用户名: 密码: 验证码:
固醇调节元件结合蛋白-2激活相关通路基因与冠心病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     冠状动脉粥样硬化性心脏病(冠心病,Coronary heart disease,CHD)是一种重大慢性非传染性疾病,受多种环境因素和遗传因素共同影响。已证实血脂代谢异常,尤其是高胆固醇血症,是心血管疾病最重要和可控制的危险因素之一,在CHD的一级及二级预防试验中均显示降脂治疗能明显降低心血管疾病的危险性。因此,血脂代谢相关的基因成为CHD遗传易感性研究重要的候选基因。固醇调节元件结合蛋白(Sterol regulatory element binding protein,SREBP)属于转录因子超家族,可激活一系列涉及胆固醇、不饱和脂肪酸、甘油三酯等生物合成及脂质摄取所需要的酶的转录。已经被确定的成员包括三个:SREBP1a,SREBP1c和SREBP2,其中SREBP2基因主要调节参与胆固醇代谢酶的转录。SREBP生成后以无活性的蛋白质前体形式固定于内质网膜上,需从内质网转移到高尔基体被水解激活释放出活性片段,进入细胞核调节转录。这个转运激活过程需要两种(三个)蛋白的参与调节:固醇调节元件结合蛋白裂解激活蛋白(SREBPcleavage-activating protein,SCAP)和胰岛素诱导基因1(Insulin induced gene 1,INSIG1)、胰岛素诱导基因2(Insulin induced gene 2,INSIG2)。本研究拟以SREBP2基因及其激活相关通路的上述三个基因为候选基因,在CHD病例-对照样本中,探讨这几个基因是否独立与CHD相关及是否存在交互作用。
     材料和方法
     随机入选1997年10月至2001年12月期间阜外心血管病医院收治的居住在北京地区的853例CHD患者,包括存活的急性心肌梗死患者和经冠状动脉造影证实的CHD患者。所有患者均发病3个月或3个月以上,且病情稳定,并经各项检查排除心脏瓣膜疾病、先天性心脏病、心力衰竭、严重的肾脏及肝脏疾病、继发性高血压、心肌病、家族性高胆固醇血症和严重肝肾及甲状腺疾病患者。对照样本来自亚洲国际心血管疾病协作研究(International Collaborative Study ofCardiovascular Disease in Asia,InterASIA)的北京样本。选择居住在北京,年龄(±2岁)、性别与病例匹配的社区人群948例作为对照组。对照组入选标准:心电图无缺血性改变;无胸痛、胸闷等心脏病症状;经Rose问卷、临床检查及CHD病史来排除CHD。所有参加者均为中国汉族人,无血缘关系。对所有入选者采用统一的调查表详细进行调查,包括人口统计学和一般情况、心血管疾病的个人史(包括现病史和既往史)及家族史、吸烟与饮酒史、服药情况。测量血压、身高和体重;计算体重指数(Body mass index,BMI),腰臀比值。检测血糖、血脂等各项生化指标。从HapMap网站下载这四个候选基因序列范围内(上下游各扩展2kb)的45个中国人的单核苷酸多态(Single nucleotide polymorphism,SNP)信息,选择常见SNP计算连锁不平衡状态并构建单体型,使用Haploview4.0软件包选择标签SNP。使用聚合酶链式反应(Polymerase chain reaction,PCR)和限制性片段长度多态(Restriction fragment length polymorphism,RFLP)方法对1801个研究对象进行基因型鉴定。t检验、方差分析及x~2检验用于单变量分析,非条件Logistic回归分析用于检验多态位点与表型的独立关联,以上分析过程由SPSS13.0来完成。应用Haplo.stats软件分析校正环境因素后单体型与表型的关联。采用多因子降维法(Multifactor dimensionality reduction,MDR)方法分析基因之间的交互作用。
     结果
     病例组平均年龄及男性比例高于对照组,病例组高血压患者、糖尿病患者及吸烟者比例也均高于对照组。此外,病例组收缩压(Systolicblood pressure,SBP)、低密度脂蛋白胆固醇(Low density lipoprotein cholesterol,LDL-C)、总胆固醇(Total cholesterol,TC)、甘油三酯(Triglyceride,TG)、体重指数(Body massindex,BMI)和血糖(Glucose,Glu)水平均高于对照组,高密度脂蛋白胆固醇(High density lipoprotein cholesterol,HDL-C)水平低于对照组。基于HapMap数据,分别选择了3个、4个、2个SNP作为INSIG1、INSIG2、SCAP基因的单体型标签SNP(Haplotype taging SNP,htSNP);同时选择SREBP2基因编码区的一个常见功能位点rs4822063为本研究关注的位点。结果发现:(1)与CHD的单点分析未发现与CHD相关的位点;(2)与血糖水平的单个位点分析显示,INSIG1基因SNP rs9769826位点与血糖水平显著相关,少见等位基因G携带者(GG+AG基因型)的血糖水平高于AA基因型携带者,分别为5.74±2.03mmol/L和5.45±1.37 mmol/L(P=0.015);(3)与血脂水平的单位点分析显示,SREBP2基因rs4822063位点与血LDL-C、TC水平相关。在对照组中CC基因型携带者的LDL-C、TC水平均较常见等位基因携带者(GG+GC基因型)水平高。LDL-C水平分别为3.44±0.90mmol/L和3.17±0.84mmol/L(P=0.031);TC水平分别为5.43±1.06mmol/L和5.13±0.97mmol/L(P=0.040)。