. After DDP treatment for 24h, MDC staining indicated that autophagosomes were increased in DDP group with respect to the control group, which showed that autophagy was induced by DDP in EC9706 cells. From the expression of LC3 and Beclinl by Western blot and the Beclin 1mRNA expression by RT-PCR, the perk of autphagy indcued by DDP is 6 hours and the expression of autophagy can continue for 24 hours. There was no obvious change the control group.
     Conclusion:Cisplatin can strongly inhibit proliferation of EC9706. DDP can induce autophagy in EC9706 cells. The expression of autophagy induced by DDP in EC9706 cells may be related with Beclinl signal transduction pathway.
     Part III:Role of Autophagy in esophageal carcinoma cell line induced by cisplatin
     Objective:To explore the role of autophagy in cisplatin-induced death of EC9706 cell line.
     Methods:To explore the role of autophagy in cisplatin-induced death of EC9706 cell line, the autophagy specific inhibitor 3-MA was added with cisplatin. The apoptosis rate and cell death rate were examined by flow cytometry and CCK-8 assays. Western bolt was used to detect the protein expression of PI3K III and cyt-c induced by cisplatin in EC9706 cell line.
     Results:After treatment of EC9706 cells with 3-MA and cisplatin for 24h, MDC staining indicated that autophagy induced by cisplatin was attenuated by 3-MA. course of treatment. Moreover, after the combination treatment of 3-MA and DDP, the cell inhibitory rate increased; the apoptosis rate and the numbers of cells in S phase also increased. Furthermore, the accumulation of autophagic vacuoles was decreased; the expression of Beclinl and LC3 was significantly down-regulated and the release of cytochrome c was decreased. DDP-induced apoptosis in EC9706 cells can be enhanced by the inhibitor of autophagy,3-MA.
     Conclusion:3-MA could attenuate cisplatin-induced autphagy of EC9706 cells and enhace the inhibitory effect on EC9706 cells. Cisplatin induced apoptosis and activated cyt-c in EC9706 cells. In a word, the inhibition of autophagy could be a novel strategy for the adjuvant chemotherapy of esophageal cancer
引文
1. Pisani P, Parkin DM, Bray F, et al. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer.1999; 83:18-29.
    2. Tew WP, Kelsen DP, Ilson DH.Targeted therapies for esophageal cancer. Oncologist. 2005; 10:590-601.
    3. Mariette C, FinziL, Fabre S, et al. Factors predictive of complete resection of operable esophageal cancer:a prospective study. Ann Thorac Surg.2003; 75:1720-1726.
    4. Bras M, Queenan B, Susin S A. Programmed cell death via mitochondria:different modes of dying. Biochemistry (Mosc).2005; 70:231-239.
    5. Mathew R, Karantra-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer.2007; 7:961-967.
    6. Van Limbergen J, Stevens C, et al. Autophagy:from basic science to clinical application. Mucosal Immunol.2009; 2:315-330.
    7. Levine B, Klionsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell.2004; 4:463-477.
    8. Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol.2000; 32:1123-1136.
    9. Farre JC, Subramani S. Peroxisome turnover by micropexophagy:an autophagy-related process. Trends Cell Biol.2004; 53:515-523.
    10. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell.2008; 132:27-42.
    11. Levine B. Cell biology:autophagy and cancer. Nature.2007; 446:745-747.
    12. Alva AS, Gultekin SH, Baehrecke EH. Autophagy in human tumors:cell survival or death? Cell Death Differ.2004; 11:1046-1048.
    13. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppression mechanism. Oncogene.2004; 23:2891-2906.
    14. Liang XH, Jackson S, Seaman M, et al.Induction of autophagy and inhibition of tumorigenesis by beclin 1.Nature.1999; 402:672-676.
    15. Aita VM, Liang XH, Murty VV, et al. Cloning and genomie organization of beclinl a candidate tumor suppressor gene on chromosome17q21. Genomic.1999; 59:59-65.
    16. Kthara A, Kabeya Y, Ohsumi Y, et al. Beclinl-phosphatidylinositol 3-kinase complex function at the trans-Golgi network.EMBO J.2001; 2:330-335.
    17. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppression mechanism. Oncogene.2004; 23:2891-2906.
    18. Wang ZH, Peng ZL, Duan ZL, et al. Expression and clinical significance of autophagy gene Beclinl in cervical squamous cell carcinoma. J Sichuan Univ Med Sci Edi.2006, 37:860-863.
