不同立地类型巨桉人工林生物多样性特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工林在为人类提供木材、减缓大气CO_2浓度上升、增加陆地森林覆盖率和减少人类对天然林依赖的同时,也带来了生物多样性下降、土地退化、生产力降低、地下水位下降等人类普遍关注的林业生态问题,其核心是生物多样性问题。如何使人工林在满足人类对木材的需求、增加经济效益的同时,发挥其应有的生态功能,实现可持续发展是人工林生态研究的焦点之一。现在的科学问题是:尽管迄今已有大量的桉树人工林生物多样性研究,但有关桉树人工林经营管理是否导致其生态系统生物多样性的降低还存在很大的争议。这是否与桉树人工林的立地条件有关?目前尚无深入系统的研究。因此,本研究采用野外调查和室内分析相结合的研究方法,深入系统地研究了不同立地类型的巨桉人工林生态系统地上/地下生物多样性特征,探讨了立地对巨桉人工林生态系统生物多样性的影响,以期为巨桉人工林的立地选择和生物多样性保育提供理论依据,研究结果对于指导巨桉人工林的可持续经营与管理具有重要的科学意义。研究结果如下:
     (1)巨桉人工林林下植物种类丰富,调查林分共有维管束植物71科,158属,193种,双子叶植物占有绝对优势。阶地立地类型林分有维管束植物45科,81属,90种;丘坡中厚土有维管束植物61科,111属,132种;丘坡薄土有维管束植物52科,99属,118种,丘坡中厚土林下植物科属种的组成最为丰富,其次为丘坡薄土,阶地林分最少。造林前土地利用属性影响林下植物种类成分,现有植物也在一定程度上反映了林分的起源,如茶(Camellia sinensis)、柑桔(Citrus reticulata)、杉木(Cunninghamialanceolata)等具有明显栽培性质的种类。阶地类型林分多起源于农耕地,物种构成主要以草本为主;丘坡两种类型的林分起源较为一致,主要是荒山迹地、林地和茶园遗弃地等,物种组成上灌木和草本比例都接近1:1。在科、属、种的相似性上,两种丘坡立地类型的林分相似程度最大,而最不相似的则是丘坡中厚土林分与阶地林分。区系分析表明,各立地类型林分林下植物科、属的分布类型一致。从属的水平上进行地理成分分析,能更好地揭示出植物区系的实质,巨桉人工林林下植物属的地理分布以热带性质为主兼具温带性质,属的间断分布类型比较丰富。各立地类型共有种比例少,物种没有表现出趋同性,并非只有特定的植物才能存留于巨桉人工林。
     (2)巨桉人工林林下植被可划分为14个群落类型,基本反映了调查区域内巨桉人工林林下植被的主要类型。根据分类结果,巨桉人工林群落层次结构包括三种类型:“巨桉+灌木+草本”型,占所有样方的74.1%;“巨桉+草本”型,占所有样方的22.2%;“巨桉”型,占所有样方的3.7%。阶地类型的林分群落结构特征主要为“巨桉+草本”型,丘坡两种类型的林分群落结构主要为“巨桉+灌木+草本”型。
     (3)同一立地类型不同样地之间物种组成相似性也较低,反映了林地起源的多样性与复杂性。巨桉人工林的物种主要来源于原立地保留下来的物种及繁殖体,以及从系统外特别是毗邻生态系统通过风、动物、人等途径传播和扩散进来的繁殖材料。由于丘陵地貌特点,林地多呈块状与农业耕作区镶嵌分布,物种多样性特征在很大程度上受制于立地原土地利用状况。三种立地类型物种构成均以偶见种多,非优势种群占据了物种丰富度的主体,物种分布不均匀,暗示了植被分化和演替的趋势。阶地立地类型林下植物出现频率最高的有空心莲子草(Alternanthera philoxeroides)和野塘蒿(Conyza bonariensis),丘坡中厚土有里白(Hicriopteris glauca)、毛桐(Mallotus barbatus)和宜昌悬钩子(Rubus ichangensis),丘坡薄土有野牡丹(Melastoma normale)。在现行巨桉人工林栽培制度下,大部分种易丢失,物种组成还会发生变化。
     (4)总体上,不同立地类型的巨桉人工林林下植物的物种均匀度差异不显著,丘坡薄土与阶地林分之间的物种丰富度差异也不显著,但丘坡中厚土物种丰富度显著高于丘坡薄土和阶地林分。丘坡中厚土林分的多样性指数显著高于阶地林分,但丘坡中厚土林分与丘坡薄土林分之间以及丘坡薄土林分与阶地林分之间的多样性指数差异不显著。阶地立地类型的灌木层物种丰富度和多样性指数显著低于草本层,而丘坡中厚土和丘坡薄土林分的灌木层和草本层物种丰富度和多样性指数差异不显著,三种立地类型林分的灌木层与草本层物种的均匀度均较高,且层次之间差异不显著。不同立地类型之间的草本层物种丰富度、均匀度和多样性指数差异均不显著(P>0.05)。立地类型之间的灌木层物种均匀度差异不显著,但物种丰富度存在显著差异,以丘坡中厚土最高,其次为丘坡薄土,最少为阶地林分。此外,丘坡中厚土与丘坡薄土灌木层之间的植物多样性指数差异不显著,但二者均显著高于阶地林分。
     (5)巨桉人工林林下植被的种间关系联结性不强,呈负联接的趋势,表明林下物种种间关系还比较松散,物种趋向于随机性,现阶段植被稳定性还不高,预示着林下物种的组成还会发生变化,种间关系还会受到立地综合因子以及上层乔木巨桉双重影响而发生变化。草本层的稳定性低于灌木层。依据χ~2检验和Spearman秩相关分析的结果,灌木层植物可划分为4个生态种组,草本层植物可划分为3个生态种组。
     (6)巨桉人工林生态位较宽的物种灌木层有野牡丹、宜昌悬钩子、盐肤木(Rhuschinensis)等,草本层有里白、芒(Miscanthus sinensis)、艾蒿(Artemisia argyi)等。这些种群具有相对较宽的资源利用谱,具有较强的生态适应性,因而生存机会多,分布范围也较广,成为巨桉人工林林下植被的主要种群。但与此同时,它们是以牺牲对有限资源的有效利用为代价的,这也预示着其它生态位较窄的物种容易丧失。可通过抑制生态位宽度较大物种的生长或改变环境资源状态,调整不同物种的现实生态位的方法实现资源的释放,从而增加生态位宽度较窄物种的生态位宽度,使其能够在巨桉人工林中存留下来。
     (7)丘坡中厚土和薄土两种立地类型巨桉人工林大型土壤动物和中小型干生土壤动物密度高于阶地类型林分,而中小型湿生土壤动物密度则是阶地类型大于丘坡类型。三种立地类型林分土壤动物同功能种团均以腐食性占绝对优势,植食性比例非常低,表明栽植巨桉以后立地仍处于一种良好的结构状态。以密度-类群指数衡量的土壤动物群落多样性特征与各立地类型林分实际情况相符,表现为丘坡中厚土型林分>丘坡薄土型林分>阶地型林分。
     (8)应用PCR-DGGE技术研究不同立地类型巨桉人工林土壤细菌群落的种群结构,结果表明不同立地类型的土壤细菌多样性存在差异,以阶地类型林分的土壤细菌多样性最高,其次为丘坡中厚土林分的,最少为丘坡薄土林分。这与不同立地类型土壤动物的多样性特征不一致。调查林分没有出现微生物结构趋同的情况,并非只有特定种类的微生物才能适生于巨桉人工林土壤中。
     综上所述,与土层厚度、土地利用历史等密切相关的立地条件调控着巨桉人工林生态系统地上/地下生物多样性特征。这意味着,为保育巨桉人工林发展区域的生物多样性,在发展短轮伐期巨桉工业原料林时,必需在巨桉人工林区域内保留一定面积和镶嵌结构合理的乡土植被,使短轮伐期巨桉工业原料林与乡土植被之间形成景观结构合理的镶嵌体,增加物种进入巨桉人工林生态系统的机会,防止巨桉工业原料林阻碍乡土植被之间的基因流通道。但有关乡土植被与巨桉工业原料林之间的镶嵌发展模式(如乡土植被保留的面积大小、乡土植被之间的廊道、巨桉工业原料林的面积与规模等)以及工业原料林经营管理方式与立地质量的耦合作用对乡土植被生物多样性的影响等研究尚未见报道,亟待深入研究。
Plantation often plays important roles in providing wood for human being, slowing the increased tendency of CO_2 concentration, increasing forest coverage and alleviating the relied degree to natural forest. However, many problems as biodiversity decline, land degradation, production reduction and groundwater table drop were also co-occurred in plantation. Including others, biodiversity has been documented as the core of the problems. How to exert the ecological function, meanwhile satisfy the wood need and increase economy, and consequently to sustainable development is always the focus in plantation ecology. Despite of many previous studies have taken biodiversity in eucalypt plantation into consideration, there were inconsistent conclusions in whether the biodiversity reduction caused by unreasonable plantation management. The reduced biodiversity might be related with the site condition, but little information has been available on. Therefore, to understand the effects of site type on biodiversity in eucalypt plantations, the characters of above/below ground biodiversity were studied in different Eucalyptus grandis plantations with different site types by field investigation and laboratory analysis. The results could provide important data for site selection and biodiversity conservation in sustainable management of eucalypt plantation. The results as follows:
     (1) Rich plant species were observed under the eucalypt plantation. There are 71 families, 158 genus and 193 species of vascular plant in the investigated plantations, dicotyledon plants dominated the plantations, 45 families, 81 genus and 90 species for terrace site, 61 families, 111 genus and 132 species for hilly site with middle-thick soil, 52 families, 99 genus and 118 species for hilly site with thin soil. Land use character influenced the species composition of plant understorey. The standing plant species reflected the origin of forest, as Camellia sinensis, Citrus reticulata, Cunninghamia lanceolata, et al. Terrace site was dominated by herbs, originated from farmland; hilly site was dominated from shrub and herb with ratio of 1:1, originated from barren, forest and tea garden. As the result of it, the closely forest similarity was observed between two hilly site, the weak one between terrace site and hilly site with middle-thick soil. The analysis of plant flora indicated that the distribution characters of genus and species were similar among the different forest lands. The results hinted that geographic analysis of genus could better reveal the nature of plant flora. The geographic distribution of plant genus under eucalypt plantations dominated by tropic and warm zone characters. Rich disconnected distribution types of genus were observed.
     (2) Understorey vegetation in eucalypt plantations could be divided into 14 community types, which mainly reflected the main types in the investigated region. According to classified results, community structure of eucalypt plantations included three types: "eucalypt + shrub + herb" accounted for 74.1% of total sampling sites, "eucalypt + herb" accounted for 22.2% of total sampling sites, "eucalypt + shrub" accounted for 3.7% of total sampling sites. "Eucalypt + herb" dominated the terrace site, and "eucalypt + shrub + herb" dominated two hilly site.
