甲基溴替代技术条件下温室土壤生物群落特征及地下食物网研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究基于中国-意大利环境合作项目青州试点2002~2003年开展的实验工作,重点对甲基溴替代技术条件下温室土壤生态系统的生物群落及食物网特征等加以分析和比较。文章围绕(1)土壤消毒措施对温室土壤理化性质、微生物、4种土栖真菌、螨类及弹尾目的扰动作用,(2)作为甲基溴替代技术之一的番茄抗性砧木SIS-1(Lycopersicon lycopersicum×Lhirsutum)在抗土传病害的同时对根围上述几项生物特征的影响,(3)温室土壤生态系统的食物网构成特征、两番茄品种间的食物网比较、面向有机体模型、食物网的时间变异及对土壤消毒措施的响应,等层面逐步阐述,目的在于探讨温室土壤生物群落及其构成的食物网对土壤消毒措施、番茄抗性砧木的响应机制。研究得主要结果如下:
     同对照和太阳能+生防制剂处理相比,甲基溴和威百亩等4个化学处理对番茄根结线虫具有明显的控制效果(P<0.05)。包括太阳能+生防制剂处理的5个土壤消毒措施降低了土壤微生物、4种土栖真菌(镰刀菌、疫霉菌、腐霉菌和木霉菌)和螨类的数量水平,螨类群落物种数、多样性水平也明显降低(P<0.05)。螨类群落中的弱势类群对土壤消毒措施反应更为敏感,但从较长期的尺度看,消毒措施则明显降低了优势类群的数量,因而对螨类群落数量动态表现为“削峰”作用,并且提高了螨类群落的多样性水平。聚类分析也印证了土壤消毒对螨类群落的重要影响。该温室土壤弹尾目在番茄整个生长期维持相对稳定的数量水平,受消毒处理波及的影响较小。研究表明,甲基溴及其替代技术消毒措施对土壤化学性质有重要影响,它直接改变了土壤某些矿质营养的供给形式,从而间接影响了微生物及更高营养级的食微动物、捕食性动物的群落特征。
     与感病的毛粉品种(Lycopersicum esculentum Mill)相比,番茄抗性砧木具有综合控制根结线虫病、立枯病、猝倒病及蕨叶病毒病的显著效果,有效降低了幼苗死亡率及收获期根结线虫的为害(P<0.05)。抗性砧木抑制了根围4种真菌的种群增长,降低了土壤螨类及弹尾目数量,也表现出同于消毒处理对螨类数量波动的“削峰”作用、对维持弹尾目种群的稳定性上。但与土壤消毒措施不同的是,抗性砧木作为一种生物处理防病措施,显著提高了螨类群落的多样性及均匀度水平(P<0.05),促使了群落结构随时间发生明显的更替,在番茄生长期时间尺度上促成了螨类群落构成的多样化及物种分布的均匀性。
     划分生物营养类群并将其数量转换为生物量,有助于更清楚地其在食物网的功能和地位。该温室番茄根围食物网是以细菌为基础的食物网,微生物、原生动物占据了土壤食物网的绝大部分,是金字塔“塔基”,其次为螨类、线虫和弹尾目,组成了“塔尖”。土壤食物网是地下C循环的必须途径,面向生物有机体模型(也称食物网模型)的建立,帮助我们了解了土壤有机C经由食物网流动循环的途径和方向,认识了各营养级生物的地位和功能,该食物网模型既定性地赋予了其在食物网中的位置,又定量地给各功能成分赋值,直观地勾勒了各营养功能类群在土壤食物网中的分解、捕食作用。基于食细菌和基于食真菌的2条分解食物链路径构成了该温室土壤腐屑食物链,前者包括细菌、原生动物、食细菌线虫,后者包括真菌、食真菌线虫、食真菌螨类、食真菌弹尾目,且前者所含生物量碳明显高于后者。3类捕食关系组成了该温室土壤捕食食物链:其一,植物(番茄)活根-食植物线虫-捕食性线虫-捕食性螨类;其二,食真菌线虫-捕食性线虫-捕食性螨类;其三,食真菌螨类/食真菌弹尾目/捕食性线虫-捕食性螨类捕食。
Based on Sino-Italian environmental cooperation project, the experiments were carried out in Qingzhou demonstrational site of Shandong province from 2002 to 2003. The purpose of study was to understand the characteristics of soil biota community and food web in soil ecosystem of greenhouse, and how they responded to the conditions of alternative technologies of methyl bromide in soil fumigation. Three parts were involved in the study. Firstly, how was the disturbance of soil disinfections practices to chemical characteristics, microorganisms, four fungi-Fusarium spp., Trichoderma spp., Phytophthora spp., Pythium spp., soil mites and collembolan? Secondly, how was effect of tomato resistant rootstock (Beaufort SIS-1, Lycopersicon lycopersicum x L.hirsutum) as one of promising alternative technologies of methyl bromide on the above biotic indicators? Thirdly, what was the structure of food web in greenhouse agro-ecosystem, how to construct Organisms-oriented model, how was temporal dynamics of food web and its response to soil disinfections practices and tomato resistant rootstock? The principal results are as follows.As compared to control and SS+BCA, Four disinfections practices such as methyl bromide (MB) and metham sodium (MS), significantly (P<0.05) repressed root-knot nematode disease {Meloidogyne spp.). Fives disinfections practices including SS+BCA, made abundance of soil microorganisms, four fungi, and mites decline, so did the biodiversity and species number of soil mites (P<0.05 ). The inferior species were more sensitive to soil disinfections practices. The abundance of dominant species in mite community, however, decreased after soil disinfections in relative long period, so as to cut the peak of