随机种群模型若干性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,确定性生物种群模型受到了广泛的重视并被广泛地研究。然而在现实世界中生物种群系统不可避免地受到环境噪声的影响,因此研究随机生物种群模型进而揭示环境噪声对于系统的影响就非常的重要。本文致力于研究几个重要的和基本的随机生物种群模型的动力学行为,主要包含以下内容:
     1.随机非自治Logistic模型的持久性和灭绝性。由于其重要性,对于Logistic模型的研究已经是而且必将依然是生物数学里最有意思的方向之一。而该模型所表示的物种何时生存以及何时灭绝是非常有意思和重要的问题。本文研究了两个广泛应用的随机非自治Logistic模型,并分别给出了各个模型生存和灭绝的阈值。本文证明了如果阈值是正的,那么物种将会生存;如果阈值是负的,那么物种将会灭绝。
     2.具有有色噪声扰动的推广的Logistic模型。本文建立了物种灭绝、非平均持久生存、弱持久生存和随机持久的充分条件,得到了模型生存和灭绝的阈值,并对其渐近性质进行了研究。结果表明不同类型的随机噪声对物种的生存和灭绝有不同的影响。
     3.随机Lotka-Volterra互惠模型的持久性和灭绝性。对于每个物种,本文建立了其生存和灭绝的阈值,得到了系统随机持久的充分条件。从结果容易看出,随机噪声对于系统中所有物种的生存都不利。
     4.具有Holling II型功能反应的随机捕食者-食饵模型的持久性和灭绝性。对于每一物种,本文建立了其生存和灭绝的充分条件,并在一定条件下得到了阈值。
     5.提出了具有Beddington-DeAngelis型功能反应的随机捕食者-食饵模型。本文证明了虽然该系统的系数既不满足线性增长条件也不满足局部Lipschitz条件,该系统仍然具有全局的正解,并给出了系统正平衡点全局渐近稳定的充分条件。建立了具有Beddington-DeAngelis型功能反应和阶段结构的随机捕食者-食饵模型,并且给出了其正平衡点全局渐近稳定的充分条件。结果都揭示了如果随机噪声强度不大并且原来确定性系统的平衡点是全局渐近稳定的,那么随机系统将会保留这样的良好性质。
In recent years, deterministic population systems have received great attention andhave been studied extensively. However, population dynamics in the real world is in-evitably afected by environmental noises. Then it is important to study stochastic pop-ulation systems to reveal the efect of environmental noises on population systems. Thispaper devotes to investigating the dynamical properties of some important and basic s-tochastic population systems, the main results are as follows:
     1. Persistence and extinction in stochastic non-autonomous Logistic systems. Theinvestigation of logistic system has long been and will continue to be one of the dominantthemes in mathematical ecology due to its importance. Persistence and extinction of thismodel is one of the most interesting and important topics. This paper studies two widelyused stochastic non-autonomous Logistic models and obtains the critical number betweenpersistence and extinction for each system. This paper proves that if the critical numberis positive, then the population is persistence; if the critical number is negative, then thepopulation goes to extinction.
     2. Generalized stochastic Logistic model under regime switching. This paper estab-lishes sufcient condition for extinction, non-persistence in the mean, weak persistenceand stochastic permanence and obtains the critical number between persistence and ex-tinction. Asymptotic properties of this model are also studied. Results show that a difer-ent type of noise has a diferent efect on the persistence and extinction of the population.
     3. Persistence and extinction of a stochastic Lotka-Volterra cooperation model. Foreach species, the critical number between persistence and extinction is obtained, sufcientcondition for stochastic permanence is established. From our results, it is easy to see thatthe stochastic noise is unfavorable for the persistence of all species.
     4. Persistence and extinction of a stochastic predator-prey system with Holling IIfunctional response. Sufcient criteria for extinction and persistence for each species areestablished. The persistence-extinction threshold for each species is obtained in manycases.
     5. A stochastic predator-prey system with Beddington-DeAngelis functional re-sponse is proposed. This paper shows that, although the coefcients of the system neithersatisfy the linear growth condition, nor local Lipschitz continuous, the model still has a globally positive solution, and this paper establishes sufcient conditions for stochas-tically asymptotic stability in the large of the positive equilibrium. A stage-structuredpredator-prey model with Beddington-DeAngelis functional response with stochastic per-turbation is considered, and this paper establishes the sufcient conditions for stochasti-cally asymptotic stability in the large of the positive equilibrium. These results revealthat if the positive equilibrium of the deterministic system is globally stable, then thestochastic model will preserve this nice property provided the noise is sufciently small.