(4)单体型与CHD的分析显示,INSIG1基因的单体型Hap3(TGA,位点按照rs10271719-rs9719268-rs9769826顺序,以下顺序同此)在病例组频率显著低于对照组(0.162 VS 0.203,校正的P=0.0102,simulation P=0.0107),而Hap4(TAA)在病例组频率高于对照组(0.129 VS 0.085,校正的P=0.00013,simulation P=0.00001)。与单体型Hapl(GGA)相比,INSIG1基因的单体型Hap4(TTA)与CHD危险增加相关,比值比(Odds ratio)为1.59(P=0.0006),双体型分析也发现了与CHD危险增加相关的双体型;Hap3(TGA)与降低的CHD患病危险相关(OR=0.74,P=0.006),同时携带Hap3的双体型Dip3和Dip5也显示与降低的CHD危险相关。(5)MDR和Logistic回归分析显示,2-SNP模型,包括INSIG1基因的rs10271719和rs9719268,显示最高的预测准确度(56.09%,P=0.002);另一个4-SNP模型,包括INSIG1-rs10271719、INSIG1-rs9719268、INSIG2-rs9308762、SCAP-rs4858868,也显示了交互作用。
     结论
     本研究显示SREBP2基因激活相关通路的INSIG1基因的单体型变异与CHD相关;INSIG1、INSIG2及SCAP基因间存在交互作用,与CHD发病危险相关;INSIG1基因的常见变异与血糖水平相关,而SREBP2基因的常见变异与血LDL-C及TC水平相关。希望我们的结果能得到其他独立样本的重复和进一步的功能验证。
Background
     Coronary heart disease (CHD) is a complex disease where both genetic and environmental factors interact to produce the phenotype. Dyslipidemia, especially hypercholesterolemia, is one of established major modifiable risk factors. It has been reported that lipid- lowering treatment could significantly decrease the risk of CHD in both primary and secondary prevention. Therefore, many genes involving in lipids metabolism have been considered to be important candidate genes to elucidate the genetic basis of CHD. Sterol regulatory element binding proteins (SREBPs), as a family of membrane-bound transcription factors, play important roles in feed back regulation of cellular cholesterol and fatty acid metabolism by activating related genes. The SREBPs include SREBP-1a, SREBP-1c, and SREBP-2, of which the SREBP2 preferentially activates cholesterol metabolism by binding sterol regulatory element (SRE) of the target genes involved in cholesterol synthesis such as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, HMG CoA synthase and uptake such as low density-lipoprotein (LDL) receptor (LDLR). The SREBPs are synthesized as inactive precursors residing in the endoplasmic reticulum (ER) membrane and activation of SREBPs require cleavage by two proteases in the Golgi apparatus. The transportation of SREBPs from ER to Golgi needs another two kinds of proteins, namely SREBP cleavage-activating protein (Scap) and insulin induced gene (Insig) proteins including Insig1 and Insig2. In present study, we conducted a case-control study in Chinese Han population to investigate the relationship between the genetic variants of the SREBPs activating pathway, involving SREBP2, SCAP, INSIG1 and INSIG2 genes, and risk of CHD.