    19. Duan ZL, Peng ZL, Wang ZH. Correlation of autophagy gene Beclinl to tumorigenesis and development of epithelial ovarian cancer. Chinese Journal of Cancer.2007; 26: 258-263.
    20. Liu Q, Wang JJ, Pan YC, et al. Expression of autophagy-related genes Beclinl and LC3 in non-small cell lung cancer. Chinese Journal of Cancer.2008; 27:25-29.
    21. Mizushima, N. Methods for monitoring autophagy. Int. J Biochem Cell Biol.2004; 36, 2491-2502.
    22. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.2000; 19:5720-5728.
    23. Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy.Autophagy.2008,4:151-175.
    24. Marino G, Lopez-Otin C. Autophagy:molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci.2004; 61:1439-1454.
    25. Eskelinen E L. Maturation of autophagic vacuoles in mammalian cells. Autophagy, 2005,1:1-10.
    1.杨弘,傅剑华.食管鳞癌化疗进展.中国临床肿瘤专版,2008;12:72-75.
    2. MathewR, Karantra-Wadsworth V, White E.Role of autophagy in cancer.Nat Rev Cancer.2007; 7:961-967.
    3. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev.2010; 90:1383-1435.
    4. Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol.1995; 66:3-14.
    5. Mizushima N, Yoshimori T, Levine B.Methods in mammalian autophagy research. Cell. 2010; 140:313-326.
    6. McLeland CB, Rodriguez J, Stern ST. Autophagy Monitoring Assay:Qualitative Analysis of MAPLC3-Ⅰ to Ⅱ Conversion by Immunoblot. Methods Mol Biol.2011; 697: 199-206.
    7. Bunney TD, Katan M.Phosphoinositide signalling in cancer:beyond PI3K and PTEN. Nat Rev Cancer.2010; 10:342-352.
    8. Jemal A, Siegel R, Xu J, et al.Cancer statistics,2010. CA Cancer J Clin.2010; 60:277-300.
    9. Mariette C, Finzi L, Fabre S, et al.Factors predictive of complete resection of operable esophageal cancer:a prospective study. Ann Thorac Surg.2003; 75:1720-1726.
    10. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med.2003; 349:2241-2252.
    11. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev.2007; 33:9-23.
    12. Lefranc F, Kiss R. Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus 2006; 20:E7.
    13. Sun Y, Peng ZL. Programmed cell death and cancer. Postgrad Med J.2009; 85:134-140.
    14. Ashford TP and Porter KR. Cytoplasmic components in hepatic cell lysosomes.J Cell Biol,1962; 12:198-202.
    15. Wartosch L, Stauber T.A role for chloride transport in lysosomal protein degradation. Autophagy.2010; 6:158-159.
    16.杨月景,刘占举,徐志林.紫杉醇联合顺铂治疗晚期食管癌中自噬的研究.中国肿瘤临床.2009;36:620-622.
    17. Wu J, Dang Y, Su W, Molecular cloning and characterization of rat LC3A and LC3B--two novel markers of autophagosome.Biochem Biophys Res Commun.2006; 339:437-442.
    18. Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA.2003; 100:15077-15082.
    19. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest.2003; 112:1809-1820.
    20. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature.1999; 402:672-676.
    21. Shintani T, Klionsky DJ. Autophagy in health and disease:adouble-edged sword. Science.2004; 306:990-995.
    22. Bunney TD, Katan M.Phosphoinositide signalling in cancer:beyond PI3K and PTEN. Nat Rev Cancer.2010; 10:342-352.
    23. Huang J, Manning BD.A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans.2009; 37:217-222.
    24. Degtyarev M, De Maziere A, Orr C, et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol.2008; 183:101-116.
    25. Fan QW, Cheng C, Hackett C, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal.2010;3(147):ra81.
    26. Ciuffreda L, Di Sanza C, Milella M.The mTOR Pathway:a new target in cancer therapy. Curr Cancer Drug Targets.2010; 10:484-495.
    27. Dong Z, Huang C, Ma WY. PI-3 kinase in signal transduction, cell transformation, and as a target for chemoprevention of cancer. Anticancer Res.1999; 19:3743-3747.
    28. Gao N, Zhang Z, Jiang BH, et al. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun.2003;310:1124-1132.
    29. Hildebrandt MA, Yang H, Hung MC, et al. Genetic variations in the PI3K/PTEN/AKT/ mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol.2009; 27:857-871.