引文
[1]马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1996.
    [2] Malthus T R. An Essay on The Priciple of Population as it Afects the Fu-ture Improvement of Society, With Remarks on The Speculations of M.Godwin,M.Condorcot, and Other Writers, J. Johnson[M]. London:1798.
    [3]赵强,庞国萍.生物数学的发展及应用[J].玉林师范学院学报,2007,3:21-29.
    [4]胡适耕,黄乘明,吴付科.随机微分方程[M].北京:科学出版社,2008.
    [5] Lewontin R C, Cohen D. On Population Growth in a Randomly Varying Environ-ment[J]. Proceedings National Academy Science,1969,62:1056-1060.
    [6] Levins R. Dispersion and Population Interactions[J]. The American Naturalist,1974,108:207-228.
    [7] Ludwig D. Persistence of Dynamical Systems under Random Perturbations[J].SIAM Review,1975,17:605-640.
    [8] Arnold L, Horsthemke W, Stucki J W. The Influence of External Real and WhiteNoise on the Lotka-Volterra Model[J]. Biomedical Journal,1979,21:451-471.
    [9] Prajneshu M. Time-Dependent Solution of the Logistic Model for PopulationGrowth in Random Environment[J]. Journal of Applied Probability,1980,17:1083-1086.
    [10] Ellner S. Asymptotic Behavior of Some Stochastic Diference Equation PopulationModels[J]. Journal of Mathmatical Biology,1984,19:169-200
    [11] Gard T C. Persistence in Stochastic Food Web Models[J]. Bulletin of MathematicalBiology,1984,46:357-370.
    [12] Hitchcock S E. Extinction Probabilities in Predator-Prey Models[J]. Journal of Ap-plied Probability,1986,23:1-13.
    [13] Sridhara R, Watson R. Stochastic Three Species Systems[J]. Journal of MathmaticalBiology,1990,28:595-607.
    [14] Gard T C. A Stochastic Model for the Efects of Toxicants on Population[J]. Eco-logical Modelling,1990,51:273-280.
    [15] Abnndo M. A Stochastic Model for Predator-Prey Systems: Basic Properties, Stabil-ity and Computer Simulation[J]. Journal of Mathmatical Biology,1991,29:495-511
    [16] Gard T C. Stochastic Models for Toxicant-Stressed Populations[J]. Bulletin of Math-ematical Biology,1992,54:827-837.
    [17] Davies I M, Truman A, Zhao H.(1996), Stochastic Generalized KPP Equations[J],Proceedings of the Royal Society of Edinburgh: Section A,1996,126:957-983.
    [18] ksendal B, Vage G, Zhao H. Two Properties of Stochastic KPP Equations: Ergod-icity and Pathwise Property [J]. Nonlinearity,2001,14:639-667.
    [19] Mao X, Marion G, Renshaw E. Environmental Brownian Noise Suppresses Ex-plosions in Populations Dynamics[J]. Stochastic Processes and their Applications,2002,97:95-110.
    [20] Rudnicki R. Long Time Behaviour of a Stochastic Prey-Predator Model[J]. Stochas-tic Processes and their Applications,2003,108:93-107.
    [21] Mao X, Sabanis S, Renshaw E. Asymptotic Behaviour of the Stochastic Lotka-Volterra Model[J]. Journal of Mathematical Analysis and Applications,2003,287:141-156.
    [22] Golec J, Sathananthan S. Stability Analysis of a Stochastic Logistic Model[J]. Math-ematical and Computer Modelling,2003,38:585-593.
    [23] Samanta G P, Maiti A. Stochastic Gomatam Model of Interacting Species: Non-equilibrium Fluctuation and Stability[J]. Systems Analysis Modelling Simulation,2003,43:683-692.
    [24] Bahar A, Mao X. Stochastic Delay Lotka-Volterra Model[J]. Journal of Mathemati-cal Analysis and Applications,2004,292:364-380.
    [25] Bahar A, Mao X. Stochastic Delay Population Dynamics[J]. International Journal ofPure and Applied Mathematics,2004,11:377-400.
    [26] Maiti A, Samanta G P. Deterministic and Stochastic Analysis of a Prey-DependentPredator-Prey System[J]. International Journal of Mathematical Education in Sci-ence and Technology,2005,36:65-83.