mites dynamics occurring in control plot. Hierarchical Cluster Analysis of mite community dynamics proved the above results. The density of collembolan in the soil of greenhouse was kept in low level during the whole tomato growth, which indicted collembolan was weakly affected by soil disinfections. Evidence in the study showed methyl bromide and its alternatives technologies impacted soil chemical characteristics, possibly changed nutrients release directly, affected indirectly the characteristics of microorganisms and microvores even predators communities in soil ecosystem.As compared to susceptible cultivar Maofen (Lycopersicum esculentum Mill), tomato resistant rootstock significantly controlled plant diseases such as Meloidogyne spp., Rhizoctonia solani, abrupt damping off, ToMV, as a result significantly declined the dead rate of seedlings, the disease index of root-knot nematode (P<0.05) . Furthermore, Beaufort SIS-1 repressed the population increase of four fungi, decreased the densities of mites and collembolan, cut the peak of mites dynamics occurring in Maofen plot, kept the stability of collembolan community. The difference between Beaufort SIS-1 and soil disinfections was that tomato resistant rootstock significantly enhanced the biodiversity level and evenness index (P<0.05 ) because it promoted the change of community structure and distribution of species of soil mites with the time going on.Conversion of abundance of soil biota into biomass carbon after functional groups classification based on the feeding habits was proved much necessary to know the position and function of functional groups in food web. Bacteria-based food web was found predominant in the soil ecosystem of greenhouse, with a high percent of soil microbiomass and protozoa biomass as the bottom of Pyramid,
    while the biomass of soil mite, nematodes and collembolan as the top of Pyramid. Food web is the channel of organic carbon cycle below ground. The establishment of Organisms-oriented model (Food web model) contributed to make us know the way of organic carbon cycle below ground, and the position and function of functional groups in food web were understood qualitatively and quantitatively. Detritus food chains involved bacteria-based food chain and fungi-based food chain; the former containing more biomass carbon than the later inc
引文
1. Aescht E, Foissner W. Effects of organically enriched magnesite fertilizers on the soil ciliates of a spruce forest. Pedobiologia, 1993,37(6): 321-335
    2. Alexsander M. Soil microbiology. John Wiley and Sons, New York, 1977
    3. AmanuUah. Study on propagation of different rose cultivars by budding on Rose multiflora rootstock Sarhad. Journal of Agriculture, 1996,12(6): 629-631
    4. Anderson R V, Coleman D C, Cole C V, Elliott E T, McClellan J F. The use of soil microcosms in evaluating bactenophagic nematode responses to other organisms and effects on nutrient cycling. International journal of environmental studies, 1979,13 (2): 175-182
    5. Anderson R V, Gould W D, Woods L E, Cambargella R E, Ingham R E, Coleman D C. Organic and inorganic nitrogenous losses by microbivorous nematodes in soil. Oikos, 1983, 40(1): 75-80
    6. Andrassy. Die rauminhalts-und gewichtsbestimmung der fadenwurmer (Nematoden). Acta Zool Acad Sci Hung, 1956,2,1-15