    30. Pan J, Cheng C, Verstovsek S, et al. The BH3-mimetic GX15-070 induces autophagy, potentiates the cytotoxicity of carboplatin and 5-fluorouracil in esophageal carcinoma cells. Cancer Lett.2010; 293:167-174.
    1. Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol.2008,266:207-247.
    2. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nature Reviews Cancer.2007,7:961-967.
    3. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell.2007; 12:9-22.
    4. Krymskaya VP, Goncharova EA. PI3K/mTORC1 activation in hamartoma syndromes:therapeutic prospects. Cell Cycle.2009; 8:403-413.
    5. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol.2010; 20:355-362.
    6. Thoresen SB, Pedersen NM, Liestφl K,et al.A phosphatidylinositol 3-kinase class Ⅲ sub-complex containing VPS 15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res.2010; 316:3368-3378.
    7. Per OS, Paul BG. 3-Methyladenine specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA,1982,79: 1889-1892.
    8. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev.2007; 33:9-23.
    9. Shintani T, Klionsky DJ.Autophagy in health and disease:a double-edge sword. Science.2004; 306:990-995.
    10. Sivakolundu SG, Mabrouk PA. Structure-function relationship of reduced cytochrome c probed by complete solution structure determination in 30% acetonitrile/water solution. J Biol Inorg Chem.2003; 8:527-539.
    11. Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome C. Cell,1996; 86:147-157.
    12. Daniel F, Legrand A, Pessayre D, et al. Partial Beclin 1 silencing aggravates doxorubicin and Fas-induced apoptosis in HepG2 cells. World J Gastroenterol, 2006,12:2895-2900.
    13. Herman-Antosiewicz A, Johnson DE, Singh SV. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res,2006,66:5825-5835
    14. Li J, Hou N, Faried A, et al. Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer. 2010; 46:1900-1909.
    15. Song J, Qu Z, Guo X, et al. Hypoxia-induced autophagy contributes to the chemo-resistance of hepatocellular carcinoma cells. Autophagy.2009; 5:1131-1144.
    16. Cheng Y, Li H, Ren X, et al. Cytoprotective effect of the elongation factor-2 kinase-mediated autophagy in breast cancer cells subjected to growth factor inhibition. PLoS One.2010;5:e9715.
    17. Livesey KM, Tang D, Zeh HJ, et al. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs.2009; 10:1269-1279.
    18. Chen YS, Song HX, Lu Y, et al. Autophagy inhibition contributes to radiation sensitization of esophageal squamous carcinoma cells. Dis Esophagus.2010 Dec 17. doi:10.1111/j.1442-2050.2010.01156.x.
    19.刘先军,彭吉霞,吴清明,等.顺铂对食管癌细胞周期及端粒酶活性的影响.胃肠病学和肝脏病学杂志.2003:12:181-182.
    20. Funderburk SF, Wang QJ, Yue Z.The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol.2010; 20:355-362.
    21. Simonsen A, Tooze SA.Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol.2009; 186:773-782.
    22. Itakura E, Kishi C, Inoue K, et al.Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atgl4 and UVRAG. Mol Biol Cell.2008; 19: 5360-5372.
    23. Zhong Y, Wang QJ, Yue Z.Atg14L and Rubicon:yin and yang of Beclin 1-mediated autophagy control. Autophagy.2009; 5:890-891.
    24. Matsunaga K, Morita E, Saitoh T, et al.Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol.2010; 190:511-521.
    25. Fimia GM, Stoykova A, Romagnoli A, et al. Ambral regulates autophagy and development of the nervous system. Nature.2007; 447:1121-1125.
    26. Itakura E, Kishi C, Inoue K, Mizushima N. et al. Beclin 1 forms two distinct phosphati-dylinositol 3-kinase complexes with mammalian Atg14 and UVRAG Mol Biol Cell.2008; 19:5360-5372
    27. Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol.2009; 11:468-476.
    28. Matsunaga K, Saitoh T, Tabata K, et al.Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol.2009; 11:385-396.
    29. Yang C, Tong Y, Ni W, et al. Inhibition of autophagy induced by overexpression of mda-7 interleukin-24 strongly augments the antileukemia activity in vitro and in vivo. Cancer Gene Ther.2010; 17:109-119.
    30. Greenberg JT. Programmedd cell death:A way of life for plants.Proc Natl Acad, 1996; 1642:87-96.
    31. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004; 305:626-629.
    32. Kagan VE, Bayir HA, Matalia A, et al.Cytochrome c/cardiolipin rlations in mitochondria:a kiss of death.Free Radic Biol Med.2009; 46:1439-453.