    [27] Mao X, Yuan C, Zou J. Stochastic Diferential Delay Equations of Population Dy-namics[J]. Journal of Mathematical Analysis and Applications,2005,304:296-320.
    [28] Jiang D, Shi N. A Note on Nonautonomous Logistic Equation with Random Pertur-bation[J]. Journal of Mathematical Analysis and Applications,2005,303:164-172.
    [29] Du N H, Sam V H. Dynamics of a Stochastic Lotka-Volterra Model Perturbed byWhite Noise[J]. Journal of Mathematical Analysis and Applications,2006,324:82-97.
    [30] Jiang D, Zhang X, Wang D, Shi N. Existence, Uniqueness, and Global Attractivity ofPositive Solutions and MLE of the Parameters to the Logistic Equation with RandomPerturbation[J]. Science in China Series A: Mathematics,2007,50:977-986.
    [31] Luo Q, Mao X. Stochastic Population Dynamics under Regime Switching[J]. Jour-nal of Mathematical Analysis and Applications,2007,334:69-84.
    [32] Rudnicki R, Pichor K. Influence of Stochastic Perturbation on Prey-Predator Sys-tems[J]. Mathematical Biosciences,2007,206:108-119.
    [33] Jiang D, Shi N, Li X. Global Stability and Stochastic Permanence of a Nonau-tonomous Logistic Equation with Random Perturbation[J]. Journal of MathematicalAnalysis and Applications,2008,340:588-597.
    [34] Wu F, Hu S. Stochastic Functional Kolmogorov-Type Population Dynamics[J]. Jour-nal of Mathematical Analysis and Applications,2008,347:534-549.
    [35] Li X, Mao X. Population Dynamical Behavior of Nonautonomous Lotka-VolterraCompetitive System with Random Perturbation[J]. Discrete and Continuous Dy-namical Systems,2009,24:523-545.
    [36] Xu Y, Wu F, Hu S. Global Solutions and Boundedness of Stochastic Functional Kol-mogorov System with Infinite Delay[J]. Stochastics and Dynamics,2009,9:315-333.
    [37] Zhu C, Yin G. On Competitive Lotka-Volterra Model in Random Environments[J].Journal of Mathematical Analysis and Applications,2009,357:154-170.
    [38] Wu F, Xu Y. Stochastic Lotka-Volterra Population Dynamics with Infinite Delay[J].SIAM Journal on Applied Mathematics,2009,70:641-657.
    [39] Li X, Jiang D, Mao X. Population Dynamical Behavior of Lotka-Volterra Systemunder Regime Switching[J]. Journal of Computational and Applied Mathematics,2009,232:427-448.
    [40] Wu F, Hu Y. Stochastic Lotka-Volterra System with Unbounded Distributed De-lay[J]. Discrete and Continuous Dynamical Systems Series B,2010,14:275-288.
    [41] Li X, Gray A, Jiang D, Mao X. Sufcient and Necessary Conditions of Stochas-tic Permanence and Extinction for Stochastic Logistic Populations under RegimeSwitching[J]. Journal of Mathematical Analysis and Applications,2011,376:11-28.
    [42] Hu G, Wang K. On Stochastic Logistic Equation with Markovian Switching andWhite Noise[J]. Osaka Journal of Mathematics,2011,48:959-986.
    [43] Mao X. Stochastic Diferential Equations and Their Applications[M].2th. Chich-ester: Horwood Publishing,2007.
    [44] Chentsov N. Weak Convergence of Stochastic Processes Whose Trajectories HaveNo Discontinuities of the Second Kind and the “Heuristic” Approach to theKolmogorov-Smirnov Tests. Theory of Probability and its Applications,1956,1:140-144.
    [45] Barbalat I. Systems D’equations Diferentielles D’oscillations Nonlineairies[J]. Re-vue roumaine de Mathe′matiques Pures et Applique′es,1959,4:267-270
    [46] Freedman H I, Wu J. Periodic Solutions of Single-Species Models with PeriodicDelay[J]. SIAM Journal on Mathematical Analysis,1992,23:689-701.
    [47] Golpalsamy K, Weng P. Feedback Regulation of Logistic Growth. InternationalJournal of Mathematics and Mathematical Sciences,1993,16:177-192.
    [48] Lisena B. Global Attractivity in Nonautonomous Logistic Equations with Delay[J].Nonlinear Analysis: Real World Applications,2008,9:53-63.
    [49] Bandyopadhyay M, Chattopadhyay J. Ratio-Dependent Predator-Prey Model: Efectof Environmental Fluctuation and Stability[J]. Nonlinearity,2005,18:913-936.
