寨底地下河系统水质演化趋势及碳汇通量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在寨底地下河系统水文地质调查以及流量和水化学动态监测的基础上,分析了寨底地下河系统的特征,特别是通过水质评价和水质变化趋势的分析,总结了1983年~1984年和2008年~2010年两个时段的水质演化趋势,探讨了地下河硝酸盐氮的来源,并计算了两个时段的岩溶碳汇量和碳汇通量。
     寨底地下河系统具有多块多层结构的特点,含水介质高度不均匀,以注入、渗漏和入渗的方式补给,仍具天然流场状态,但不具有统一的地下水动力场,而具有高度非连续水流的特点,“三水”转化频繁,动态变化大,富Ca(Mg)偏碱性环境。地下水化学类型为HCO_3—Ca型,pH值范围为7.05~7.86。阳离子及HCO_3-总体表现为稀释效应,低值现雨季,峰值在旱季,年际变化不具有重现性。SO42与Cl-变化与人类活动关系较为密切,其含量较低,变化不大。
     水质评价综合分析结果显示,影响寨底地下河水质的指标主要有Pb、NO2-和Ni,集中出现在1984年和2008年,2009年~2010年水质几乎全部是Ⅰ类水。从多年变化趋势分析,寨底地下河水质呈现出逐渐变好的趋势,从Ⅱ、Ⅲ类水逐渐变为Ⅰ类水。采用差值法和比值法对比分析,直观地反映了水质变化趋势,K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-、SO_4~(2-)、HCO_3~-等7项常规指标中,只有Mg~(2+)含量减少,其余都增加但幅度不大;微量元素中Cu、Zn、Ni、Mn的检出率较高,其余偶尔被检出,两个时段的差值<0,比值<1;Cu、Cd、As差值≥0,比值≥1。
     NO_3-、NO2-、NH_4~+都呈增加的趋势,尤其是NO_3-普遍出现。NO_3-平均值的差值为2.28 mg/l,两个时段相差2.6倍;NO_2~-平均值的差值为0.0645mg/l,两个时段相差22.5倍,最大可达105倍。通过地下水硝酸盐氮氧同位素分析和结合土地利用方式判定寨底地下河硝酸盐来源于以动物粪便为主的厩肥的污染。δ15N值的变化范围是10.44‰~18.52‰。
     2008年~2010年寨底地下河系统年碳汇通量为68.82 t(/km2 a)(平水年),1984年为51.56 t/(km2 a)(偏枯年)。地下河流量和HCO_3-浓度共同影响岩溶碳汇强度的大小,HCO_3-浓度与碳汇强度呈现出负相关的趋势,但不具线性关系,流量与岩溶碳汇强度具有很好的线性正相关关系。
On the basis of the hydrogeological survey, flow rate and water chemistrydynamic monitoring of Zhaidi underground river system, the characteristics of Zhaidiunderground river system was analyzed in this paper, furthermore, water qualityevolution trends of two periods (1983 to 1984 and 2008 to 2011)was summarizedusing water quality evaluation method and analytical approach of water qualityvariation. The source of nitrate-N of underground river was discussed and karstcarbon sink amount and flux of the two periods also were estimated respectively.
     Zhaidi underground river system is characterized by multi-block and multi-layerstructure, aquifer media is highly heterogeneous, recharging by inpouring, percolatingand infiltration. It is still in the state of natural flow field without uniformhydrodynamic field. However, it is featured as a highly non-continuous flow systemwith high-frequency transferring rate of“three water”, large variation range of waterflow, Ca (Mg)-rich alkaline environment.The groundwater chemical type is HCO_3-Catype with pH ranging from 7.05 to 7.86. Cations and HCO_3-mainly were controlled bydilution effect and present low values in rainy season, high values in dry season, andirreproducible interannual variation. The contents of SO42-and Cl-are low with littlechange and has close relationship with human activities.
     Comprehensive analysis results of water quality evaluation show that theindicators of affecting the underground river water quality mainly include Pb, NO2-,and Ni, mostly occurredin 1984 and 2008, the water quality in 2009 to 2010 is almostall in class-I water. Years of trend analysis indicated that the water quality of Zhaidiunderground river system shows improvement gradually from class II or III to class I.Difference method and ratio method was employed to analyse the water quality trendsand good results was obtained, in which only Mg~(2+)content decreases while six ofother general indicators increase at small range, including K+, Na+, Ca~(2+), Cl-, SO42-,HCO_3-; detection rates for Cu, Zn, Ni, Mn is high, the rest of trace elements are occasionally been detected, the difference value between the two periods is less thanzero, the ratio is smaller than one; and the difference value for Cu, Cd, As is largerthan or equal to zaro, and the ratio is greater than or equal to one.