    33. Balk J, Leaver CJ, McCabe PF.Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett,1999; 463:151-154.
    34. Cao CF, Ren S, Zhang L, et al. Caspase-dependent cytosolic release of cytochrome c and membrane translocation of Bax in p53-induced apoptosis. Exp Cell Res,2001; 265:145-151
    1. Burman C, Ktistakis NT. Autophagosome formation in mammalian cells. Semin Immunopathol.2010; 32:397-413.
    2. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell.2010; 40:280-293.
    3. Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol.2010; 11:777-788.
    4. Meschini S, Condello M, Lista P, et al. Autophagy:Molecular mechanisms and their implications for anticancer therapies. Curr Cancer Drug Targets.2011; 11:357-79.
    5. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev.2010; 90:1383-1435.
    6. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period.Nature.2004; 432:1032-1036.
    7. Yang ZJ, Chee CE, Huang S, et al. Autophagy modulation for cancer therapy. Cancer Biol Ther. 2011; 11:169-176.
    8. Kepp O, Galluzzi L, Lipinski M, et al.Cell death assays for drug discovery.Nat Rev Drug Discov.2011; 10:221-237.
    9. Eskelinen EL.The dual role of autophagy in cancer. Curr Opin Pharmacol.2011 Apr 15.
    10. Esclatine A, Chaumorcel M, Codogno P.Macroautophagy signaling and regulation. Curr Top Microbiol Immunol.2009; 335:33-70.
    11. Chen Y, Klionsky DJ. The regulation of autophagy-unanswered questions.J Cell Sci. 2011; 124(Pt 2):161-170.
    12. Hardt M, Chantaravisoot N, Tamanoi F. Activating mutations of TOR (target of rapamycin). Genes Cells.2011; 16:141-151.
    13. Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol.2008; 181:497-510.
    14. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell.2009; 20:1992-2003.
    15. Ganley IG, Lam du H, Wang J, et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem.2009; 284:12297-12305.
    16. Liang C, Lee JS, Inn KS, et al. Beclinl-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol.2008; 10:776-787.
    17. Kang R, Zeh HJ, Lotze MT, et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ.2011; 18:571-580.
    18. Clague MJ, Urbe S. Ubiquitin:same molecule, different degradation pathways.Cell. 2010; 143:682-685.
    19. Tanida I.Autophagosome Formation and Molecular Mechanism of Autophagy. Antioxid Redox Signal.2011; 14:2201-2214
    20. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.2000; 19:5720-5728.
    21. Klionsky DJ, Abeliovich H, Agostinis P, et al.Guidelines for the use and inter-pretation of assays for monitoring autophagy in higher eukaryotes. Autophagy.2008; 4:151-175.
    22. Xie Z, Nair U. Klionsky DJ. Atg8 controls phagophore expansion during autopha-gosome formation. Mol Biol Cell.2008; 19:3290-3298.
    23. Yang Z, Klionsky DJ.Permeases recycle amino acids resulting from autophagy. Autophagy.2007; 3:149-150.
    24. Ganley IG, du Lam H, Wang J, et al. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem.2009; 284:12297-12305.
    25. Hara T, Mizushima N.Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17? Autophagy.2009; 5:85-87.
    26. Chano T, Kontani K, Teramoto K, et al. Truncating mutations of RB1CC1 in human breast cancer. Nat Genet.2002; 31:285-288.
    27. Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.Mol Biol Cell.2009; 20:1992-2003.
    28. Kundu M, Lindsten T, Yang CY, et al. Ulkl plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008; 112:1493-1502.
    29. Cabrera S, Marino G, Fernandez AF, et al.Autophagy, proteases and the sense of balance. Autophagy.2010; 6:961-963.
    30. Bedford L, Lowe J, Dick LR, et al. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov.2011; 10:29-46.
    31. Weidberg H, Shvets E, Shpilka T, et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J.2010; 29:1792-1802.
    32. Fujita N, Itoh T, Omori H, et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell.2008; 19:2092-2100.
    33. Hanada T, Noda NN, Satomi Y, et al.The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem.2007; 282:37298-37302.
    34. Sou YS, Waguri S, Iwata J, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008; 19:4762-4775.
    35. Liu JJ, Lin M, Yu JY, et al.Targeting apoptotic and autophagic pathways for cancer therapeutics.Cancer Lett.2011; 300:105-114.