     Methods
     A total of 1801 unrelated subjects were included in this study. We recruited 853 patients with CHD from patients hospitalized at the Fuwai Hospital and Cardiovascular Institute (Beijing, China) between October 1997 and December 2001. Eligible patients were those who survived an acute myocardial infarction or were documented by coronary angiography to have evidence of left main coronary artery≥50% and/or at least a 70% stenosis in any major coronary artery. Patients with congenital heart disease, cardiomyopathy, valvular disease, familial hypercholesterolemia and renal or hepatic disease were excluded. A total of 948 age-matched (±2 years) and gender-matched control subjects were randomly selected from individuals residing in Beijing and participating in the InterASIA (International Collaborative Study of Cardiovascular Disease in Asia). The controls were judged to be free of ischemic changes by ECG, without symptoms of chest pain and to be free of CHD by medical history, the Rose questionnaire and clinical examination. All subjects were Chinese Han nationality. Details of medical history were obtained from all participants by standardized questionnaire, together with information of drug intake, cigarette smoking, and alcohol consumption. Blood pressure, height, weight, waistline and were measured. Concentrations of serum lipids and glucose were determined by standard protocols.
     Haplotype-tagging SNPs (htSNPs) were chosen for SCAP, INSIG1 and INSIG2 with Haploview 4.0 software based on the genotyped SNPs in the Han Chinese of Beijing (CHB) of the HapMap project (the PhaseⅡdatabase, Apr 2007) within each gene and located in 2kb from 5' flanking upstream and 3' flanking downstream, respectively. One nonsynonymous-coding SNP rs4822063 in SREBP2 gene was selected. All SNPs were further genotyped in all subjects by using PCR-RFLP protocols. Association analyses were done separately for each of the SNPs and followed up by haplotype analyses. The Haplo.stats approach was used to test the association of statistically inferred haplotypes with CHD. The gene-gene interaction was examined using both the Multifactor Dimensionality Reduction (MDR) program (non-parametric) and Logistic regression model (parametric).
     Results
     Compared with the control group, the CHD group had more male and older patients and more individuals with hypertension, diabetes, alcohol consumption. Moreover, the patients had higher mean BMI and SBP, higher levels of serum triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and fasting glucose, and lower high density lipoprotein cholesterol (HDL-C) levels than the controls. Based on the genotyped SNPs in the Han Chinese of Beijing (CHB) of the HapMap project, we selected 3, 4, 2 htSNPs for the INSIG1, INSIG2 and SCAP genes. Our results: (1) Single polymorphism analyses on risk of CHD didn't show any association with CHD. (2) Single polymorphism analyses on plasma glucose showed that the SNP rs9769826 of the INSIG1 gene was significantly associated with plasma glucose among controls. The minor allele G carriers had higher glucose level than individuals with major AA homozygous genotype (5.74±2.03mmol/L versus 5.45±1.37mmol/L, p=0.015). (3) Single polymorphism analyses on plasma lipid levels showed that the rs4822063 of SREBP2 was associated with LDL-C in the controls. The genotype CC carriers had higher LDL-C and TC than the major allele G carriers (GG+GC) (3.44±0.90mmol/L versus 3.17±0.84mmol/L, p=0.031 for LDL-C; 5.43±1.06mmol/L versus 5.13±0.97mmol/L,p=0.040 for TC). (4) Haplotype analysis showed that haplotype Hap3 (TGA) of the INSIG1 gene had lower frequency in CHD patients compared with controls (0.162 vs 0.203, simulation p=0.0107). However, the haplotype Hap4 (TTA) had higher prevalence in the CHD patients (0.129 vs 0.085, simulation p=0.0001). The haplotype Hap4 significantly associated with an increased risk of CHD (adjusted OR=1.59, 95%CI: 1.22-2.06, p=0.0006), while the haplotype Hap3 significantly associated with a decreased risk of CHD (adjusted OR=0.74, 95%CI: 0.60-0.92,p=0.006), compared with the reference haplotype Hap1 (GGA). (5) Multi-loci interaction analyses indicated that the 2-locus model involving the rs10271719 and rs9719268 of the INSIG1 gene showed the highest level of testing accuracy (56.09%, p=0.002 on 1000 permutations) as well as the 4-locus model showed significant interaction underlying the pathgenesis of CHD by MDR and Logistic regression model.
     Conclusion
     The present study was the first time to illustrate the relationship between genetic variants from the SREBP2 activating-related pathway and CHD. Our results demonstrated a significant association between the INSIG1 gene variation and CHD. Our study also demonstrated a significant association between the SREBP2 gene variant and plasma lipid levels; and the INSIG1 gene variant was associated with plasma glucose. Moreover, our results provided evidence of interaction between the genes from SREBP2 activating-related pathway on risk of CHD for first time. Our findings warranted further study to replicate our results in other population and to elucidate the biological mechanism.