     NO_3~-, NO_2~-and NH4+present an increasing trend. The mean value difference ofNO_3-is 2.28mg/l with 2.6 timesdifference between two periods is; the mean valuedifference of NO2-is 0.0645mg/l with 22.5 times difference between two periods,maxima up to 105 times. Nitrate source of Zhaidi underground river wass determinedbased on the analysis of groundwater nitrate nitrogen and oxygen isotope and land usepatterns, it mainly comes from manure pollution(animal waste).δ15N values rangefrom 10.44‰to 18.52‰.
     The carbon sink fluxes of the Zhaidi underground river system in years of2008-2010 and 1984 were estimated to be 68.82 t/km2·a (normal year) and51.56t/km2·a (dry year) respectively. The size of karst carbon sink intensity isinfluenced by bothunderground river flow and [HCO_3-]concentration.The [HCO_3-]concentration and the carbon sink intensity showed a negative correlation trend(non-linear relationship). Karst carbon sink intensity has a good linear correlationrelationship with water flow.
引文
[1]杨立铮,中国南方地下河分布特征[J],中国岩溶,1985.4(1-2):92-100.
    [2]马福臣等,从地球过程到人地和谐——关于地球系统研究科学战略的思考[J],地球科学进展,2005,20(5):490-498.
    [3]王焰新、马腾、郭清海、马瑞,地下水与环境变化研究[J],地学前缘,2005,12(特刊):14-21.
    [4]陈佑启,杨鹏,国际上土地利用/土地覆盖变化研究的新进展[J],经济地理,2001,21(1):95-100.
    [5]袁道先,全球岩溶生态系统对比:科学目标和执行计划,地球科学进展,2001,16(4):461-466.
    [6]李秀彬,全球环境变化研究的核心领域-土地利用/土地覆被变化的国际研究动向[J],地理学报,1996,50(6):553-558.
    [7]刘春蓁,气候变化对陆地水循环影响研究的问题[J],地球科学进展,2004,19(1):115-119.
    [8]丑纪范,水循环基础研究的观念、方法、问题和可开展的工作[J],科技导报,2003(1):3-6.
    [9]袁道先、蔡桂鸿.岩溶环境学[M],重庆出版社,1988.5.
    [10]袁道先、朱德浩,等.中国岩溶学[M],地质出版社,1994.4.
    [11]何宇彬、韩宝平,等.中国喀斯特水研究[M],同济大学出版社,1997.5.
    [12]袁道先,以地球系统科学理论推动水文地质学发展-21世纪水文地质学发展战略与优先资助领域研讨会[J],水文地质工程地质,2003(1)。
    [13]赵其国,刘良梧我国土地资源在人为利用条件下的变化及其对环境的影响[J],土壤,1990,22(5):225-233.
    [14]陈梦熊,固体废物污染的调查研究与地质处理[J],中国地质,1990(2):5-10.
    [15] JEONG C H. Effect of land use and urbanization on hydrochemistry and contamination ofgroundwater from Taejon area,Korea[J] Journal of Hydrology, 2001 ,253:194-210.
    [16]YOON Y K, KANG L K, S UNG I H. Urbanization and the groundwater budget,metropolitanSeoul area,Korea[ J ].Hydrogeology Journal,2001,9(4) :401-412.
    [17]谈树成,薛传东,赵筱青,城市化进程中地下水资源的可持续利用分析[J],中国人口·资源与环境,2001,11(总51):8-9.
    [18]李昌峰,高俊峰,曹慧土地利用变化对水资源影响研究的现状和趋势[J],土壤,2002,34(4):191-196.
    [19]史培军,宋长青,景贵飞.加强我国土地利用/覆盖变化及其对生态环境安全影响的研究[J],地球科学进展,2002,17(2):161-168
    [20]于开宁,万力,都沁军.城市化影响地下水水质的正负效应[J],地球科学-中国地质大学学报,2003,28(3):333-336.
    [21]马兴旺,李保国,吴春荣,等,民勤绿洲现状土地利用模式影响下地下水位时空变化的预测[J],水科学进展,2003,14(l):85-90.
    [22]张凤娥.土地利用对地下水系统的影响[J],地理与地理信息科学,2004,20(4):93-96.