    36. Efeyan A, Sabatini DM. mTOR and cancer:many loops in one pathway. Curr Opin Cell Biol.2009; 22:169-176.
    37. Neufeld TP.TOR-dependent control of autophagy:biting the hand that feeds. Curr Opin Cell Biol.2010; 22:157-168.
    38. Tee AR, Manning BD, Roux PP, et al. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase—activating protein complex toward Rheb. Curr Biol.2003; 13:1259-1268.
    39. Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci.2003; 28:573-576.
    40. Bunney TD, Katan M.Phosphoinositide signalling in cancer:beyond PI3K and PTEN. Nat Rev Cancer.2010; 10:342-352.
    41. Huang J, Manning BD.A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans.2009; 37:217-222.
    42. Degtyarev M, De Maziere A, Orr C, et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol.2008; 183:101-116.
    43. Fan QW, Cheng C, Hackett C, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal.2010; 3:ra81.
    44. Corradetti MN, Inoki K, Bardeesy N, et al. Regulation of the TSC pathway by LKB1:evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev.2004; 18:1533-1538.
    45. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphory-lation of raptor mediates a metabolic checkpoint. Mol Cell.2008; 30:214-226.
    46. Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell.2009; 136:521-534.
    47. Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004; 18:2893-2904.
    48. Feng Z, Levine AJ.The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol.2010; 20:427-434.
    49. Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK betal, TSC2, and PTEN expression by p53:stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res.2007; 67:3043-3053.
    50. Budanov AV, Karin M.p53 target genes sestrinl and sestrin2 connect genotoxic stress and mTOR signaling. Cell.2008; 134:451-460.
    51. Maiuri MC, Malik SA, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle.2009; 8:1571-1576.
    52. Criollo A,Dessen P,Kroemer G. DRAM:a phylogenetically ancient regulator of autophagy.Cell Cycle.2009; 8:2319-2320.
    53. Ciuffreda L, Di Sanza C, Milella M.The mTOR Pathway:a new target in cancer therapy. Curr Cancer Drug Targets.2010; 10:484-495.
    54. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol.2010; 20:355-362.
    55. Simonsen A, Tooze SA.Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol.2009; 186:773-782.
    56. Itakura E, Kishi C, Inoue K, et al.Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atgl4 and UVRAG. Mol Biol Cell.2008; 19: 5360-5372.
    57. Zhong Y, Wang QJ, Yue Z. Atg14L and Rubicon:yin and yang of Beclin 1-mediated autophagy control. Autophagy.2009; 5:890-891.
    58. Sun Q, Fan W, Zhong Q.Regulation of Beclin 1 in autophagy. Autophagy.2009; 5: 713-716.
    59. Matsunaga K, Morita E, Saitoh T, et al.Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L.J Cell Biol.2010; 190:511-521.
    60. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature.1999; 402:672-676.
    61. Lian J, Wu X, He F, et al. A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ.2011; 18:60-71.
    62. Martin AP, Park MA, Mitchell C,et al. BCL-2 family inhibitors enhance histone deacetylase inhibitor and sorafenib lethality via autophagy and overcome blockade of the extrinsic pathway to facilitate killing. Mol Pharmacol.2009; 76:327-341.
    63. Liang C, E X, Jung JU. Downregulation of autophagy by herpesvirus Bcl-2 homologs. Autophagy.2008; 4:268-272.
    64. Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, et al. The autophagic tumor stroma model of cancer or "battery-operated tumor growth":A simple solution to the autophagy paradox. Cell Cycle.2010; 9:4297-4306.
    65. Matsunaga K, Morita E, Saitoh T, et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol.2010; 190:511-521.
    66. Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol.2009; 11:468-476.
    67. Matsunaga K, Saitoh T, Tabata K, et al.Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol.2009; 11: 385-396.
    68. Fimia GM, Stoykova A, Romagnoli A, et al. Ambral regulates autophagy and development of the nervous system. Nature.2007; 447:1121-1125.
    69. Yuan TL, Cantley LC. PI3K pathway alterations in cancer:variations on a theme. Oncogene,2008; 27:5497-5510.
    70. Witzig TE, Gupta M. Signal transduction inhibitor therapy for lymphoma. Hematology Am Soc Hematol Educ Program.2010; 2010:265-270.
    71. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell.2007; 12:9-22.
    72. Krymskaya VP, Goncharova EA. PI3K/mTORC1 activation in hamartoma syndromes:therapeutic prospects. Cell Cycle.2009; 8:403-413.
    73. Hardt M, Chantaravisoot N, Tamanoi F.Activating mutations of TOR (target of rapamycin). Genes Cells.2011; 16:141-151.