引文
1.World Health Organization.World Health Report 2003-Shaping the Future.2003,World Health Organition:Geneva,Switzerland.
    2.He J,Gu D,Wu X,et al.Major causes of death among men and women in China.N Engl J Med 2005;353(11):1124-34.
    3.Yusuf S,Hawken S,Ounpuu S,et al.Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries(the INTERHEART study):case-control study.Lancet 2004;364(9438):937-52.
    4.LaRosa JC,He J,Vupputuri S.Effect of statins on risk of coronary disease:a recta-analysis of randomized controlled trials.Jama 1999;282(24):2340-6.
    5.Stamler J,Daviglus ML,Garside DB,et al.Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary,cardiovascular,and all-cause mortality and to longevity.Jama 2000;284(3):311-8.
    6.Song Y,Stampfer MJ,Liu S.Meta-analysis:apolipoprotein E genotypes and risk for coronary heart disease.Ann Intern Med 2004;141(2):137-47.
    7.Boekholdt SM,Peters RJ,Fountoulaki K,et al.Molecular variation at the apolipoprotein B gene locus in relation to lipids and cardiovascular disease:a systematic meta-analysis.Hum Genet 2003;113(5):417-25.
    8.Boekholdt SM,Sacks FM,Jukema JW,et al.Cholesteryl ester transfer protein TaqIB variant,high-density lipoprotein cholesterol levels,cardiovascular risk,and efficacy of pravastatin treatment:individual patient meta-analysis of 13,677 subjects.Circulation 2005;111(3):278-87.
    9.Brown MS,Goldstein JL.The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.Cell 1997;89(3):331-40.
    10.Horton JD,Shah NA,Warrington JA,et al.Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes.Proc Natl Acad Sci U S A 2003;100(21):12027-32.
    11.Brown MS,Goldstein JL.A proteolytic pathway that controls the cholesterol content of membranes,cells,and blood.Proc Natl Acad Sci U S A 1999;96(20):11041-8.
    12.Goldstein JL,DeBose-Boyd RA,Brown MS.Protein sensors for membrane sterols.Cell 2006;124(1):35-46.
    13.Robinet P,Vedie B,Chironi G,et al.Characterization of polymorphic structure of SREBP-2 gene:role in atherosclerosis.Atherosclerosis 2003;168(2):381-7.
    14.Friedlander Y,Schwartz SM,Durst R,et al.SREBP-2 and SCAP isoforms and risk of early onset myocardial infarction.Atherosclerosis 2007.
    15.Durst R,Jansen A,Erez G,et al.The discrete and combined effect of SREBP-2 and SCAP isoforms in the control of plasma lipids among familial hypercholesterolaemia patients.Atherosclerosis 2006;189(2):443-50.
    16.Fiegenbaum M,Silveira FR,Van der Sand CR,et al.Determinants of variable response to simvastatin treatment:the role of common variants of SCAP,SREBF-la and SREBF-2genes.Pharmacogenomics J 2005;5(6):359-64.
    17.Duan X,Zhu W,Li Y,et al.The effect of sterol regulatory element-binding protein 2polymorphism on the serum lipid in northern Chinese subjects.J Lipid Res 2005;46(2):252-7.
    18.The International HapMap Project.Nature 2003;426(6968):789-96.
    19.Gabriel SB,Schaffner SF,Nguyen H,et al.The structure of haplotype blocks in the human genome.Science 2002;296(5576):2225-9.
    20.Qin ZS,Niu T,Liu JS.Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms.Am J Hum Genet 2002;71(5):1242-7.
    21.Schaid DJ,Rowland CM,Tines DE,et al.Score tests for association between traits and haplotypes when linkage phase is ambiguous.Am J Hum Genet 2002;70(2):425-34.
    22.Lake SL,Lyon H,Tantisira K,et al.Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous.Hum Hered 2003;55(1):56-65.
    23.Hahn LW,Ritchie MD,Moore JH.Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions.Bioinformatics 2003;19(3):376-82.
    24.Ritchie MD,Hahn LW,Roodi N,et al.Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer.Am J Hum Genet 2001;69(1):138-47.
    25.Risch NJ.Searching for genetic determinants in the new millennium.Nature 2000;405(6788):847-56.
    26.Risch N,Merikangas K.The future of genetic studies of complex human diseases.Science 1996;273(5281):1516-7.
    27.Daly MJ,Rioux JD,Schaffner SF,et al.High-resolution haplotype structure in the human genome.Nat Genet 2001;29(2):229-32.