    7. Andren O, Paustian K, Rosswall T. Soil biotic interactions in the functioning of agroecosystems. Agric Ecosystem Environ, 1988, 24: 57-67
    8. Assenza M, Serges T, Donzella G. Rootstock: a possible alternative to methyl bromide. Informatore Agrario, 2000,56: 34-36
    9. Baird S M, Bernard E C. Nematode population and community dynamics in soybean-wheat cropping and tillage regimes. J Nematol, 1984,16(4): 379-386
    10. Bakken L S, Olsen R A. Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Applied and Environmental Microbiology, 1983, 45(4): 1188-1195
    11. Bardgett R D, Frankland J C, Whittaker J B. The effect of agricultural management on the soil biota of some upland grassland. Agric Ecosystem Environ, 1993, 45(1-2): 25-45
    12. Barker K R, Carter C C, Sasser J N. An advanced treatise on Meloidogyne, II Methodology. NorthCarolina State University, 1985,25-26
    13. Beare M H, Parmelee R W, Hendrix P F, Cheng W X. Microbial and faunal interactions and effect on litter nitrogen and decomposition in agroecosystem. Ecological Monographs, 1992, 62(4): 569-591
    14. Berger H, Foissner W, Adam H. Field experiment on the effects of fertilizers and lime on the soil microfauna of an alpine pasture. Pedobiologia, 1986,29: 261-272.
    15. Bloem et al., 1992.
    16. Bolem J, Lebbink G, Zwart K B, et al. Dynamics of microorganisms, microbiovores and nitrogen mineralization in winter wheat fields under conventional and integrated management. Agric Ecosystem Environ, 1994,51:129-143
    17. Bongers T. The maturity index: an ecological measure of environmental disturbance based on
     nematode species composition. Oecologia, 1990,83(1): 14~19
    18.Booth C 著,陈其 译.镰刀菌属.北京:农业出版社,1988
    19. Brussaard L, Bouwman L A, Geurs M, et al. Biomass, composition and temporal dynamics of soil organisms of a slit loam soil under conventional and integrated management. Neth J Agric Sci, 1990, 38: 283-302
    20. Brussaard L, Ferrera-Cerrato R. Soil ecology in sustainable agriculture systems: CRC Press LLC, 1997
    21. Brussaard L, Veen J A van, kooistra M J, Lebbink G The Dutch programme on soil ecology of arable farming systems, I: Objectives, approach and some preliminary results. Ecol Bull, 1988, 39: 35-40
    22. Brussard L. An appraisal of the Dutch programme on soil ecology of arable farming system (1985-1992). Agric Ecosystem Environ, 1994,51:1-6
    23. Cao Z P, Chen G K, Chen Y F, Yang H, Han L F, Dawson R. Comparative performance of nematode resistant rootstock and non-resistant tomato cultivars on soil biota. Allelopathy Journal, 2005,15(1): 85-94
    24. Cao Z P, Yu Y L, Chen G K, et al. Impact of soil fumigation practices on soil nematodes and microbial biomass. Pedosphere. 2004,14 (3): 387-393
    25. Cayrol J C, Frankowski J P, Quiles C. Cephalobus parvus as a carrier of Rhizobium japonicum in field experiment on soybean cultures. Rev Nematol, 1987,10(1): 57-59
    26. Chung S K. Effect of propagation methods and cultivars on cut flower quality and shoot development of rose (Rosa hybrida) cultivated on rockwool in winter. Journal of the Korean Society for Horticultural Science, 1989, 30(1): 45-50
    27. Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem, 1985,17(2): 181-187