    74. Furuta S, Hidaka E, Ogata A, et al. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene.2004; 23:3898-3904.
    75. Young AR, Narita M, Ferreira M, et al. Autophagy mediates the mitotic senescence transition. Genes Dev.2009; 23:798-803.
    76. Corcelle E, Nebout M, Bekri S, et al. Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res.2006;66:6861-6870.
    77. Rustgi AK. The genetics of hereditary colon cancer. Genes Dev.2007; 21:2525-2538.
    78. Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27 (kipl) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol.2007; 9:218-224.
    79. Wei C, Amos CI, Zhang N,et al. Suppression of Peutz-Jeghers polyposis by target-ing mammalian target of rapamycin signaling.Clin Cancer Res.2008;14,1167-1171.
    80. Gozuacik D, Kimchi A. DAPk protein family and cancer.Autophagy.2006; 2:74-79.
    81. Zalckvar E, Berissi H, Mizrachy L, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep.2009; 10:285-292.
    82. Stevens C, Lin Y, Harrison B, et al. Peptide combinatorial libraries identify TSC2 as a death-associated protein kinase (DAPK) death domain-binding protein and reveal a stimulatory role for DAPK in mTORC1 signaling.J Biol Chem.2009;284:334-344.
    83. Yu Y, Fujii S, Yuan J, et al. Epigenetic regulation ofARHI in breast and ovarian cancer cells. Ann N Y Acad Sci.2003;983:268-277.
    84. Lu Z, Luo RZ, Lu Y, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest.2008; 118:3917-3929.
    85. Hainaut P, Hollstein M.p53 and human cancer:the first ten thousand mutations. Adv Cancer Res.2000; 77:81-137.
    86. Crighton D, Ryan KM.Splicing DNA damage responses to tumour cell death. Biochim Biophys Acta.2004; 1705:3-15.
    87. Ghavami S, Mutawe MM, Sharma P, et al. Mevalonate cascade regulation of airway mesenchymal cell autophagy and apoptosis:a dual role for p53. PLoS One.2011; 6: e16523.
    88. Chen S, Rehman SK, Zhang W, et al. Autophagy is a therapeutic target in anticancer drug resistance. Biochim Biophys Acta.2010; 1806:220-229.
    89. Tasdemir E, Maiuri MC, Galluzzi L,et al. Regulation of autophag by cytoplasmic p53. Nat Cell Biol.2008; 10:676-687.
    90. Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 andprogrammed cell death. Autophagy.2007; 3:72-74.
    91. O'Prey J, Skommer J, Wilkinson S, et al. Analysis of DRAM-related proteins reveals evolutionarily conserved and divergent roles in the control of autophagy. Cell Cycle.2009; 8:2260-2265.
    92. Crighton D, O'Prey J, Bell HS, et al. p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Differ.2007; 14: 1071-1079.
    93. Budanov AV, Sablina AA, Feinstein E, et al.Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science.2004; 304:596-600.
    94. Rosenbluth JM, Mays DJ, Pino MF, et al. A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol.2008; 28:5951-5964.
    95. Budanov AV, Karin M. p53 target genes sestrinl and sestrin2 connect genotoxic stress and mTOR signaling. Cell.2008; 134:451-460.
    96. Maiuri MC, Malik SA, Morselli E,et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle.2009; 8:1571-1576.
    97. Morselli E, Tasdemir E, Maiuri MC,et al. Mutant p53 protein localized in the cytoplasminhibits autophagy. Cell Cycle.2008; 7:3056-3061.
    98. Abida WM, Gu W. p53-dependent and p53-independent activation of autophagy by ARF. Cancer Res.2008; 68:352-357.
    99. Pimkina J, Humbey O, Zilfou JT, et al. ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem.2009; 284:2803-2810.
    100. Reef S, Zalckvar E, Shifman O, et al. A short mitochondrialform of p19ARF induces autophagy and caspase-independent cell death. Mol Cell.2006; 22:463-475.
    101. Courtois-Cox S, Genther Williams SM, Reczek EE, et al. A negative feedback signaling network underlies oncogene-induced senescence.Cancer Cell.2006; 10: 459-472.
    102. DeYoung MP, Horak P, Sofer A, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD 1-mediated 14-3-3 shuttling. Genes Dev.2008; 22:239-251.
    103. Memmott RM, Dennis PA. Akt-dependent and-independent mechanisms of mTOR regulation in cancer. Cell Signal.2009; 21:656-664.