    [23] Kastrinos, J.R., White, W.B. Seasonal, hydrogeologic and land-use controls on nitratecontamination of carbonate ground waters. Proc. Environmental Problems in Karst Terranesand their Solutions Conference (Bowling Green,KY),1986,88-114.
    [24]Mark Ellaway,Brian Finlayson and John Webb. The impact of land clearance on karstgroundwater: a case study from Buchan,Victoria, Australia,Karst Hydrogeology and HumanActivities,International Contributions to Hydrogeology,1998,Vol,20: 51-52.
    [25]Lichon, M.. Human impacts on processes in karst terranes,with special reference to Tasmania.Cave Science, 1993,20(2): 55-60.
    [26]Anthony T Laws. Using hydrogeological maps and data sets to combat salinization in westernAustralia. Hydrogeology and Land Use Management,Congress of International Associationof Hydro-geologists. Bratislava, Slovak Republic,1999, 73-78.
    [27]Lushichik,A. Formation of hydrochemical groundwater regime of karstifying carbonaceousdeposits within the limits of irrigated landmasses of the Flat Crimea. In: Impact ofAgricultural Activities on Groundwater (International Symposium,Prague, Czechoslovakia),IAH Memories, 1982,16,3:307-315, Novinar Publishing House, Prague.
    [28]António Chambel and Jorge Duque. Hard rock aquifers of Alentejo region (South Portugal):contribution to the water and land use management. Hydrogeology and Land UseManagement,Congress of International Association of Hydro-geologists. Bratislava, SlovakRepublic,1999, 171-176.
    [29]Libra, R.D., Hallberg, G.R., Hoyer,B.E.. Impacts of agricultural chemicals on groundwaterquality in Iowa.In: Fairchild, D.M. (ed) Ground Water Quality and Agricultural Practices,1987. 185-217, Lewis Publishers, Chelsea;
    [30]Libra, R.D., Hallberg, G.R., Hoyer, B.E., Johnson,L.G.. Agricultural impacts on groundwaterquality: the Big Spring basin study, Iowa. In: Agricultural Impacts on Groundwater, NationalWater Well Association, Worthington OH, 1986. 253-273.
    [31]Robert D. Libra and George R. Hallberg. Impacts of agriculture on water quality in the BigSpring basin, NE Iowa, U.S.A. Karst Hydrogeology and Human Activities,InternationalContributions to Hydrogeology,1998, l(20): 57-58.
    [32]L. F. Molerio León and J. Gutiérrez Díaz. Agricultural impacts on Cuban karstic aquifers.Karst Hydrogeology and Human Activities,International Contributions toHydrogeology,1998,(l.)20: 58-60.
    [33]Ramón Aravena, Miguel Auge, Norberto Bucich. Evaluation of the origin of groundwaternitrate in the city La Plata-agentina,using isotope techniques. Hydrogeology and Land UseManagement,Congress of International Association of Hydro-geologists.Bratislava, SlovakRepublic,1999,323-327.
    [34]Pertti Lahermo and Birgitta backman. Nitrates in groundwater in Finland-the mostendangering quality problem.Hydrogeology and Land Use Management,Congress ofInternational Association of Hydro-geologists. Bratislava, Slovak Republic,1999,329-333.
    [35]Alice Fialho, António Chambel and Jorge Duque. Relation between geomorphology, land useand water management in the gneissic and migmatitic aquifer system of Evora(southPortugal). Hydrogeology and Land Use Management,Congress of International Associationof Hydro-geologists. Bratislava, Slovak Republic,1999,159-163.
    [36]Andrzej J. Witkowski. Change of sulphates concentrations in groundwater of katowiceregional water management council. Hydrogeology and Land Use Management,XXIXCongress of International Association of Hydro-geologists. Bratislava, Slovak Republic, 1999,575-580.
    [37] Milde, K., Milde, G., Ahlsdorf, B., Litz, N., Muller-Wegener, U., Stock,R.. Protection ofhighly permeable aquifers against contamination by xenobiotics.In: Karst Hydrogeology andKarst Environment Protection (Proceedings 21st IAH Congress, Guilin, China), Part 1,1988,194-201, Geological Publishing House, Beijing.
    [38]Fetter, C.W. (1993). Contaminant hydrogeology.458 p. Macmillan, New York.
    [39]Barker, J.F., Cherry, J.A., Reindard, M., Pankow, J.F., Zapico, M.M. (1989). Final report: Theoccurrence and mobility of hazardous organic chemicals in groundwater at several Ontariolandfills: Research Advisory Committee Project No. 118 PL for Environment Ontario, 148 p.