    28. Curry J P. Grassland Invertebrates: ecology, influence on soil fertility, and effects on plant growth. Chapman and Hall, 1994, 437
    29. Darbyshire J F, Zwart K B, Elston D A. Growth and nitrogenous excretion of a common soil flagellate, Cercomonas sp. Soil Biol Biochem, 1993,25(11): 1583-1589
    30. De Ruiter P C, Veen J A van, Moore J C, Brussaard L, Hunt H W. Calculation of nitrogen mineralization in soil food webs. Plant Soil, 1993,157(2): 263-273
    31. De Vay J E, et al. Inoculum densities of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita in relation to the development of Fusarium wilt and the phenology of cotton plants (Gossypium hirsutuin). Phytopathology, 1997, 87: 341-346
    32. Edwards C A. Sustainable Agricultural Systems (Edwards C. A., Lal L., Madden P., Miller R. H. and House G, eds). Soil and Water Conservation Society. Ankeny I A, 1990. 249
    33. El Titi A, Ipach U. Soil fauna in sustainable agriculture: results of an integrated farming system at Lautenbach, F.R.G Agric Ecosystem Environ, 1989,27(1/4): 561-572
    34. Elad Y, Chet I, Henis Y. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica, 1978,9(1): 59-67
    35. Epsky N D, Walter D E, Capinera J L. Potential role of nematophagous microarthropods as biotic mortality factors of entomogenous nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). J Eco Entomol, 1988, 81(3): 821-825
    36. Fenchel T. Ecology of protozoa: The biology of free-living phagotrophic protists, Springer-Verlag, New York, 1987
    37. Forge T A, Berrow M L, Darbyshire J F, Warren A. Protozoan bioassays of soil amended with sewage sludge and heavy metals, using the common soil ciliate Colpoda steinii. Biol Fertil Soils, 1993,16(4): 282-286
    38. Fu S L, Cabrera M L, Coleman D C, Kisselle K W, Garrett C J, Hendrix P F, Crossley Jr D A. Soil carbon dynamics of conventional tillage and no-tillage agroecosysytems at Georgia Piemont -HSB-C models. Ecological Modelling, 2000,131: 229-248
    39. Griffiths B S, Bardgett R D. Modern soil microbiology: Interactions between microbe-feeding invertebrate and soil microorganisms. Van Elsas J. D., Trevors J. T, Wellington E. M. H. Marcel Dekker Inc. New York. 1997,165-182
    40. Griffiths B S, Caul S. Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biol Fertil Soils, 1993,15(3): 201-207
    41. Griffiths B S, Ekelund F, Ronn R, Christensen S. Protozoa and nematodes on decomposing barley roots. Soil Biol Biochem, 1993, 25(9): 1293-1295
    42. Griffiths B S, Young I M. The effects of soil structure on protozoa in a clay loam soil. Eur J Soil Sci, 1994, 45(3): 285-292
    43. Griffiths B S. A comparison of microbial- feeding nematodes and protozoa in the rhizosphere of different plots. Biol Fertil Soils, 1990, 9(1): 83-88
    44. Griffiths B S. Mineralization of nitrogen and phosphorus by mixed cultures of the ciliate protozoan Colpoda steinii, the nematode Rhabditis spp. and the bacterium Pseudomonas fluorescens. Soil Biol Biochem, 1986,18(6): 637-641
    45. Griffiths B S. Roots and the soil environment, aspects of Applied Biology 22. The Association of Applied Biologists, Wellesbourne, 1989,141
    46. Griffiths B S. Soil protozoa (Darbyshire J. F. eds), CAB international, Wallingford, England. 1994, 65