     (3) Low similarity of species composition was observed among different sampling plots in the same site type, indicating the diversity and complexity of forest origination. The plant species in the eucalypt plantation was mainly originated from the primary species and propagules in the site, and other spread propagules by wind, animal and human being from abutted ecosystems. The forest land distributed with block and enchased with farmland due to the special character of hilly. Biodiversity was limited by the land use characters of primary land. Predominated species contributed little in plantation species richness. Asymmetric species distribution implied the tendency of vegetation differentiation and succession. Alternanthera philoxeroides and Conyza bonariensis showed the frequently visibility in terrace site. Hicriopteris glauca, Mallotus barbatus and Rubus ichangensis were found in the hilly site with middle-thick soil, while Melastoma normale was found in the hilly site with thin soil. The results suggested that the majority of standing species was reliable to loss, and the composition of plant species would change by the standing planting modification in eucalypt plantations.
     (4) Species evenness was varied insignificantly among eucalypt plantations with different site types. Species richness was not varied between the eucalypt plantations with terrace site and hilly site with thin soil, but species richness in hilly site with middle-thick soil was significantly higher than that in terrace site and hilly site with thin soil. Biodiversity index in the hilly site with middle-thick soil was significantly higher than that in terrace site, whereas the biodiversity index was significantly different between the hilly sites with middle-thick and thin soil, and between the hilly site with thin soil and terrace site. The richness and biodiversity index of shrub were lower than that of herb in terrace site, but which in hilly site with both middle-thick and thin soil showed little differences between shrub and herb. Evenness of both shrub and herb was high in all of the three plantations, but little varieties among layers. The varieties of richness, evenness and biodiversity index of herb layer were not statistical varied among the plantations with different site types. Species evenness of shrub was not different among the plantations with different site types, but species richness was varied, and showed the order: hilly site with middle-thick soil > hilly site with thin soil > terrace site. In addition, although biodiversity index of shrub layer was not varied between the hilly sites with middle-thick soil and thin soil, their values were relative higher than that in terrace site.
     (5) Weak relationships even negative associations were observed among the plant species under eucalypt plantation, suggesting the randomicity of species. This implied that low vegetation stability of standing plantation could induce the changes of species composition. The interspecific relationships among species might be influenced by both canopy eucalypt and the land characteristics. Compared to shrub layer, herb layer hadlower stability. According to the result of x~2 test and Spearman rank correlations, shrubplants could be divided into 4 ecological groups and herb plants could be divided into 3 ecological groups.
     (6) Rhus chinensis, Hicriopteris glauca and Rubus ichangensis of shrub, and Melastoma normale Miscanthus sinensis and Artemisia argyi of herb had wider niche under eucalypt plantation than others. These populations had more survive opportunities, wider distribution scale with better ecological adaptation. Meanwhile, the species with narrower niche were liable to disappear since the species with wider niche could better occupy and use the limited resources. Inhibited the growth of species with wider niche or changed the status of environment resources could manual modified the present niche, wide the niche of the species with narrower niche, resulting more species existed in eucalypt plantation.
     (7) The macro fauna and mesofauna densities of dry types were higher in the eucalypt plantations with hilly site than that in plantation with terrace site, but mesofauna densities of wet types were lower in hilly plantation. Saprophagous animals dominated the soil animal group in all of the three plantations with different sites, while the ratio of phytophagous animals was relative lower, suggesting land structure still kept the good status after planting eucalypt. The index of density-population could indicate the diversity character of soil animal community in the plantations with different site types, showed the order as: hilly site with middle-thick soil > hilly site with thin soil > terrace site.
     (8) The significant varieties of bacterial communities were found among the plantations with different site types by PCR-DGGE, showed the order as: terrace site > hilly site with thin soil > hilly land with middle-thick soil. This was inconsistent with the soil animal biodiversity in the plantations with different land types. The investigated plantations had different microbial structure, which was contrary to the opinion that only special microbial communities could adaptive to the soil in the eucalypt plantation.
     In conclusion, the related land condition as soil depth and land use controlled the characters of above/below ground biodiversity in eucalypt plantation. The results suggested that preserving native vegetation with a number of areas and mosaic structure could play essential roles in increasing opportunities that species input, preventing the baffle of gene flow corridors among native vegetations in eucalypt plantation regions. The mosaic structure formed by native vegetation and eucalypt plantation would conserve the biodiversity in the regions of eucalypt plantations. However, little attention has been paid to the effects of mosaic development modifications (such as, the size of preserving patch, corridors between native vegetations, the size and scale of eucalypt plantation), plantation management, land quality and their synthesis on the biodiversity of native vegetation. Further study is urgently.
引文
白嘉雨.1992.桉树速生丰产培育技术.北京:中国科学技术出版社
    陈炳浩.1993a.世界生物多样性面临危机及其保护的重要性.世界林业研究,(4):1-5
    陈炳浩.1993b.我国森林野生动植物多样性的特点和保护概况.生态学杂志,12(4):39-43
    陈存及,陈新芳,刘金福,等.2004.人工-天然杉阔混交林种群生态位及竞争研究.林业科学,40(1):78-83
    陈俊蓉,洪伟,吴承祯,等.2008.不同桉树土壤微生物数量的比较.亚热带农业研究,4(2):146-149
    陈礼清,张健.2003a.巨桉人工林物种多样性的研究(I):物种多样性特征.四川农业大学学报,21(4):308-312
    陈礼清.2003b.巨桉人工林物种多样性初步研究.四川雅安:四川农业大学硕士学位论文
    陈灵芝.1994.中国的生物多样性现状及其保护对策.北京:科学出版社
    陈灵芝,钱迎倩.1997.生物多样性科学前沿.生态学报,17(6):565-572
    陈灵芝,马克平.2001.生物多样性科学:原理与实践.上海:上海科学技术出版社
    陈秋波.2001.桉树人工林生物多样性研究进展.热带作物学报,22(4):82-90
    陈小红,李贤伟,胡庭兴,等.2000.四川省巨桉生长状况调查与发展前景分析.四川林业科技,2(4):23-26
    陈旭.2008.长白山哈泥泥炭地七种苔藓植物种间联结和生态位研究.吉林长春:东北师范大学硕士学位论文
    陈艳瑞,尹林克.2008.人工防风固沙林演替中群落组成和优势种群生态位变化特征.植物生态学报,32(5):1126-1133
    杜道林,刘玉成,李睿.1995.缙云山亚热带栲树林优势种群间联结性研究.植物生态学报,19(2):149-157
    杜国桢,张大勇.1989.草本植物群落中种间联结测定技术的研究.生态学杂志,8(4):59-61
    范玮熠,王孝安,汪超,等.2006.黄土高原马栏林区主要植物种的生态位研究.西北植物学报,26(1):157-164
    方精云,沈泽昊,唐志尧.2004.中国山地植物物种多样性调查计划及若干技术规范.生物多样性,12(1):5-9
    冯健,张健.2005.巨桉人工林地土壤微生物类群的生态分布规律.应用生态学报,16(8):1422-1426
    冯茂松,张健.2003.巨桉纸浆原料林施肥效应研究.四川农业大学学报,21(3):221-225