    28.Hua X,Yokoyama C,Wu J,et al.SREBP-2,a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element.Proc Natl Acad Sci U S A 1993;90(24):11603-7.
    29.Shimano H,Horton JD,Shimomura I,et al.Isoform lc of sterol regulatory element binding protein is less active than isoform la in livers of transgenic mice and in cultured cells.J Clin Invest 1997;99(5):846-54.
    30.Hua X,Wu J,Goldstein JL,et al.Structure of the human gene encoding sterol regulatory element binding protein-1(SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13.Genomics 1995;25(3):667-73.
    31.Shimomura I,Shimano H,Horton JD,et al.Differential expression of exons la and lc in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells.J Clin Invest 1997;99(5):838-45.
    32.Horton JD,Goldstein JL,Brown MS.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver.J Clin Invest 2002;109(9):1125-31.
    33.Hua X,Nohturfft A,Goldstein JL,et al.Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein.Cell 1996;87(3):415-26.
    34.Yang T,Espenshade PJ,Wright ME,et al.Crucial step in cholesterol homeostasis:sterols promote binding of SCAP to INSIG-1,a membrane protein that facilitates retention of SREBPs in ER.Cell 2002;110(4):489-500.
    35.Yabe D,Brown MS,Goldstein JL.Insig-2,a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins.Proc Natl Acad Sci U S A 2002;99(20):12753-8.
    36.Peng Y,Schwarz EJ,Lazar MA,et al.Cloning,human chromosomal assignment,and adipose and hepatic expression of the CL-6/INSIG1 gene.Genomics 1997;43(3):278-84.
    37.Song BL,Sever N,DeBose-Boyd RA.Gp78,a membrane-anchored ubiquitin ligase,associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase.Mol Cell 2005;19(6):829-40.
    38.Sever N,Yang T,Brown MS,et al.Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain.Mol Cell 2003;11(1):25-33.
    39.Sever N,Song BL,Yabe D,et al.Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol.J Biol Chem 2003;278(52):52479-90.
    40.Krapivner S,Chernogubova E,Ericsson M,et al.Human evidence for the involvement of insulin-induced gene 1 in the regulation of plasma glucose concentration.Diabetologia 2007;50(1):94-102.
    41.Lee JN,Song B,DeBose-Boyd RA,et al.Sterol-regulated degradation of Insig-1mediated by the membrane-bound ubiquitin ligase gp78.J Biol Chem 2006;281(51):39308-15.
    42.Miserez AR,Muller PY,Barella L,et al.Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia.Atherosclerosis 2002;164(1):15-26.
    43.Klos KL,Sing CF,Boerwinkle E,et al.Consistent effects of genes involved in reverse cholesterol transport on plasma lipid and apolipoprotein levels in CARDIA participants.Arterioscler Thromb Vasc Biol 2006;26(8):1828-36.
    44.Briollais L,Wang Y,Rajendram I,et al.Methodological issues in detecting gene-gene interactions in breast cancer susceptibility:a population-based study in Ontario.BMC Med 2007;5:22.
    45.Qi L,van Dam RM,Asselbergs FW,et al.Gene-gene interactions between HNF4A and KCNJ11 in predicting Type 2 diabetes in women.Diabet Med 2007;24(11):1187-91. World Health Organization.World Health Report 2003-Shaping the Future.2003,World Health Organition:Geneva,Switzerland.
    2.Thom T,Haase N,Rosamond W,et al.Heart disease and stroke statistics—2006 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.Circulation 2006;113(6):e85-151.
    3.He J,Gu D,Wu X,et al.Major causes of death among men and women in China.N Engl J Med 2005;353(11):1124-34.
    4.Scheuner MT.Genetic evaluation for coronary artery disease.Genet Med 2003;5(4):269-85.
    5.Williams RR,Hunt SC,Heiss G,et al.Usefulness of cardiovascular family history data for population-based preventive medicine and medical research(the Health Family Tree Study and the NHLBI Family Heart Study).Am J Cardiol 2001;87(2):129-35.
    6.Marenberg ME,Risch N,Berkman LF,et al.Genetic susceptibility to death from coronary heart disease in a study of twins.N Engl J Med 1994;330(15):1041-6.
    7.Lloyd-Jones DM,Nam BH,D'Agostino RB,Sr.,et al.Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults:a prospective study of parents and offspring.Jama 2004;291(18):2204-11.