    47. Gupta V V S R, Germida J J. Distribution of microbial biomass and its activity in soil aggregate size classes as affected by cultivation. Soil Biol Biochem, 1988, 20:777-786
    48. Hassink J, Bouwman L A, Zwart Z W, Brussaard L. Relationship between habitable pore space, soil biota and mineralization rates in grassland soils [J]. Soil Biol Biochem, 1993, 25(1): 47-55
    49. Hendix P E, Crossley D A, Blair J M, et al. Soil biomass components of sustainable agroecosystems. In Edwards C A eds. Sustainable Agricultural Systems. Ankeny: Soil Land Water Conservation, 1990, 37-654
    50. Hendrix P F, Parmelee R W, Crossley D A J, Coleman D C, Odum E P, Groffman P M. Detritus food webs in conventional and no-tillage agroecosystems. Bioscience, 1986,36(6): 374~380
    51. Heynen C E, Elsa J D Van, Kiukman P J, Veen J A Van. Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol Biochem, 1988,20(4): 483-488
    52. Hobbie J E, Daley R J, Jasper S. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 1977, 45:1225-1228
    53. Hofman T W, Jacob J J. Distribution and dynamics of mycophagous and microbivorous nematodes in potato fields and their relationship to some food sources. Ann Appl Biol, 1989,115(2): 291-298
    54. House G J, Parmelee R W. Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. Soil tillage Res, 1985, 5(4): 351-360
    55. House G J, Stinner B R. Arthropods in conservation tillage systems. Miscellaneous Publications of the Entomological Society of American, 1987, 65:52.
    56. Hunt H W, Coleman D C, Ingham E R, Eliott E T, Moore J C, Rose S L, Reid C F F, Moreley C R. The detrital food web in a shortgrass prairie. Biol Fertil Soils, 1987, 3: 57-68
    57. Ingham R E, Coleman D C. Effects of an ectoparasitic nematode on bacterial growth in gnotobiotic soil. Oikos, 1983, 41(2): 227-232
    58. Kennedy A. C. Soil biota in the rhizosphere. In: Sylvia D. M., Fuuhrman J. J., Hartel P.G, Zuberer, DA., Editors. Principles and applications of soil microbiology. Upper Sadie River, Nj: Prentice Hall. 2004, 242-262
    59. Komada H. Development of selective medium for quantitative isolation of Fusarium Oxysporum from natural soil. Review of Plant Protection Research, 1975, 8,114-125
    60. Kuikman P J, Veen J A van. The impact of protozoa on the availability of bacterial nitrogen to plants. Biology and fertility of soils, 1989, 8(1): 13-18
    61. Loannou N. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. Horticultural Science and Biotechnology, 2001, 76(4): 396-401
    62. Loring S J, Snider R J, Robertson L S. The effects of three tillage practices on Collembola and Acarina populations. Pedobiologia, 1981, 22(3): 172-184
    63. Masago H, Yoshikawa H M, Fuhada M and Nakanishi N. Selective inhibition of Pythium spp. on a medium for direct isolation oiPhytophthora spp. from soil and plants. Phytophthology, 1977, 67(3): 425-428
    64. McGinness S, Johnson D B. Grazing of acidophilic bacteria by a flagellated protozoan. Microb Ecol, 1992, 23(1): 75-86
    65. Moore J C. Impact of agriculture practices on soil food web structure: Theory and application. Agric Ecosystem Eviron, 1994,51: 239-247
    66. Motavalli P P. et al. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. Journal of Environmental Quality, 2004,33: 816-824