    冯茂松,张健,钟宇.2006.巨桉短周期工业原料林养分平衡的矢量诊断.林业科学,42(2):56-62
    傅必谦,陈卫,高武,等.1997.百花山山杨桦木林土壤动物群落及其季节动态.动物学杂志,32(2):10-15
    傅荣恕,尹文英.1999.伏牛山地区土壤动物群落的初步研究.动物学研究,20(5):396-398
    傅声雷.2007.士壤生物多样性的研究概况与发展趋势.生物多样性,15(2):109-115
    高昆,张峰.2008.历山山核桃群落物种多样性特征.生态环境,17(6):2336-2340
    高明,周保同.2004.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究.应用生态学报,15(7):1177-1181
    郭泉水,包奋强,王祥福,等.2008.三尖杉所属群藩优势乔木树种种间关系.林业科学研究,21(5):662-668
    郭逍宇,张金屯,高洪文.2003.白羊草群落优势种种间联结性的分析.草业学报,12(2):14-19
    郭逍字,张金电,官辉力.2007.字太堡矿区复垦地植被种间关系及土壤因子分析,生物多样性, 15(1):46-52
    郭志华,卓正大,陈洁,等.1997.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究.植物生态学报,21(5):424-432
    何惠琴,李绍才,孙海龙,等.2008.锦屏水电站植被数量分类与排序.生态学报,28(8):3706-3712
    贺金生,方精云,马克平,等.2003.生物多样性与生态系统生产力:为什么野外观测和受控实验结果不一致?.植物生态学报,27(6):835-843
    胡锋,李辉信,谢涟琪,等.1999.土壤食细菌线虫与细菌的相互作用及其对N、P矿化生物固定的影响及机理.生态学报,19(6):914-920
    胡理乐,毛志宏,朱教君,等.2005a.辽东山区天然次生林的数量分类.生态学报,25(11):2848-2854
    胡理乐,闫伯前,刘琪臻,等.2005b.南方丘陵人工林林下植物种间关系分析.应用生态学报,16(11):2019-2024
    胡天宇,李晓清.1999a.巨桉引种栽培及适生区域的研究.四川林业科技,20(4):8-13
    胡天宇,李臣坤.1999b.巨桉种源引种选择研究.四川农业大学学报,17(1):44-49
    胡天宇,曾平安.2000.四川巨桉优良种质资源选择试验研究.桉树科技,(1):48-55
    胡相明,程积民,万惠娥,等.2006.黄土丘陵区不同立地条件下植物种群生态位研究.草业学报,15(1):29-35
    黄宝灵,吕雪群.2000,不同造林密度对尾叶桉生长、产量及材性影响的研究.林业科学,36(1):81-90
    黄宝强,罗毅波,于飞海.2007.四川黄龙沟森林植被中兰科植物群落优势种种间联结和相关分析.植物生态学报,31(5):865-872
    黄从德,胡庭兴,赖家明,等.2002.四川巨桉短周期工业原料人工林地位指数表的编制.四川农业大学学报,20(4):347-350
    黄从德,胡庭兴,赖家明.2003.四川巨桉短周期工业原料人工林地位级表的编制.四川农业大学学报,21(1):29-31
    黄建辉,白永飞,韩兴国.2001.物种多样性与生态系统功能:影响机制及有关假说.生物多样性,9(1):1-7
    黄玉梅,张健,杨万勤.2006.巨桉人工林土壤动物群落结构特征.生态学报,26(8):2502-2509
    黄卓烈,林韶湘,谭绍满,等.1997.尾叶桉等植物茎提取液对绿豆等植物插条发根和种子萌发的影响.华南农业大学学报,18(1):97-102
    江殿蓓,暨淑仪,陈飞鹏.2001.植物群落物种多样性研究综述.生态学杂志,20(4):55-60
    蒋有绪.1982.川西亚高山森林植被的区系、种间关联和群落排序的生态分析.植物生态学与地植物学丛刊,6(4):281-301
    焦菊英,张振国,贾燕锋,等.2008.陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类.生态学报,28(7):2981-2997
    金则新.2000.浙江天台山七子花群落物种多样性.武汉植物学研究,18(1):26-32
    康冰,刘世荣,蔡道雄.2005a.南亚热带人工杉木林灌木层物种组成及主要木本种间联结性.生态学报,25(9):2173-2179
    康冰,刘世荣,史作民,等.2005b.南亚热带人工马尾松林下植物组成特征及主要木本种群生态位研究.应用生态学报,16(9):1786-1790
    赖挺,张健,冯茂松,等.2005.四川巨桉主要引种区人工林立地类型划分.四川农业大学学报,23(3):318-322
    李登武,张文辉,任争争.2005.黄土沟壑区狼牙刺群落优势种群生态位研究.应用生态学报,16(12):2231-2235
    李鸿兴,隋敬之,周士秀,等.1987.昆虫分类检索.北京:农业出版社
    李慧蓉.2004.生物多样性和生态系统功能研究综述.生态学杂志,23(3):109-114
    李军玲,张金屯,郭逍宇.2003.关帝山亚高山灌丛草甸群落优势种群的生态位研究.西北植物学报,23(12):2081-2088
    李莲芳,刘永刚,孟梦,等.2007.热带山桂花、西南桦人工幼林植物区系成分分析.广西植物,27(3):414-419
    李仁伟,张宏达.2002.四川种子植物区系组成的初步分析.武汉植物学研究,20(5):381-386
    李晓清,胡天宇.2002.桉短周期工业用材林培育技术.四川林业科技,23(2):19-24
    李延茂,胡江春,汪思龙,等.2004.森林生态系统中土壤微生物的作用与应用.应用生态学报,15(10):1943-1946
    李延茂,胡江春,张晶,等.2005.杉木连栽土壤微生物多样性的比较研究.应用生态学报,16(7):1275-1278
    李意德,许涵,陈德祥,等.2007.从植物种群间联结性探讨生态种组与功能群划分:以尖峰岭热带低地雨林乔木层数据为例.林业科学,43(4):9-16
    李育中.1991.三种类型草地植物种间关联的测定与比较.生态学杂志,10(6):6-10
    李振高,骆永明,腾应.2008.土壤与环境微生物研究法.北京:科学出版社
    李中明.1994.论生物多样性发展史的现状及意义.生物多样性,2(3):169-172
    廖崇惠.1990.热带人工林生态系统的土壤动物.热带亚热带森林生态系统研究,(7):141-147
    廖观荣,林书蓉,李淑仪,等.1995.雷州半岛桉树人工林地的生物改良研究//曾天勋.雷州短轮伐期桉树生态系统研究.北京:中国林业出版社
    廖庆生.2005.天然林与桉树人工林凋落物层土壤动物多样性的比较.广州:华南农业大学硕士学位论文
    林英华,刘海良,张夫道,等.2007.江西大岗山杉木凋落层土壤动物群落动态及多样性.林业科学研究,20(5):609-614
    刘宾,李辉信,朱玲等.2007.接种蚯蚓对潮土氮素矿化特征的影响.土壤学报,44(1):98-105
    刘峰,贺金生.1999.生物多样性的生态系统功能.植物学通报,16(6):671-676
    刘萍萍,程积民.2000.植物种间联结关系的研究.水土保持研究,7(2):179-182
    刘建国,马世俊.1990.扩展的生态位理论//马世俊.当代生态学透视.北京:科学出版社
    刘秀珍.2005.晋北低中山撂荒地植物群落演替研究.山西太原:山西大学硕士学位论文
    刘洋,张健,冯茂松.2006.巨桉人工林凋落物数量、养分归还量及分解动态.林业科学,42(7):1-10
    柳江,洪伟.2002.退化红壤区植被恢复过程中灌木层主要种群的生态位特征.植物资源与环境学报,11(2):11-16
    马丹炜,王文国,张翔,等.2006.成都市园林种子植物科的分布区类型初探.广西植物,26(4):441-443
    马克平.1993.试论生物多样性的概念.生物多样性,1(1):20-22
    马克平,钱迎倩,王晨.1994a.生物多样性研究的现状与发展趋势//中国科学院生物多样性委员会(主编).生物多样性研究的原理与方法.北京:中国科学技术出版社
    马克平,刘玉明.1994b.生物群落多样性的测度方法α多样性的测度方法(上).生物多样性,2(3):162-168
    马克平,刘玉明.1994c.生物群落多样性的测度方法α多样性的测度方法(下).生物多样性,2(4):231-239
    马克平.1994d.生物群落多样性测度方法//钱迎倩,马克平.生物多样性的原理与方法.北京:中国科学技术出版社
    马克平,黄建辉,于顺利,等.1995.北京东灵山地区植物群落多样性的研究:Ⅱ丰富度、均匀 度和物种多样性指数.生态学报,15(3):268-277
    马克平,钱迎春.1998.生物多样性保护及其研究进展.应用与环境生物学报,4(1):95-99
    马晓.2007.桉树人工林林下植物多样性研究.云南昆明:西南林学院硕士学位论文
    牛莉芹,上官铁梁,程占红.2005.中条山中段植物群落优势种群的种间关系研究.西北植物学报,25(12):2465-2471
    潘志刚.1994.中国主要外来树种引种栽培.北京:中国科学技术出版社
    裴红宾.2006.人工杜仲林群落学特征与土壤研究.山西太原:山西大学硕士学位论文
    彭少麟.1996.南亚热带森林群落动态学.北京:科学出版社
    彭少麟,周厚诚,郭少聪,等.1999.鼎湖山地带性植被种间联结变化研究.植物学报,41(11):1239-1244
    祁述雄.2002.中国桉树(第二版).北京:中国林业出版社
    乔利鹏.2007.山西关帝山撂荒地植物群落生态关系数量分析.太原:山西大学硕士学位论文
    秦风翥.1990.世界工业人工林发展趋势,世界林业研究,(1):11-15
    覃林,余世孝,王永繁.2004.广东黑石顶不同森林类型的优势种分析.中山大学学报(自然科学版),43(5):83-85
    丘娴,余世孝,方碧真等.2007.尾叶桉对四种豆科植物的化感作用.中山大学学报(自然科学版),(3):88-93
    全国绿化委员会办公室.2008.2007年中国国土绿化状况公报.http://www.forestry.gov.cn/distribution/2008/03/12/lygk-2008-03-12-2064
    石大兴,石轶松,王米力,等.2002.巨桉下胚轴诱导不定芽与植株再生的研究.四川农业大学学报,20(3):232-234
    石大兴,王米力,石轶松,等.2003.巨桉芽器官离体培养与快繁体系建立的研究.林业科学,39(1):69-74
    宋爱云,刘世荣,史作民,等.2006.卧龙自然保护区亚高山草甸的数量分类与排序.应用生态学报,17(7):1174-1178
    宋永昌.2001.植被生态学.上海:华东师范大学出版社
    宋育红,张君诚,刘希华.2006.格氏栲自然保护区常绿阔叶林群落的数量分类.生态科学,25(5):390-394
    苏里,许科锦.2006.广西玉林市4种人工林林下植被物种多样性研究.广西科学,13(4):316-320
    孙儒泳,李庆芬,牛翠娟,等.2002.基础生态学.北京:高等教育出版社
    陶德生.1990.巨桉引种与种源实验及其在浙江省适生范围的研究.浙江林业科技,10(1):13-22
    王伯荪,彭少麟.1985.南亚热带常绿阔叶林种间联结测定技术研究:Ⅰ种间联结测式的探讨与修正.植物生态学与地植物学丛刊,9(4):274-285
    王伯荪,李鸣光,彭少麟.1995.植物种群学.广州:广东高等教育出版社
    王伯荪,彭少麟.1997.植被生态学(群落与生态系统).北京:中国环境科学出版社
    王刚,赵松岭,张鹏云,等.1984.关于生态位定义的探讨及生态位重叠计算公式改进的研究.生态学报,4(2):119-127.
    王荷生.1992.植物区系地理.北京:科学出版社
    王豁然(译),Hills W E(著).1990.桉树培育和利用.北京:中国林业出版社
    王祥福,郭泉水,刘正宇,等.2007.崖柏群落种子植物区系组成分析.林业科学研究,20(6):755-762
    王祥福,郭泉水,巴哈尔古丽,等.2008.崖柏群落优势乔木种群生态位.林业科学,44(4):6-13
    王祥荣,宋永昌.1993.狗脊和里白植株浸出液化感作用的研究.植物生态学与地植物学学报,17(2):143-154
    王燕高,胡庭兴.2006.四川引种巨桉人工林木材物理力学性质的研究.四川农业大学学报,24(4):405-408
    王正宁,贺康宁,张卫强,等.2005.半干旱地区植被恢复过程中林下植被生态位特征的研究.水土保持学报,19(5):162-165
    王正文,王德利.2001.大兴安岭森林草原过渡带白桦及主要草本植物生态位关系的研究.应用生态学报,12(5):677-681
    汪金刚,张健,李贤伟.2007a.巨桉人工林土壤化感物质的空间分布特征的研究.四川农业大学学报,25(2):121-126
    汪金刚.2007b.巨桉人工林对蚯蚓生态毒理的研究.雅安:四川农业大学硕士学位论文
    温远光,和太平,谭伟福.2004.广西热带和亚热带山地的植物多样性和群落特征.北京:气象出版社
    温远光,刘世荣,陈放,等.2005a.桉树工业人工林植物物种多样性及动态研究.北京林业大学学报,27(4):17-23
    温远光,刘世荣,陈放.2005b.连栽对桉树人工林下物种多样性的影响.应用生态学报,16(9):1667-1671
    温远光.2006.连栽按树人工林植物多样性与生态系统功能关系的长期实验研究.四川成都:四川大学博士学位论文
    吴东辉,张柏,陈鹏.2005.吉林省中西部平原区大型土壤动物群落组成与生态分布.动物学研究,26(4):365-372
    武海涛,吕宪国,杨青,等.2005.土壤动物主要生态特征与生态功能研究进展,土壤学报,43(2):314-323
    武吉华,张绅,江源,等.2004.植物地理学.北京:高等教育出版社
    吴鹏飞,朱波.2008.桤柏混交林与纯柏林土壤动物群落特征的比较.应用与环境生物学报,14(4):488-493
    吴征镒.1991.中国种子植物属的分布区类型.云南植物研究,13(增刊Ⅳ):1-139
    吴征镒,周浙昆,李德铢,等.2003a.世界种子植物科的分布区类型系统.云南植物研究,25(3):245-257
    吴征镒.2003b.《世界种子植物科的分布区类型系统》的修订.云南植物研究,25(5):535-538
    吴征镒,路安民,汤彦承,等.2003c.中国被子植物科属综论.北京:科学出版社
    吴钿,刘新田,杨新华.2003.雷州半岛桉树人工林林下植物多样性研究.林业科技,28(4):10-12
    吴纪华,宋慈玉,陈家宽.2007.食微线虫对植物生长及土壤养分循环的影响.生物多样性,15(2):124-133
    武吉华,张绅,江源,等.2004.植物地理学.北京:高等教育出版社
    吴勇刚.2003.巨桉纤维原料林营养诊断指标体系研究.四川雅安:四川农业大学硕士学位论文
    徐大平,张宁南.2006.桉树人工林生态效应研究进展.广西林业科学,35(4):179-189
    徐建民,徐大平.1997.桉树速生丰产培育技术简述.桉树(内部交流参考资料)No 10.广东省林业厅桉树研究开发办,中国林业科学研究院热带林业研究所
    薛立,邝立刚,陈红跃,等.2003.不同林分土壤养分、微生物与酶活性的研究.土壤学报,40(2):281-285
    夏铭.生物多样性研究进展.1999.东北农业大学学报,30(1):94-100
    肖玖金.张健,杨万勤,等.2008.巨桉人工林土壤动物群落对采伐干扰的初期响应.生态学报,28(9):4531-4539