    [50] May R M. Will a Large Complex System be Stable?[J]. Nature,1972,238:413-414.
    [51] Braumann C A. Variable Efort Harvesting Models in Random Environments: Gen-eralization to Density-Dependent Noise Intensities[J]. Mathematical Biosciences,2002,177&178:229-245.
    [52] Hung L. Stochastic Delay Population Systems[J]. Applicable Analysis,2009,88:1303-1320.
    [53] Yuan C, Mao X, Lygeros J. Stochastic Hybrid Delay Population Dynamics: Well-Posed Models and Extinction[J]. Journal of Biological Dynamics,2009,3:1-21.
    [54] Vasilova M, Jovanovic M. Stochastic Gilpin-Ayala Competition Model with InfiniteDelay[J]. Applied Mathematics and Computation,2011,217:4944-4959.
    [55] Li W, Wang K, Su H. Optimal Harvesting Policy for Stochastic Logistic PopulationModel[J]. Applied Mathematics and Computation,2011,218:157-162.
    [56] Linh N, Ton T V. Dynamics of a Stochastic Ratio-Dependent Predator-Prey Mod-el[J]. Analysis and Applications,2011,9:329-344.
    [57] Yagi A, Ton T V. Dynamic of a Stochastic Predator-Prey Population[J]. AppliedMathematics and Computation,2011,218:3100-3109.
    [58] Ji C, Jiang D. Dynamics of a Stochastic Density Dependent Predator-Prey Systemwith Beddington-DeAngelis Functional Response[J]. Journal of Mathematical Anal-ysis and Applications,2011,381:441-453.
    [59]吕敬亮.几类随机生物种群模型性质的研究[D].哈尔滨:哈尔滨工业大学,2011:16-90.
    [60] Samanta G P. A Stochastic Two Species Competition Model: NonequilibriumFluctuation and Stability[J]. International Journal of Stochastic Analysis,2011,doi:10.1155/2011/489386.
    [61] Ji C, Jiang D, Shi N. A Note on a Predator-Prey model with Modified Leslie-Gowerand Holling-type II Schemes with Stochastic Perturbation[J]. Journal of Mathemat-ical Analysis and Applications,2011,377:435-440.
    [62] Mao X. Stationary Distribution of Stochastic Population Systems[J]. Systems&Control Letters,2011,60:398-405.
    [63] Yang Z, Yin G. Stability of Nonlinear Regime-Switching Jump Difusion[J]. Non-linear Analysis,2012,75:3854-3873.
    [64] Lv J, Wang K. Asymptotic Properties of a Stochastic Predator-Prey System withHolling II Functional Response[J]. Communications in Nonlinear Science and Nu-merical Simulation,2011,16:4037-4048.
    [65] Bao J, Mao X, Yin G, Yuan C. Competitive Lotka-Volterra Population Dynamicswith Jumps, Nonlinear Analysis,2011,74:6601-6616.
    [66] Lv J, Wang K. On a Stochastic Predator-Prey System with Modified Functional Re-sponse[J]. Mathematical Methods in the Applied Science,2012,35:144-150
    [67] Mandal P S, Banerjee M. Stochastic Persistence and Stationary Distribution in aHolling-Tanner Type Prey-Predator model[J]. Physica A,2012,391:1216-1233.
    [68] Jiang D, Ji C, Li X, Regan D. Analysis of Autonomous Lotka-Volterra Competi-tion Systems with Random Perturbation[J]. Journal of Mathematical Analysis andApplications,2012,390:582-595.
    [69] Bao J, Yuan C. Stochastic Population Dynamics Driven by Le′vy Noise. Journal ofMathematical Analysis and Applications,2012,391:363-375
    [70] Hallam T G, Ma Z. Persistence in Population Models with Demographic Fluctua-tions[J]. Journal of Mathematical Biology,1986,24:327-339.
    [71] Ma Z, Cui G, Wang W. Persistence and Extinction of a Population in a PollutedEnvironment[J]. Mathematical Biosciences,1990,101:75-97.
    [72] Ma Z, Hallam T G. Efects of Parameter Fluctuations on Community Survival[J].Mathematical Biosciences,1987,86:35-49.
    [73] Gard T C. Introduction to Stochastic Diferential Equations[M]. New York: MarcelDekker,1988:1-234.
    [74] Higham D J. An Algorithmic Introduction to Numerical Simulation of StochasticDifrential Equations[J]. SIAM Review,2001,43:525-546.