    104. Brugarolas J, Lei K, Hurley RL et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004; 18:2893-2904.
    105. Peterson TR, Laplante M, Thoreen CC, et al.DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell.2009; 137:873-886.
    106. Mizushima N, Yoshimori T, Levine B.Methods in mammalian autophagy research. Cell.2010; 140:313-326.
    107. Yla-Anttila P, Vihinen H, Jokitalo E, et al. Monitoring autophagy by electron microscopy in Mammalian cells. Meth Enzymol.2009; 452:143-164.
    108. Eskelinen EL.To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy.2008; 4:257-260.
    109. Biederbick A, Kern HF, Elsasser HP.Monodansylcada-verine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol.1995; 66:3-14.
    110. Mizushima N.Methods for monitoring autophagy. Int J Biochem Cell Biol.2004; 36: 2491-2502.
    111. Kuma A, Matsui M, Mizushima N.LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy:caution in the interpretation of LC3 localization. Autophagy.2007; 3:323-328.
    112. Mizushima N, Yoshimori T.How to interpret LC3 immunoblotting. Autophagy.2007; 3:542-545.
    113. Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007; 282:24131-24145.
    114. Komatsu M, Waguri S, Koike M, et al.Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell.2007; 131: 1149-1163.
    115. Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell.2009; 137:1062-1075.
    116. Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell.2009; 137:1001-1004.
    117. Pirtoli L, Cevenini G, Tini P, et al. The prognostic role of Beclin 1 protein expression in high-grade gliomas. Autophagy.2009;5:930-936.
    118. Furuta S, Hidaka E, Ogata A, et al. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene.2004;23:3898-3904..
    119. Pimkina J, Humbey O, Zilfou JT, et al. ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem.2009;284:2803-2810.
    120. Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA.2003; 100:15077-15082.
    121. Qu X, Yu J, Bhagat G, et al.Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest.2003; 112:1809-1820.
    122. Kim MS, Jeong EG, Ahn CH, et al.Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol.2008; 39:1059-1063.
    123. Takahashi Y, Coppola D, Matsushita N, et al.Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol.2007; 9:1142-1151.
    124. Lee JW, Jeong EG, Soung YH, et al.Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology. 2006; 38:312-315.
    125. Marino G, Salvador-Montoliu N, Fueyo A, et al.Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem.2007; 282:18573-18583.
    126. Kang MR, Kim MS, Oh JE, et al.Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol.2009; 217:702-706.
    127. Mathew R, Kongara S, Beaudoin B, et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev.2007; 21:1367-1381.
    128. Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev.2007; 21:1621-1635.
    129. Meek DW.Tumour suppression by p53:a role for the DNA damage response? Nat Rev Cancer.2009; 9:714-723.
    130. Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell.2006; 10:51-64.
    131. DeNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev.2008; 27:11-18.
    132. Ostrand-Rosenberg S.Immune surveillance:a balance between protumor and antirumor immunity. Curr Opin Genetm Dev.2008; 8:11-18.
    133. Bingle L, Brown NJ, Lewis CE.The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies. J Pathol.2002; 196: 25-265
    134. Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene—induced senescence relayed by an interleukin-dependent inflammatory network. Cell.2008; 133:1019-1031
    135. Young AR, Narita M, Ferreira M, et al. Autophagy mediates the mitotic senescence transition. Genes Dev.2009; 23:798-803.
    136. Bertout JA, Patel SA, Simon MC.The impact of 02 availability on human cancer. Nat Rev Cancer.2008;8:967-975.
    137. Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem.2008; 283: 10892-10903
    138. Bellot G, Garcia-Medina R, Gounon P, et al.Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol.2009; 29:2570-2581.
    139. Tracy K, Dibling BC, Spike BT, et al.BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol.2007; 27:6229-6242.
    140. Papandreou I, Lim AL, Laderoute K, et al.Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ. 2008; 15:1572-1581.
    141. Rouschop KM, van den Beucken T, Dubois L, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5.J Clin Invest.2010; 120:127-141.
    142. Fung C, Lock R, Gao S, et al. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell.2008; 19:797-806.
    143. Aguirre-Ghiso JA.Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer.2007; 7:834-846.
    144. Lu Z, Luo RZ, Lu Y, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest.2008; 118:3917-3929.
    145. Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27 (kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol.2007; 9:218-224.
    146. Korah R, Boots M, Wieder R.Integrin alpha5betalpromotes survival of growth-arrested breast cancer cells:an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res.2004; 64:4514-4522.
    147. White DE, Kurpios NA, Zuo D, et al. Targeted disruption of betal-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell.2004; 6:159-170.