    熊咏梅,朱纯,何仲坚.2008.我国植物群落数量分类的研究进展.广东园林,30(4):49-51
    阎海平,谭笑,孙向阳,等.2001.北京西山人工林群落物种多样性的研究.北京林业大学学报,23(2):16-19
    颜绍馗,汪思龙,胡亚林,等.2004.亚热带天然次生常绿阔叶林与杉木人工林土壤动物群落特征比较.应用生态学报,15(10):1792-1796
    阳含熙,卢泽愚.1981.植物生态学的数量分类方法.北京:科学出版社
    杨君珑,王辉,孙栋元,等.2006.子午岭油松林主要种群更新生态位研究.林业资源管理,12:51-56
    杨万勤,张健,胡庭兴,等.2006.森林土壤生态学.成都:四川科技出版社
    杨万勤,张健.土壤生态研究.2008.四川成都:四川科学技术出版社
    杨小波,李东海,李跃烈.2006.桉树人工林土壤环境对植物种子发芽和生长的影响.林业科学,42(12):148-153
    杨效东,沙丽清.2000.西双版纳热带人工林与次生林土壤动物群落结构时空变化初查.土壤学报,37(1):116-123
    杨鑫,曹靖,董茂星,等.2008.外来树种日本落叶松对森林土壤质量及细菌多样性的影响.应用生态学报,19(10):2109-2116
    杨远彪,吕成群,黄宝灵.2008.连栽桉树人工林土壤微生物和酶活性的分析.东北林业大学学报,36(12):10-12
    姚槐应,黄昌勇.2006.土壤微生物生态学及其实验技术.北京,科学技术出版社
    阴环.2006.汾河两岸两种人工林土壤动物群落多样性研究.山西师范大学学报(自然科学版),20(2):74-77
    尹文英.1992.中国亚热带土壤动物.北京:科学出版社
    尹文英,胡圣豪,沈韫芬,等.1998.中国土壤动物检索图鉴.北京:北京科学出版社
    尹文英.2000.中国土壤动物.北京:科学出版社
    余雪标,钟罗生,杨为东,等.1999.桉树人工林林下植被结构的研究.热带作物学报,20(1):66-72
    余雪标,陈秋波,王尚明,等.2000 a.人工林地力衰退研究与防治对策.//余雪标.桉树人工林长期生产力管理研究.北京:中国林业出版社
    余雪标,徐大平,龙腾,等.2000 b.连栽桉树人工林生长特性和树冠结构.林业科学,36(z1):137-142
    庾晓红,李贤伟,白降丽.2005.我国植被数量分析方法的研究概况和发展趋势.生态学杂志,24(4):448-451
    岳天祥.2001.生物多样性研究及问题.生态学报,21(3):462-467
    臧润国,成克武,李俊清,等.2005.天然林生物多样性保育与恢复.北京:中国科学技术出版社
    张丹,徐建忠,熊东红,等.2000.四川紫色土微生物数量与土壤肥力相关性初步研究.四川农业大学学报,18(2):173-175
    张笃见,由文辉.1998.浙江天童常绿阔叶林地被层的种类组成华东师范大学学报(自然科学版),(3):95-101
    张峰,张金屯.2000 a.我国植被数量分类和排序研究进展.山西大学学报(自然科学版),23(3):278-282
    张峰,上官铁粱.2000 b.山西翅果油树群落种间关系的数量分析.植物生态学报,24(3):351-355
    张峰,张金屯,上官铁梁.2002.历山自然保护区猪尾沟森林群落植物多样性研究.植物生态学报,26(增刊):48-51
    张刚华.2006.不同类型毛竹林结构特征与植物物种多样性研究.北京:中国林业科学研究院博 士学位论文
    张桂莲,张金屯,郭逍宇.2005.安太堡矿区人工植被在恢复过程中的生态关系.应用生态学报,16(1):151-155
    张继义,赵哈林,张铜会,等.2003.科尔沁沙地植物群落恢复演替系列种群生态位动态特征.生态学报,23(12):2741-2746
    章家恩,黄兆祥,唐国玲.2005.广州市几种林型土壤动物群落调查研究.华南农业大学学报,26(3):47-51
    张佳蕊,陈燕,雷霆,等.2007.北京汉石桥湿地植物群落优势种的种间关系研究.湿地科学,5(2):147-152
    张健,杨万勤,胡庭兴,等.2008.短轮伐期巨桉人工林生态系统研究.成都:四川科技出版社
    张建彪.2005.五台山蓝花棘豆草甸a和β多样性研究.山西大学学报(自然科学版),28(4):432-435
    张金屯,柴宝峰,邱阳等.2000.晋西吕梁山严村流域撂荒地植物群落演替中的物种多样性变化.生物多样性,8(4):378-384
    张金屯,焦蓉.2003.关帝山神尾沟森林群落木本植物种间联结性与相关性研究.植物研究,23(4):458-463
    张金屯.2004.数量生态学.北京:科学出版社
    张丽霞,张峰,上官铁梁.2000.芦芽山植物群落的多样性研究.生物多样性,8(4):363-369
    张全国.2002.生物多样性与生态系统功能:进展与争论.生物多样性,10(1):49-60
    张沛沛.2007.大寨虎头山退耕还林后的植被恢复研究.山西太原:山西大学硕士学位论文
    张雪萍,候威岭,陈鹏.2001.东北森林土壤动物同功能种团及其生态分布.应用与环境生物学报,7(4):370-374
    张镱锂,张雪梅.1998.植物区系地理研究中的重要参数-相似性.干旱区研究,15(1):59-63
    张颖.2002.中国森林生物多样性评价.北京:中国林业出版社
    张樟德.2008.桉树人工林的发展与可持续经营.林业科学,44(7):97-102
    张贞华,沈海铭,邵玲珑.1986.西天目山南坡土壤动物及其对环境的影响.杭州大学学报(自然科学版),13(增):54-63
    赵强,何景鑫.2002.巨桉育苗技术.四川林勘设计,(3):44-46
    赵绍文,王凌晖,蒋欢军,等.2000.巨尾桉枝叶水浸提液对3种作物种子萌发的影响.广西科学院学报,16(1):14-17
    赵世魁,刘贤谦.2007.关帝山华北落叶松天然林和人工林土壤动物的群落多样性.林业科学,43(6):105-110
    赵一鹤,杨宇明,杨时宇,等.2007.桉树人工林生物多样性研究进展.云南农业大学学报,22(5):741-746
    赵则海,祖元刚,杨逢建,等.2003.东灵山辽东栎林木本植物种间联结取样技术的研究.植物生态学报,27(3):396-403
    《中国生物多样性国情研究报告》编写组.1998.中国生物多样性国情报告.北京:中国环境科学出版社
    钟宇,张健,冯茂松.2005.培育措施对巨桉纸浆原料林木材化学成分的影响Ⅰ模型构建及因素主效应分析.四川农业大学学报,23(1):52-57
    周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望.2007.生物多样性,15(3):306-311
    周先叶,王伯荪.2000.广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析.植物生态学报,24(3):332-339
    朱锦懋,姜志林,郑群瑞.1997.福建万木林自然保护区森林群落物种多样性.生态学杂志,16(2): 1-6
    朱利君.2006.珙桐群落种间关系的研究.广西植物,26(1):32-37
    朱天辉,张健,胡庭兴,等.2001 a.四川桉树外生菌根真菌的研究.四川农业大学学报,19(2):137-140
    朱天辉,张健,胡庭兴,等.2001 b.四川桉树菌根类型及林分密度对菌根真菌的影响.四川农业大学学报,19(3):222-234
    朱新玉,高宝嘉,毕华铭,等.2007.森林-草原交错带土壤节肢动物群落多样性.应用生态学报,18(11):2567-2572
    邹文涛,尹光天,孙冰等.2006.广东顺德5种类型人工林群落物种的多样性.中南林学院学报,26(6):71-75
    邹西山.2007.尾叶桉人工林林下物种多样性的研究.广东中山:中山大学硕士学位论文
    左家哺,傅德志.1996.中国种子植物区系定量化研究:V.区系相似性.热带亚热带植物学报,4(3):18-25
    Abrams R.1980.Some comments on measuring niche overlap.Ecology,61:44-49
    Admir J G,Luiz A B S,Veturia L O.2004.Species richness and seasonal abundance of ectomycorrhizal fungi in plantations of Eucalyptus dunnii and Pinus taeda in southern Brazil.Mycorrhiza,14(6):375-381
    Ajit V,Ralf O.2007.Advanced techniques in soil microbiology.Berlin:Springer-Verlag
    Alatalo R V.1981.Problems in the measurement of evenness in ecology.Oikos,37:199-204
    Amann R I,Ludwig W,Sehleifer K H.1995.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiology Reviews,59:143-169
    Aplet G H,Vitosek P M.1994.An age altitude matrix analysis of Hawaiian rain forest succession.Journal of Ecology,82(1):137-147
    Bardgett R D,Bowman W D,Kaufmann R,Schmidt S K.2005.A temporal approach to linking aboveground and belowground ecology.Trends Ecol.Evol,20:634-641
    Bargali S S,Singh R P,Joshi M.1993.Changes in soil characteristics in eucalypt plantations replacing natural broad-leaved forests.Journal of Vegetation Science,4:25-25
    Beeby A,Brennan A M.1997.First Ecology.London:Chapman&Hall
    Behera N,Sahani.2003.Soil microbial biomass and activity in response to Eucalyptus plantation and natural regeneration on tropical soil.Forest Ecology and Manage,174(1-3):1 - 11
    Binkley D,Stape J L.2004.Sustainable management of eucalyptus plantations in a changing world.//Borralho N,Pereira J S,Marques C,et al.Eucalyptus in a changing world.Aveim,Portugal:IUFRO,11-15
    Bond W J.1993.Keystone Species.//Schulze E D,Mooney H A.Biodiversity and ecosystemfunction.Berlin:Springer-Verlag
    Bossio D,Fleck J A,Scow K M,et al.2006.Alteration of soil microbial communities and water quality in restored wetlands.Soil Biology & Biochemistry,38:1223 - 233
    Bossuyt H,Six J,Hendrix P F.2005.Protection of soil carbon by microaggregates within earthworm casts.Soil Biology & Biochemistry,37:251 - 258
    Calder Ⅰ.1993.Hydrological impact of Eucalyptus plantation in India.Journal of Hydrology,150(2-4):635-648
    Carneiro M,Fabi(?)o A,Martins M C,et al.2007.Species richness and biomass of understory vegetation in a Eucalyptus globulus Labill.coppice as affected by slash management.European Journal of Forest Research,126(4):475 - 480
    Cavelier J, Santos C. 1999. Effect of abandoned exotic and native species plantations on the natural regeneration of a montane forest in Colombia. Revista de Biologia Tropical, 47: 775 - 784.
    Chander K, Brookes P C. 1993. Residual effects of zinc, copper and nickel in sewage sludge on microbial biomass in a sandy loam. Soil Biochemistry, 25: 1231 - 1239.
    Chapin F S III, Shaver G R. 1985. Individualistic growth responses of tundra plant species to environmental manipulations in the field. Ecology, 66:564-576
    Christian P G, Michael G R. 2002. Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance Approach. Ecosystems, 5(5): 487 - 499.
    Cole L C. 1957. The measurement of partial interspecific association. Ecology, 38(2): 226-233
    Colwell R K, Futuyma D J. 1971. On the measurement of the niche breadth and overlap. Ecology, 52: 567-576
    Davidson J. 1993.Ecological aspect of Eucalyptus plantation In: proc. Regional expert consultation on eucalyptus. RAPA/ FAO, Bangkok, Thailand
    Edgard C. 1999. Sustainable plantations of high- yield Eucalyptus trees for production of fiber: the Aracruz case. New Forests, 17(1-3): 129-143
    