    [75] Jefries C. Stability of Predation Ecosystem Models[J]. Ecology,1976,57:1321-1325.
    [76] Takeuchi Y, Du N H, Hieu N T, Sato K. Evolution of Predator-Prey Systems De-scribed by a Lotka-Volterra Equation under Random Environment[J]. Journal ofMathematical Analysis and Applications,2006,323:938-957.
    [77] Hu G, Wang K. Stability in Distribution of Competitive Lotka-Volterra System withMarkovian Switching[J]. Applied Mathematical Modelling,2011,35:3189-3200.
    [78]胡贵新.带有Markov转换的随机生物数学模型的依分布稳定性[D].哈尔滨:哈尔滨工业大学,2011:11-55.
    [79] Hu G, Wang K. Stability in Distribution of Neutral Stochastic Functional Diferen-tial Equations with Markovian Switching[J]. Journal of Mathematical Analysis andApplications,2012,385:757-769.
    [80] Mao X, Yuan C. Stochastic Diferential Equations with Markovian Switching[M].London: Imperial College Press,2006:77-394.
    [81] Mao X, Yin G, Yuan C. Stabilization and Destabilization of Hybrid Systems of S-tochastic Diferential Equations[J]. Automatica,2007,43:264-273.
    [82] Hutson V, Schmitt K. Permanence and the Dynamics of Biological Systems[J].Mathematical Biosciences,1992,111:1-71.
    [83] Lu Z, Takeuchi Y. Permanence and Global Stability for Cooperative Lotka-VolterraDifusion Systems[J]. Nonlinear Analysis,1992,19:963–975.
    [84] Jiang J. On the Global Stability of Cooperative Systems[J]. Bulletin of the LondonMathematical Society,1994,26:455–458.
    [85] Lu G, Lu Z, Lian X. Delay Efect on the Permanence for Lotka-Volterra CooperativeSystems[J]. Nonlinear Analysis: Real World Applications,2010,11:2810-2816.
    [86] Smith H L. On the Asymptotic Behavior of a Class of Deterministic Models ofCooperating Species[J]. SIAM Journal on Applied Mathematics,1986,46:368–375.
    [87] Zhao J, Jiang J, Lazer A. The Permanence and Global Attractivity in a Nonau-tonomous Lotka-Volterra System[J]. Nonlinear Analysis: Real World Applications,2004,5:265-276.
    [88] Cheng S. Stochastic Population Systems[J]. Stochastic Analysis and Applications,2009,27:854-874.
    [89] Xu Y, Wu F, Tan Y. Stochastic Lotka-Volterra System with Infinite Delay[J]. Journalof Computational and Applied Mathematics,2009,232:472-480.
    [90] Hu Y, Wu F, Huang C. Stochastic Lotka-Volterra Models with Multiple Delays[J].Journal of Mathematical Analysis and Applications,2011,375:42-57.
    [91] Liu H, Ma Z. The Threshold of Survival for System of Two Species in a PollutedEnvironment.[J]. Journal of Mathematical Biology,1990,101:75-97.
    [92] Liu X, Chen L. Complex Dynamics of Holling type II Lotka-Volterra Predator-PreySystem with Impulsive Perturbations on the Predator[J]. Chaos, Solitons&Fractals,2003,16:311-320.
    [93] Liu B, Teng Z, Chen L. Analysis of a Predator-Prey model with Holling II FunctionalResponse Concerning Impulsive Control Strategy[J]. Journal of Computational andApplied Mathematics,2006,193:347-362.
    [94] Holling C S. The Components of Predation as Revealed by a Study of Small Mam-mal Predation of the European Pine Sawfly[J]. Canadian Entomologist,1959,91:293-320.
    [95] Holling C S. Some Characteristics of Simple Types of Predation and Parasitism[J].Canadian Entomologist,1959,91:385-395.
    [96] Hassell M P, Varley C C. New Inductive Population Model for Insect Parasites andits Bearing on Biological Control[J]. Nature,1969,223:1133-1137.
    [97] Beddington J R. Mutual Interference Between Parasites or Predators and its Efecton Searching Efciency[J]. Journal of Animal Ecology,1975,44:331-341.
    [98] DeAngelis D L, Goldsten R A, Neill R. A Model for Trophic Interaction[J]. Ecology,1975,56:881-892.
    [99] Crowley P H, Martin E K. Functional Response and Interference Within and Be-tween Year Classes of a Dragonfly Population[J]. Journal of Nature American Ben-thol Society,1989,8:211-221.