    [40]Howard, K.W.F., Eyles, N., Livingstone, S. Municipal landfilling practice and its impact ongroundwater resources in and around urban Toronto, Canada. Hydrogeology Journal, 1996,4(1): 64-79.
    [41]AndréL. B. Silva, Raphael Hypolito, Dr., Márcio H. Terra. Environmentaldiagnosis,monitoring and research of heavy metals behavior methodology insoil-water-contaminant system in a contaminated area in Santa Gertrudes, Brazil.Hydrogeology and Land Use Management,XXIX Congress of International Association ofHydro-geologists. Bratislava, Slovak Republic,1999,519-521.
    [42]Stephenson, J.B., Beck, B.F.,Management of the discharge quality of highway runoff in karstareas to control impacts to ground-water-a review of relevant literature. In: Proceedings ofthe 5th Multidisciplinary Conference on sinkholes and the environmental impacts of karsts,Galtinburg,Tennessee. 1995, 297~-321, Balkema,Rotterdam.
    [43]贾亚男,袁道先.土地利用对贵州水城盆地岩溶水水质的影响[J].地理学报,2003,58(6):632-838.
    [44]Jia yanan, Yuan daoxian,The Influence of Land use on Karst Water Quality in ShuichengBasin in Guizhou Province [J]. ATCA GEOGRAPHY,2004,14(2): 143-150.
    [45]Jiang Yong-jun, Yuan Dao-xian,Zhang Cheng. Impact of land use change on groundwaterquality in a karst agricultural region of Southwest China: a case study of Xiaojiang watershed,Yunnan. Environmental Geology(in press).
    [46]蒋勇军,袁道先,张贵等,岩溶流域土地利用变化对地下水质的影响--以云南小江流域为例[J].自然资源学报, 2004,6:707-715.
    [47]Do Tuyet, Characteristics of Karst Ecosystems of Vietnam and Their Vulnerabilty to HumanImpact. Acta Geologica Sinica(English Edition),Vol.75, No.3,2001,325-329.
    [48]蔡运龙.中国西南岩溶石山贫困地区的生态重建[J].地球科学进展.1996,11(6): 602-606.
    [49]章程、袁道先,典型岩溶地下河流域水质变化与土地利用的关系-以贵州普定后寨地下河流域为例,水土保持学报,2004,18(5):134-137.
    [50]贾亚男、刁承泰、袁道先,土地利用对埋藏型岩溶区岩溶水质的影响-以涪陵丛林岩溶槽谷区为例[J],自然资源学报,2004,19(4):455-461.
    [51]张水龙、庄季屏,农业非点源污染研究现状与发展趋势[J],生态学杂志,1998,17(6):51-55.
    [52]Novotny,V. Chesters,G. Handbook of Nonpoint Pollution: Source and Management. VanNostrand Reinhold Company,1981.4 -387.
    [53]李怀恩,流域非点源污染模型研究进展与发展趋势[J],水资源保护,1996,(2):14-18.
    [54]周密等,环境容量[M].东北师范大学出版社,长春,1987.
    [55]张逢甲,水体容许负荷量计算[J],水文,1993,(2):21-26.
    [56]邹锐,洱海富营养化时空分布模糊评价及成因对策分析[J],环境科学研究,1995,8(3):36-41.
    [57]Sharpley,A.N. et al. The environmental impact of agricultural nitrongen and phosphorus use.J.A-gric. Food Chem,1987,36 :812 -817.
    [58]沈景文,化肥农药和污灌对地下水的污染[J],农业环境护,1992,11(3):137-139.
    [59]朱济成,关于氮肥地下水流失率的初步研究[J],环境科学,1983,4(5):35-39.
    [60]吕耀,农业生态系统中氮素造成的非点源污染[J],农业环境保护,1998,17(1):35-39.
    [61]Canter L W. Vitiate in Groundwater[M].New York:CRC Press,1997.39-110.
    [62]Spalding R F, Exner M E. Occurrence of nitrate in groundwater-A Review [J],J EnvironQual,1993, 22(3): 392-402.
    [63]Solan B T, Buddy B C, Hitt K J, Helsel I> B. Risk of nitrate in groundwater of theLnited States A national perspective[J].
    [64]张翠云、郭秀红,氮同位素技术的应用:土壤有机氮作为地下水硝酸盐污染源的条件分析[J],地球化学,2005,9(5):533-540.