    Elton C S. 1958. The ecology of invasions by animals and plants. London: Methuen and Co Ltd. FabiSo A, Martins M C, Cerveira C, et al. 2002. Influence of soil and organic residue management on biomass and biodiversity of understory vegetation in a Eucalyptus globulus Labill. Plantation. Forest Ecology and Management, 171(1 -2): 87 - 100
    FAO. 2006. Global Forest Resources Assessment 2005. Italy, Rome
    Farrelly V, Rainey F A, Stackebrandt E. 1995. Effect on genome size and gene copy number on PCR amplication of 16S rRNA genes from a mixture of bacterial species. Appl. Environ., 61:2798-2801
    Fisher R A. 1943. The relation between the number of species and number of individuals in a random sample of animal population. Journal of animal Ecology, 12(1):42-58
    Florence R. 1986. Cultural problems of Eucalyptus as exotics. Commonwealth Forestry Review, 65: 141 -63
    Gardner M R, Ashby W R. 1970. Connections of large dynamic systems: critical values for stability. Nature, 228: 784-790
    
    Gilpin M E. 1975. Stability of feasible predator-prey systems. Nature, 254: 137-139
    Grieg-Smith P. 1983. Quantitative plant ecology. 3rd ed. Oxford: Black Well Science Publication Grimm V, Wissel C. 1997. Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109: 323-334
    Grisp P N, Dickinson K J M, Gibbs G W. 1998. Does native invertebrate diversity reflect native plant diversity? A case study from New Zealand and implication for conservation. Biol Conserv, 83(2): 209-220
    