    [100] Jost C, Arditi R. From Pattern to Process: Identifying Predator-Prey Interactions[J].Population Ecology,2001,43:229-243.
    [101] Skalski G T, Gilliam J F. Functional Responses with Predator Interference: ViableAlternatives to the Holling Type II Model[J]. Ecology,2001,82:3083-3092.
    [102] Cantrell R S, Cosner C. On the Dynamics of Predator-Prey Models with theBeddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysisand Applications,2001,257:206-222.
    [103] Hwang T W. Global Analysis of the Predator-Prey System with Beddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysis and Appli-cations,2003,281:395-401.
    [104] Hwang T W. Uniqueness of Limit Cycles of the Predator-Prey System withBeddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysisand Applications,2004,290:113-122.
    [105] Fan M, Kuang Y. Dynamics of a Nonautonomous Predator-Prey System with theBeddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysisand Applications,2004,295:15-39.
    [106] Liu Z, Yuan R. Stability and Bifurcation in a Delayed Predator-Prey System withBeddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysisand Applications,2004,296:521-537.
    [107] Liu S, Zhang J. Coexistence and Stability of Predator-Prey Model withBeddington-DeAngelis Functional Response and Stage Structure[J]. Journal ofMathematical Analysis and Applications,2009,342:446-460.
    [108] Zhao M, Lv S. Chaos in a Three-Species Food Chain Model with a Beddington-DeAngelis Functional Response[J]. Chaos, Solitons&Fractals,2009,40:2305-2316.
    [109] Zhao M, Zhang L. Permanence and Chaos in a Host-Parasitoid Model with Pro-longed Diapause for the Host[J]. Communications in Nonlinear Science and Nu-merical Simulation,2009,14:4197-4203.
    [110] Gakkhar S, Negi K, Sahani S K. Efects of Seasonal Growth on a Ratio-DependentDelayed Prey-Predator System[J]. Communications in Nonlinear Science and Nu-merical Simulation,2009,14:850-862.
    [111] Li W, Wang L. Stability and Bifurcation of a Delayed Three-Level Food ChainModel with Beddington-DeAngelis Functional Response[J]. Nonlinear Analysis:Real World Applications,2009,10:2471-2477.
    [112] Guo G, Wu J. Multiplicity and Uniqueness of Positive Solutions for a Predator-PreyModel with B-D Functional Response[J]. Nonlinear Analysis,2010,72:1632-1646.
    [113] Nie H, Wu J. Coexistence of an Unstirred Chemostat Model with Beddington-DeAngelis Functional Response and Inhibitor[J]. Nonlinear Analysis: Real WorldApplications,2010,11:3639-3652.
    [114] Wang X, Tao Y, Song X. A Delayed HIV-1Infection Model with Beddington-DeAngelis Functional Response[J]. Nonlinear Dynamics,2010,62:67-72.
    [115] Li H, Takeuchi Y. Dynamics of the Density Dependent Predator-Prey System withBeddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysisand Applications,2011,374:644-654.
    [116] Haque M. A Detailed Study of the Beddington-DeAngelis Predator-Prey Model[J].Mathematical Biosciences,2011,234:1-16.
    [117] Zhang G, Wang W, Wang X. Coexistence States for a Difusive One-Prey and Two-Predators Model with B-D Functional Response[J]. Journal of Mathematical Anal-ysis and Applications,2012,387:931-948.
    [118] Mao X. Stochastic Stabilisation and Destabilisation[J]. Systems Control Letters,1994,23:279-290.
    [119] Mao X. A Note on the LaSalle-Type Theorems for Stochastic Diferential DelayEquations[J]. Journal of Mathematical Analysis and Applications,2002,268:125-142.
    [120] Li Z, Zhao K, Li Y. Multiple Positive Periodic Solutions for a Non-autonomousStage-Structured Predatory-Prey System with Harvesting Terms[J]. Communica-tions in Nonlinear Science and Numerical Simulation,2010,15:2140-2148
    [121] Zeng Z. Periodic Solutions for a Delayed Predator-Prey System with Stage-Structured Predator on Time Scales[J]. Computers&Mathematics with Applica-tions,2011,61:3298-3311.
    [122] Huang C, Li Y, Huo H. The Dynamics of a Stage-Structured Predator-Prey Systemwith Impulsive Efect and Holling Mass Defence[J]. Applied Mathematical Mod-elling,2012,36:87-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700