    [65]Kohl D H,Shearer C B,Commoner B, Fertilizer nitrogen:Contribution to nitrate in surfacewater in a corn belt watershed[J],Science,1971,174:1331-1334.
    [66] Heaton T.H.E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: areview. Chemical Geology (Isotope Geochemistry Section), 1986, 59: 87-102.
    [67] Wassenaar L.I. Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using theisotopes of15N and18O in NO3-[J]. Applied Geochemistry, 1995,10: 391-405.
    [68] Feast N.A., Hiscok K.M., Dennis P.F.,et al. Nitrogen isotope hydrochemistry anddenitrification within the Chalk aquifer system of north Norfolk, UK. Jornal. Hydrology,1998,211: 233-252.
    [69] Silva S.R., Ging P.B., Lee R.W., et al. Forensic applications of nitrogen and oxygen isotopesin tracing nitrate sources in urban environments[J].Environmental Forensices, 2002,3:125-130.
    [70]邢光熹,曹亚澄,施书莲等.太湖地区水体氮的污染源和反硝化[J].中国科学(B辑),2001,31(2):130-137.
    [71]毕二平,李政红.石家庄市地下水中氮污染分析[J].水文地质工程地质, 2001, 2 :31-34.
    [72]张翠云,王昭,程旭学.张掖市地下水硝酸盐污染源的氮同位素研究[J],干旱区资源与环境,2004,18(1):79-85.
    [73]肖化云,刘丛强.氮同位素示踪贵州红枫胡河流季节性氮污染[J],地球与环境,2004,32(1):71-75.
    [74]周爱国、陈银琢、蔡鹤生,等.水环境硝酸盐氮污染研究新方法-15N和18O相关法[J],中国地质大学学报,2003,28(2):219-223.
    [75]Xing Guang-xi,Cao Ya-cheng, Shi Shu-lian, et al. N pollution sources and denitrification inwaterbodies in Taihu lake region[J],Science in China (B),2001,44(3): 304-314.
    [76]金赞芳,王飞儿,陈英旭,等.城市地下水硝酸盐污染及其成因分析[J],土壤学报,2004,41(2):252-258.
    [77]杨琰、蔡鹤生、刘存富等,NO3-中15N和18O同位素新技术在岩溶地区地下水氮污染研究中的应用[J],中国岩溶,2004,23(3):206-211.
    [78]朱琳,苏小四.地下水硝酸盐中氮、氧同位素研究现状及展望[J],世界地质,2003,22(4):396-403.
    [79]张翠云,沈照理.地下水硝酸盐中氧同位素研究进展[J],地学前缘,2003,10(2):287-211.
    [80]蒋勇军,袁道先,谢世友,等.典型岩溶农业区地下水质与土地利用变化-以云南小江流域为例[J],地理学报,2006,61(5):471-478。
    [81]袁道先.现代岩溶学和全球变化研究[J].地学前缘, 1997,4(1-2): 17-25.
    [82]袁道先蒋忠诚. IGCP 379“岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质,2000,(01): 49-51.
    [83]Yuan D. The carbon cycle in karst[J]. Zeitschrift fur Geomorophologie Neue Folge,1997,108(suppl-Bd): 91-102.
    [84]袁道先.“岩溶作用与碳循环”研究进展[J].地球科学进展,1999,14(05):425-432.
    [85]Hartmann J, Jansen N, Dürr HH, et al. Global CO2-consumption by chemical weathering:What is the contribution of highly active weathering regions?[J]. Global and PlanetaryChange, 2009,69(4): 185-194.
    [86]Aloisi G, Wallmann K, Tishchenko P, et al. A possible long-term CO2sink through submarineweathering of detrital silicates[J]. Geochimica et Cosmochimica Acta, 2006,70(18,Supplement 1): A11-A11.
    [87]Kerrick DM, Caldeira K. Was the Himalayan orogen a climatically significant coupled sourceand sink for atmospheric CO2during the Cenozoic[J]. Earth and Planetary Science Letters,1999,173(3): 195-203.
    [88]Ludwig W, Amiotte-Suchet P, Probst J-L. Enhanced chemical weathering of rocks during thelast glacial maximum: a sink for atmospheric CO2[J].Chemical Geology, 1999,159(1-4):147-161.
    [89]Mortatti J, Probst J-L. Silicate rock weathering and atmospheric/soil CO2uptake in theAmazon basin estimated from river water geochemistry: seasonal and spatial variations[J].Chemical Geology, 2003,197(1-4): 177-196.