    Heip C. 1974. A new index measuring evenness. Journal of Marine Biological Association, 54: 555-557
    Hendix P E, Crossley D A, Blair J M et al. 1990. Soil biota as components of sustainable agroecosystems. In: Edwards C A. Sustainable Agricultural Systems. Ankeny: Soil and Water Conservation Society.
    
    Hill G T, Mitkowski N A, Aldrich-Wolfe L, et al. 2000. Methods for assessing the composition and diversity of soil microbial communities. Applied soil Ecology, 15: 25-23
    Hill M O. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology, 54: 427-432
    Hill M O, Bunce R G H, Shaw M W. 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. Journal of Ecology, 63:597-613
    Hill M O. 1979. TWINSPAN - A FORTRAN program for arranging multivariate data in an ordered two way table by classification of the individuals and attributes. New York: Cornell University Hofer H, Hanagarth W, Careia M, et al. 2001. Structure and function of fauna communities in Amazonian anthrpogenic and natural ecosystems. European journal of soil biology, 37(4): 229-235
    Hopmans P, Stewart H T L, Flinn D W. 1993. Impact of harvesting on nutrients in eucalypt ecosystem in Southeastern Australia. Forest Ecology and Management, 59(1 - 2): 29 - 51
    Hurlbert S H. 1978. The measurement of niche overlap and some relatives. Ecology, 59(l):67-77
    Hutchinson G E, Homageto S R. 1959. why are there so many kinds of animals. The American Naturalist, 93:145-159
    Huw D M, Craig V M B. 2008. Forest-scale sap flux responses to rainfall in a dryland eucalyptus plantation. Plant and Soil, 305: 131-144
    Ian O, Denys G, Penelope J, et al. 2005. Effects of fertiliser and grazing on the arthropod communities of a native grassland in south-eastern Australia Agriculture, Ecosystems and Environment, 109: 323-334
    Jiro T, John S. 2005. Soil macro-fauna in an Acacia mangium plantation in comparison to that in a primary mixed dipterocarp forest in the lowlands of Sarawak, Malaysia. Pedobiologia, 49:69-80
    John A P. 1992. The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems & Environment, 41(2): 115 - 133
    John WT. 1999. Eucalyptus plantations. New Forests, 17:37-52
    