    67. Nagaraja T G, Towne G, Beharka A A. Moderation of ruminal fermentation by ciliated protozoa in
     cattle fed a high-grain diet. Appl Environ Microbiol, 1992,58(8): 2410-2414
    68. Nicholas W L. The Biology of Free-living Nematodes, 2~nd ed., Methven, London, 1975
    69. Odum E P. Fundamentals of Ecology, 3~rd ed., Saunders W B, Philadelphia, 1971, 63
    70. Pradhan G B, Dash M C. Soil nematodes in tropical hill slopes of Sambalpur, India. Comparative physiology and ecology, 1988,13(1): 34-40
    71. Prikryl Z. Root exudates of plant. Plant and Soil, 1980, 57: 69-83
    72. Raj H, Kapoor I J. Effect of oil cake amendment of soil on tomato wilt caused by Fusarium oxysporum f.sp. lycopersici. Indian Phytopathology, 1996, 49: 355-361
    73. Russom Z, Odihirin R A, Mature M M. Comparison of population density of plant parasitic and free-living nematodes in earthworm casts and adjacent soils of fallow and cultivated land in south eastern Nigeria. Ann Appl Biol, 1993,123(2): 331-336
    74. Rutherford P M, Juma N G Influence of soil texture on protozoa-induced mineralization of bacterial carbon and nitrogen. Can J Soil Sci, 1992, 72(3): 183-200
    75. Ryszkowski L. Modern Ecology, Basic and Applied Aspects (G Esser and D Overdieck, eds.). Elsevier, Amsterdam, 1991, 443
    76. Schnurer J, Clarholm M, Rosswall T. Fungi, bacteria and protozoa in soil from four arable cropping systems [J]. Biol Fertil Soils, 1986, 2:119-126
    77. Schreiber B, Brink N. Pesticide toxicity using protozoans as test organisms. Biol Fertil Soils, 1989, 7(4): 289-296
    78. Seastedt T R. The role of microarthropods in decomposition and mineralization process. Annu Rev Entomol, 1984,29: 25-46
    79. Senapati B K. Biotic interactions between soil nematodes and earthworms. Soil Biol Biochem, 1992, 24(12): 1441-1444
    80. Siepel H, Bund C F van de. The influence of management practises on the microarthropod community of grassland. Pedobiologia, 1988, 31(5/6): 339-354
    81. Sohleniu B, Sandor A. Vertical distribution of nematodes in arable soil under grass and barley. Biol Fertil Soils, 1987,3:19-25
    82. Sohlenius B. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos, 1980, 34(2): 186-194
    83. Sohlenius B. influence of cropping systems and nitrogen input on soil fauna and microorganisms in a Swedish arable soil. Biol Fertil Soils, 1990, 9:168-173
    84. Sonnemann I, Finkhaeuser K, Wolters V.. Does induced resistance in plants affect the belowground community? Applied Soil Ecology, 2002,21 (2): 179-185
    85. Sundin P, Valeur A, Olsson S, Odham G Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere: effects on root exudation and distribution of bacteria. FEMS microbiology letters-Federation of European Microbiological Societies, 1990,73(1): 13-22
    86. Tamblyn C M, Burke R J, Cobb A H. SCI pesticides group meeting: systemic acquired resistance. Pesticide Sci, 1999,55: 676-677
    87. Taylor A L, Sasser J N. Biology, identification and control of root-knot nematodes (Meloidogyne spices). A Cooperation Publication of the Department of Plant Pathology, North Carolina State University and the United States Agency for International Development, 1978
    88. Umorin P P. Competition between bacterivorous flagellates and bacterivorous ciliates for food resources. Oikos, 1992, 63(2): 175~179