    [90]Navarre-Sitchler A, Thyne G. Effects of carbon dioxide on mineral weathering rates at earthsurface conditions[J]. Chemical Geology, 2007,243(1-2): 53-63.
    [91]刘玉.花岗岩风化碳汇规律及影响因素研究[D].重庆:西南大学, 2006.
    [92]袁道先.中国岩溶动力系统[M].北京:地质出版社, 2002.
    [93]Macpherson GL. CO2distribution in groundwater and the impact of groundwater extraction onthe global C cycle[J]. Chemical Geology, 2009,264(1-4): 328-336.
    [94]蒋倩,李心清,丁文慈,等.岩溶水系统对大气CO2的潜在影响——基于热力学的研究[J].矿物岩石地球化学通报, 2006,25(03): 226-235.
    [95]刘再华.Wolfgang D,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20):2418-2422.
    [96]Sarmiento JL, Hughes TMC, Stouffer RJ, et al. Simulated response of the ocean carbon cycleto anthropogenic climate warming[J]. Nature, 1998,393(6682):245-249.
    [97]Rixen T, Guptha MVS, Ittekkot V. Deep ocean fluxes and their link to surface oceanprocesses and the biological pump[J]. ProgressIn Oceanography, 2005,65(2-4): 240-259.
    [98] Silva,S.R.,C.Kendall,D.H.Wilkison,et al. A New Method for collection of Nitrate from FreshWater and the Analysis of Nitrogen and Oxygen Isotope Ratios [J]. Journal of Hydrology,2000, 228:22-36
    [99]杨琰.NO3-中15N和18O同位素测试新技术及其在安林地区地下水氮污染研究的应用[D].武汉:中国地质大学,2003,5-9.
    [100]刘丛强等.生物地球化学过程与地表物质循环-西南喀斯特流域侵蚀与生源要素循环
    [M].北京:科学出版社,2007:545-552
    [101]邵益生,纪杉,查伶娜.地下水中硝酸盐污染来源的氮同位素研究[R].国家自然科学基金资助项目成果报告,1991.
    [102] Kendall C, Aravena R. Nitrate isotopes in groundwater systems [ C ]∥Cook P, Herczeg AL, eds. Environmental Tracers in Subsurface Hydrology. Dordrecht: Kluwer AcademicPublishers, 1999: 261-297.
    [103] Kendall C, McDonne J J. Isotope Tracers in Catchment Hydrology [M].Amsterdam:Elsevier Science, 1998, 519-576.
    [104] Fukada T, Hiscock KM, Dennis P F, et al. A dual isotope app roach to identify denitrificationin groundwater at a river bank infiltration site [J]. Water Research, 2003, 37: 3070-3078.
    [105] Devito K J, Fritzgerald D, Hill A R, et al. Nitrate dynamics in relation to lithology andhydrologic flow path in a river riparian zone [J]. Journal of Environmental Quality, 2000, 29:1075-1084.
    [106]王松,裴建国,梁建宏.利用氮氧同位素研究桂林寨底地下河硝酸盐来源[J].地质灾害与环境保护,2010,21(4):44-47.
    [107]朱琴,姜光辉,裴建国.寨底地下河流域地表明流弥散系数研究[J].人民长江,2011,42(4):33-35.
    [108] Mackenzie F T, Mackenzie J A. Our Changing Planet, An Introduction To Earth SystemScience and Global Environmental Change [M], Prentice Hall. 1995, 1-292.
    [109] Yuan D.The carbon cycle in karst [J]. Z. Geomorph. N.F, Suppl.–Bd. 1997, 108: 91-102.
    [110] Liu Z, Zhao J. Contribution of carbonate rock weathering to the atmospheric CO2sink [J].Environ Geol. 2000, 39: 1053-1058.
    [111]袁道先.碳循环与全球岩溶[J].第四纪研究. 1993, 1: 1-6.
    [112]袁道先.地质作用与碳循环研究的回顾和展望[J].科学通报. 2011, 56(26): 2157.
    [113]章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报. 2011, 56(26): 2174-2180.
    [114] Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles oncarbonate equilibrium in a karst river [J]. Chemical Geology.2011, 283: 31-43.
    [115] Zhang Z C, Lian B, Hou W G, et al. Bacillus mucilaginosus can capture atmospheric CO2bycarbonic anhydrase [J]. Afr J Microbiol Res. 2011, 5: 106-112.
    [116]袁道先,刘再华,林玉石等.中国岩溶动力系统[M].北京:地质出版社. 2002, 39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700