    Jones T H, Bradford M A. 2001. Assessing the functional implications of soil biodiversity in ecosystems. Ecological Research, 16: 845 - 858
    Joseph H, Jos B, Toby A G ,et al. 2008. The value of forest strips for understorey birds in an Amazonian plantation landscape. Biological Conservation, 141(9): 2262 - 2278
    Kaiser J. 2000. Rift over biodiversity divides ecologists. Science, 289: 1282 - 1283
    Keenan R, Lamb D, Woldring O, et al. 1997. Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. Forest Ecology Management, 99: 117-131
    Kershaw K A. 1960. The detection of pattern and association. Journal Ecology, 48(2): 233-242
    
    Kershaw K A, Looey J H. 1985. Quantitative and dynamic plant ecology. London: Edward Arnod Limited
    Khawas S E. 2005. The Allelopathic Potentialities of Acacia nilotica and Eucalyptus rostrata on Monocot (Zea mays L.) and Dicot (Phaseolus vulgaris L).Plants Biotechnology, 4(1): 23 - 24
    Kimmins J P. 2004. Forest Ecology: a foundation for sustainable forest management and environmental ethics in forestry. NJ: Pearson Prentice Hall
    
    Klopfer P J M. 1960. Nichesize and faunal diversity. AmNat, 94: 29-300
    Krsek M, Wellington E M. 1999. Comparison of different methods for the isolation and purification of total community DNA fron soil. Microbiol Methods, 39: 1-16
    Krylov V V. 1968. Species association in plankton. Oceanology, 8 (2): 243- 251
    Lawton J H, Brown V K. 1993. Redundancy in ecosystem. In: Schulze E D, Mooney H A. Biodiversity and Ecosystem Function. Springer-Verlage, Berlin
    
    Lawton J H. 1994. What do species do in ecosystem? Oikos, 71: 367-374.
    Leibold M A. 1995. The niche concept revisited mechanistic modles and community context. Ecology, 76(5): 1371-1382
    Levins R. 1968. Evolution in changing environments: some theoretical exploration. Princeton: Princeton University Press
    Louise M D, Gwyn S G, John H, et a\. 2000. Management influences no soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales. Soil Biol. Biochem, 32: 253-263
    Macarthur R. 1955. Fluctuations of animal populations and a measure of community stability. Ecology, 36(3): 533-536
    Magurran A E. 1988. Ecological Diversity and Its Measurement. New Jersey: Princeton University Press
    Mahakur D, Behera N. 1999. Decomposition of Eucalyptus leaf litter in field condition. Ecology Environment and Conservation, 5(1): 65 - 68
    
    Margalef R. 1958. Information theory in ecology. General Systematic, 3:36-71
    Margarita S, Fernando G P, Lillian F. 2004. Soil microbial indicators sensitive to land use conversion from pastures to commercial Eucalyptus grandis (Hill ex Maiden) plantations in Uruguay. Applied Soil Ecology, 27(2): 125-133
    Masoud E, Sayyed A K, Ali A M, et al. 2007. Water consumption of a six-year-old river red gum plantation in the Southern Zagros Mountains, Iran. Journal of Mountain Science, 4(2): 136-145
    May F E, Ash J E. 1990. An assessment of the allelopathic potential of Eucalyptus. Australian Journal of Botany, 38(3): 245 - 254
    
    May R M. 1972. Will a large complex system be stable. Nature, 238: 413-414
    Mboukou-Kimbatsaa I M C, Bernhard-Reversata F, Loumeto J J. 1998. Change in soil macrofauna and vegetation when fast-growing trees are planted on savanna soils. Forest Ecology and Management, 110(1-3): 1-12
    Mc-Naughton S J. 1994. Biodiversity and function of grazing ecosystems .In: Schulze E D, Mooney H A. Biodiversity and Ecosystem Function. Berlin: Springer-Verlag, 361-383
    McNeely J A. 1992. Conserving the word's Biological Diversity. Washington D C and Gland Switzerland
    Menhinick E F. 1964. A comparison of some species individuals diversity indices applied to samples of field insects. Ecology, 45: 859-861
    Moline A. 1991. Release of Allelo-chemical agents from litter, through fall and topsoil in plantation of E.globules. Journal of Chemical Ecology, 17(1): 147 - 159
    