    89. Vereijken P. Maintenance of soil fertility on biological-dynamic farms in Nagele, the Netherlands. Neth J Agric Sci, 1986, 34: 387
    90. Verhagen F J M, Duyts H, Laanbroek H J. Competition for ammonium between nitrifying and heterotrophic bacteria in continuously percolated soil columns. Appl Environ Microbiol, 1992, 58(10): 3303~3311
    91. Wang J G, Bakken L S. Competition for nitrogen during mineralization of plant residues in soil: Microbial response to C and N availability. Soil Biology and Biochemistry, 1997, 29(2): 163~170
    92. Wardle D A. Impact of disturbance on detritus food webs in agroecosystems of contrasting tillage and weed management practice. Adv Ecol Res, 1995, 26: 105~185
    93. Whitford W G. Abiotic controls on the functional structure of soil food webs. Biol Fertil Soils, 1989, 8(1): 1~6
    94. Wood M. Soil biology. Chapman and Hall, New York, 1989
    95. Yeates G W, Bamforth S S, Ross D J, Tare K R, Sparling G P. Recolonization of methyl bromide sterilized soil under four different field conditions. Biol Fertil Soils, 1991, 11(3): 181~189
    96. Yeates G W, Bongers T, Goede R G M, Freckman D W, Georgieva S S. Feeding habitats in soil nematode families and genera-an outline for soil ecologists. J Nematol, 1993, 25(3): 315~331
    97. Yeates G W. Nematode populations in relation to soil environmental factors: a review. Pedobiologia, 1981, 22(5/6): 312~338
    98. Yeates G W. Populations of nematode genera in soils under pasture. Ⅲ, vertical distribution at eleven sites. New Zealand Jounal of Agriculture Research, 1980, 23(1): 117~128
    99. Yin W Y, et al. Soil animals in China (in Chinese). Beijing: Scientific Press, 2000, 339
    100. Zheng C Y, Cao Z P, Chen G K, Chen Y F, Yang H. Study on the grafted tomatoes controlling root-knot nematode in greenhouse. Chinese Jounal of Eco-Agriculture, 2005 (in Chinese, in press)
    101. Zwart K B, Bloem J, Bouman L A, Brussaard L, Didden W A M, Lebbink G, Marinissen J C Y. Population dynamics in the belowground food webs in two different agricultural systems. Agric Ecosystem Environ, 1994, 51: 187~198
    102. Zwart K B, Brussaard L. The Ecology of Temperature Cereal Fields ( Firbank L G, Carter N, Darbyshire J F and Potts G Reds.), 1991, 139
    103.曹坳程,郭美霞.土壤根结线虫防治技术.中国蔬菜,2002,6:60~61
    104.曹坳程.中国甲基溴土壤消毒替代技术.北京:中国农业大学出版社,2000,147~153
    105.曹志平,陈国康,于永莉,等.甲基溴土壤消毒替代技术条件下线虫的生态学研究.生态学报,2004a,24(6):1205~1211
    106.曹志平,陈国康,郑长英,陈云峰,杨杭.五种甲基溴土壤消毒替代技术的比较研究.农业工程学报.2004b,20(5):250~253
    107.陈云峰.甲基溴替代技术对番茄根结线虫和土壤自由生活线虫种群动态的影响:[硕士学位论文].北京:中国农业大学,2004
    108.梁文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指标的研究与应用.沈阳农业大学学报,2001a,32(1):70~72
    109.梁文举,闻大中.土壤生物及其对土壤生态学发展的影响.应用生态学报,2001b,12(1):137~140
    110.林启美,吴玉光,沈万科,等.北京菜园土土壤微生物生物量碳、氮与土壤一些性质的关系.中国农业大学学报,1997,2:43~48
    111.刘维志.植物线虫学研究技术.辽宁科学技术出版社,1995
    112.刘维志.植物线虫志.北京:中国农业出版社,2004,39~495
    113.王东,刘勇,唐伟.番茄嫁接技术在生产中的应用试验.吉林蔬菜-北方蔬菜专刊,2003:26
    114.杨杭.甲基溴土壤消毒替代技术对温室土壤原生动物群落结的影响:[硕士学位论文].北京:中国农业大学,2004
    115.杨合同,唐文华,王加宁,等.几丁质和杀菌剂对生物防治菌生长及其防治棉花病害效果的影响.植物病理学报,2002,32(4):326~331
    116.叶维青,等(译).土壤微生物实验法.土壤微生物研究会(日).北京:科学出版社,1983
    117.尹文英,等.中国亚热带土壤动物.北京:科学出版社,1992,339
    118.郑长英,胡敦孝,李维炯.施用EM堆肥对土壤螨群落结构的影响.生态学报,2002,22(7):1116~1121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700