    148. Eisenberg-Lerner A, Bialik S, Simon HU,et al. Life and death partners:apoptosis, autophagy and the cross-talk between them. Cell Death Differ.2009; 16:966-975.
    149. Mehrpour M, Esclatine A, Beau I, Codogno P.Overview of macroautophagy regulation in mammalian cells. Cell Res.2010; 20:748-762.
    150. Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P. Role of JNK.1-dependent Bcl-2 phosphorylation in ceramide induced macroautophagy. J Biol Chem.2008; 284:2719-2728.
    151. Park K, Lee S, Kim T,et al. A human scFv antibody against TRAIL receptor 2 induces autophagic cell death in both TRAIL-sensitive and TRAIL-resistant cancer cells. Cancer Res.2007; 67:7327-7334.
    152. Qian W, Liu J, Jin J, et al. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res. 2007; 31:329-339.
    153. Basciani S, Vona R, Matarrese P, et al. Imatinib interferes with survival of multi drug resistant Kaposi's sarcoma cells. FEBS Lett.2007; 581:5897-5903.
    154. van Doom WG, Beers EP, Dangl JL.Morphological classification of plant cell deaths. Cell Death Differ.2011 Apr 15. [Epub ahead of print]
    155. Kunchithapautham K, Rohrer B. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy.2007; 3:433-441.
    156. Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem,2007,282:4702-4710.
    157. Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphory-lation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ.2007; 14:230-239.
    158. Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol.2006; 26:9220-9231.
    159. Bernales S, McDonald K, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response.PLoS Biol.2006; 4:e423.
    160. Castino R, Davies J, Beaucourt S, et al. Autophagy is a prosurvival mechanism in cells expressing an autosomal dominant familial neurohypophyseal diabetes insipidus mutant vasopressin transgene. FASEB J.2005; 19:1021-1023.
    161. Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol.2005; 169:425-434.
    162. Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature.2004; 432:1032-1036.
    163. Boya P, Gonzalez-Polo RA, Casares N, et al.Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol.2005; 25:1025-1040.
    164. Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell.2005; 120:237-248.
    165. Mathew R, Kongara S, Beaudoin B, et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev.2007; 21:1367-1381.
    166. He B, Lu N, Zhou Z.Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol.2009; 21:900-912.
    167. Lomonaco SL, Finniss S, Xiang C, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer.2009; 125:717-722.
    168. Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependen clearance of apoptotic cells during embryonic development. Cell.2007; 128:931-946.
    169. Cui Q, Tashiro S, Onodera S, et al.Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells.Biol Pharm Bull,2007;30:859-864.
    170. Green DR, Chipuk JE.P53 and metabolism:inside the TIGAR.Cell.2006;126:30-32.
    171. Criollo A, Dessen P, Kroemer G. DRAM:a phylogenetically ancient regulator of autophagy.Cell Cycle.2009; 8:2319-2320.
    172. Ramkrishnsn S, Nguyen TM, Subrmanian IV, et al. Autophagy and angiogenesis inhibition. Autophagy.2007; 3:512-515.
    173. Nishikawa T, Tsuno NH, Okaji Y, et al. The inhibition of autophagy potentiates antiangiogenic effects of sulforaphane by inducing apoptosis. Angiogenesis.2010; 13:227-278.
    174. Livesey KM, Tang D, Zeh HJ, et al. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs.2009; 10:1269-1279.
    175. Geser A, Brubaker G, Draper CC.Effect of a malaria suppression program on the incidence of African Burkitt's lymphoma. Am J Epidemiol.1989; 129:740-752.
    176. Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest.2007; 117: 326-336.
    177. Maclean KH, Dorsey FC, Cleveland JL, et al. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphoma-genesis. J Clin Invest.2008; 118:79-88.
    178. Bellodi C, Lidonnici MR, Hamilton A, et al.Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest.2009; 119:1109-1123.
    179. Carew JS, Nawrocki ST, Kahue CN, et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood.2007; 110:313-322.
    180. Kroemer G, Levine B.Autophagic cell death:the story of a misnomer. Nat Rev Mol Cell Biol.2008; 9:1004-1010.
    181. Salazar M, Carracedo A, Salanueva IJ, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest.2009; 119:1359-1372.
    182. Pardo R, Lo Re A, Archange C, et al. Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells. Pancreatology.2010; 10:19-26.
    183. Tormo D, Checinska A, Alonso-Curbelo D, et al. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell.2009; 16:103-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700