    Mooney H A. 1996. Functional roles of biodiversity a global perspective. SCOPE 55
    
    Muyzer G, Ellen C W, Andre G U. 1993. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain amplified reaction genes encoding for 16S rRNA. Applied and Environmental Microbiology, 59: 695-700
    Muyzer G. 1999. DGGE/TGGE a method for idendtifying genes from natural ecosystem. Current Microbiology, 2: 317-322
    Neher D A. 1998. Nematode communities: Indicators of soil health [A]. In: Proceeding of the VII International Congress of Ecology. Florence, Italy
    Nsabimana D, Haynes R J, Wallis F M. 2004. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied Soil Ecology, 26: 81 - 92.
    Odasz A M. 1996. Bryophyte vegetation and habitat gradient in the Tikhaia Bay Region Hooker Island. Franz Josef Land Aretic Russia.The Bryologist, 99: 407-415
    Odum E P. 1953. Fundamentals of Ecology. Philadelphia: Saunders College Publishing
    
    Paine RT. 1966. Food web complexity and species diversity. American Naturalist, 100:65-75
    
    Paine R T. 1969. A note on trophic complexity and community stability. American Naturalist, 103: 91-93
    Peet P K. 1974. The measurement of species diversity . In: Cody M L, Diamond J M, Ecology and Evolution of Communities, 81-120
    Peter D E, David L, Mila B. 2006. Tree species diversity and ecosystem function: Can tropical multi-species plantations generate greater productivity? Forest Ecology and Management, 233(2-3): 205-210
    Philip M F. 1999. Plantation forestry in Brazil: the potential impacts of climatic change. Biomass and Bioenergy, 16(2):91 - 102
    
    Pielou E C. 1972.2k contingency tables in ecology. Journal of Theoretical Biology, 34(2): 337-352
    Pielou E C. 1975a.Ecological Diversity New Youk: A Wiley-Interscience Publication, John Wiley and sons
    
    Pielou E C. 1975b. Mathematical Ecology. New York: John Wiley & Sons Inc.
    
    Poore M E, Fries C. 1985. The ecological effects of Eucalyptus. FAO paper No.59 FAO, Rome
    Roger A S. 1999. The potential of high-yield plantation forestry for meeting timber needs. New Forests, 17(1-3): 339-360.
    Romel A, Rafiqul Hoque A T M. 2008. Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops. Journal of Forestry Research, 19(1): 19-24
    Roseliet P, Irene G 1999. Edaphic macroarthropod communities in fast-growing plantations of Eucalyptus grandis Hill ex Maid (Myrtaceae) and Acacia mangium Wild (Leguminosae) in Brazil.European Journal of Soil Biology, 35(2): 77 - 89.
    Sankan K V. 1993. Decomposition of leaf litter of albizia (Paraserianthes falcataria), Eucalyptus(Eucalyptus tereticornis) and teak(Tetona grandis) in Kerala, India. Forest Ecology and Management, 56: 225-242
    Schluter D. 1984. A variance test for detecting species association with some example application. Ecology, 65(3): 998-1005
    Schon N L, Mackay A D, Minor M A, et al. 2008. Soil fauna in grazed New Zealand hill country pastures at two management intensities. Applied soil ecology, 40:218-228
    Seghers D, Wittebolle L, Top E M, et al. 2004. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol., 70: 1475-148
    Senbeta F, Teketay D, Berten N. 2002. Native woody species regeneration in exotic tree plantations at Munessa-Shashemene Forest, southern Ethiopia. New Forests, 24: 131-145
    Sheldon A L. 1969. Equitability indices: dependence on the species count. Ecology, 50:466-467
    Shiva S, Bandyopadhyay J. 1983. Eucalyptus- a disastrous tree for India. Ecologist, 13(5): 184-187
    Silvertown J, Dodd M E, McConway K, et al. 1994. Rainfall, biomass variation, and community composition in the Park Grass Experiment. Ecology, 75: 2430-2437
    Simon B B, Robert N C, Richard F F, et al. 2004. Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. Forest Ecology and Management, 202: 195-208
    Singh D, Kohli R K. 1992. Reasons of poor under floor vegetation of Eucalyptus. // Tauro P. Proceedings first National Symposium on Allelopathy in Agroecosystems. India: Indian Society of Allelopathy
    Souto X C, Bola(?)o J C, Gonzalez L, et al. 2001. Allelopathic Effects of Tree Species on Some Soil Microbial Populations and Herbaceous Plants. Biologia Plantarum, 44(2): 269 - 275
    Souto X C, Gonzales L, Reigosa M J. 1994. Comparative analysis of allelopathic effects produced by four forestry species during decomposition process in their soils in Galicia (NW Spain). Journal of Chemical Ecology, 20(11): 3005-3015
    Stark C, Condron L M, Stewart A, et al. 2007. Effects of past and current crop management on soil microbial biomass and activity. Biology Fertility of Soils, 43(5): 531-540
    Tapani M T. 2001. Species diversity in Eucalyptus camaldulensis woodlots and miombo woodland in Northeastern Zimbabwe. New Forests, 22(3): 239 - 357
    Teresinha V Z, José C Z, Moacyr M M M, et al. 1998. Effect of plantation age on diversity and population fluctuation of Lepidoptera collected in Eucalyptus plantations in Brazil. Forest Ecology and Management, 108(1-2): 91-98.
    Tilman D, Reich P B, Knops J. 2007. Diversity and stability in plant communities (reply). Nature, 446: E7-E8
    Walck J L, Baskin J M, Baskin C C, et al. 2005. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Science Research, 15: 189-196
    
    Walker B. 1992. Biodiversity and ecological redundancy. Conservation Biology, 18-23
    Walker B. 1995. Conserving biological diversity through ecosystem resilience. Conservation Biology, 9: 747-752
    Wang Q K, Wang S L, Liu Y X. 2008. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter. Applied Soil Ecology, 40(3): 484 - 490
    Wardle D A, Bardget R D, Klironomos J N, et al. 2004. Ecological linkages between aboveground and belowground biota. Science, 304: 1629- 1633
    
    Whittaker R H. 1972. Evolution and measurement of species diversity. Taxen, 21: 213-251
    Willis R J, Ashton D H. 1978. Suppression of coastal heath vegetation by Eucalyptus baxteri. Australian Journal of Botany, 26: 203-219
    Willis R J. 1999. Australian studies on allelopathy in Eucalyptus: a review. In: Dakshini KMM, Foy C L. Principles and practices in plant ecology: Allelochemical interactions. CRC Press Willis R J. 1991. Research on allelopathy on Eucalyptus in India and Pakistan. Commonwealth Forestry Review, 70: 279 - 289
    Woodward F I. 1994. How many species are required for a functional ecosystem? In: Schulze E D, Mooney H A. Biodiversity and Ecosystem Function. Berlin: Springer-Verlag, 271-291
    Yates F E. 1972. Integration of the whole organism- a foundation for a theoretical biology. Challenging biological problem: direction towards their solutions. New York: Oxford University Press Yeates C, Gillings M R, Davidson A D, et al. 1997. PCR ampliation of crude microbial DNA extracted from soil. Lett Appl Microbiol, 25(4): 303-307
    Zanuncio J C, Guedes RNC, Zanuncio T V, et al. 2001. Species richness and abundance of defoliating Lepidoptera associated with Eucalyptus grandis in Brazil and their response to plant age. Austral Ecology, 26(6): 582 - 589
    Zhou G Y, Wei X H, Yan J H. 2002. Impacts of eucalyptus (Eucalyptus exserta) plantation on sediment yield in Guangdong Province, Southern China- a kinetic energy approach. Catena, 49(3): 231- 251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700