    8.Murabito JM,Pencina MJ,Nam BH,et al.Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults.Jama 2005;294(24):3117-23.
    9.Fox CS,Polak JF,Chazaro I,et al.Genetic and environmental contributions to atherosclerosis phenotypes in men and women:heritability of carotid intima-media thickness in the Framingham Heart Study.Stroke 2003;34(2):397-401.
    10.Peyser PA,Bielak LF,Chu JS,et al.Heritability of coronary artery calcium quantity measured by electron beam computed tomography in asymptomatic adults.Circulation 2002;106(3):304-8.
    11.O'Donnell CJ,Chazaro I,Wilson PW,et al.Evidence for heritability of abdominal aortic calcific deposits in the Framingham Heart Study.Circulation 2002;106(3):337-41.
    12.Wang TJ,Nam BH,D'Agostino RB,et al.Carotid intima-media thickness is associated with premature parental coronary heart disease:the Framingham Heart Study.Circulation 2003;108(5):572-6.
    13.Parikh NI,Hwang SJ,Larson MG,et al.Parental occurrence of premature cardiovascular disease predicts increased coronary artery and abdominal aortic calcification in the Framingham Offspring and Third Generation cohorts.Circulation 2007;116(13):1473-81.
    14.Nasir K,Michos ED,Rumberger JA,et al.Coronary artery calcification and family history of premature coronary heart disease:sibling history is more strongly associated than parental history.Circulation 2004;110(15):2150-6.
    15.Risch NJ.Searching for genetic determinants in the new millennium.Nature 2000;405(6788):847-56.
    16.Samani NJ,Burton P,Mangino M,et al.A genomewide linkage study of 1,933 families affected by premature coronary artery disease.The British Heart Foundation(BHF)Family Heart Study.Am J Hum Genet 2005;77(6):1011-20.
    17.Farrall M,Green FR,Peden JF,et al.Genome-wide mapping of susceptibility to coronary artery disease identifies a novel replicated locus on chromosome 17.PLoS Genet 2006;2(5):e72.
    18.Helgadottir A,Manolescu A,Thorleifsson G,et al.The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke.Nat Genet 2004;36(3):233-9.
    19.Helgadottir A,Gretarsdottir S,St Clair D,et al.Association between the gene encoding 5-lipoxygenase-activating protein and stroke replicated in a Scottish population.Am J Hum Genet 2005;76(3):505-9.
    20.Wang L,Fan C,Topol SE,et al.Mutation of MEF2A in an inherited disorder with features of coronary artery disease.Science 2003;302(5650):1578-81.
    21.Hakonarson H,Thorvaldsson S,Helgadottir A,et al.Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction:a randomized trial.Jama 2005;293(18):2245-56.
    22.Lange LA,Lange EM,Bielak LF,et al.A utosomal genome-wide scan for coronary artery calcification loci in sibships at high risk for hypertension.Arterioscler Thromb Vasc Biol 2002;22(3):418-23.
    23.Fox CS,Cupples LA,Chazaro I,et al.Genomewide linkage analysis for internal carotid artery intimal medial thickness:evidence for linkage to chromosome 12.Am J Hum Genet 2004;74(2):253-61.
    24.Wang D,Yang H,Quinones MJ,et al.A genome-wide scan for carotid artery intima-media thickness:the Mexican-American Coronary Artery Disease family study.Stroke 2005;36(3):540-5.
    25.Kullo IJ,Turner ST,Kardia SL,et al.A genome-wide linkage scan for ankle-brachial index in African American and non-Hispanic white subjects participating in the GENOA study.Atherosclerosis 2006;187(2):433-8.
    26.Hirschhorn JN,Daly MJ.Genome-wide association studies for common diseases and complex traits.Nat Rev Genet 2005;6(2):95-108.
    27.Wang Q,Rao S,Shen GQ,et al.Premature myocardial infarction novel susceptibility locus on chromosome 1P34-36 identified by genomewide linkage analysis.Am J Hum Genet 2004;74(2):262-71.
    28.Francke S,Manraj M,Lacquemant C,et al.A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27.Hum Mol Genet 2001;10(24):2751-65.
    29.Broeckel U,Hengstenberg C,Mayer B,et al.A comprehensive linkage analysis for myocardial infarction and its related risk factors.Nat Genet 2002;30(2):210-4.
    30.Hauser ER,Crossman DC,Granger CB,et al.A genomewide scan for early-onset coronary artery disease in 438 families:the GENECARD Study.Am J Hum Genet 2004;75(3):436-47.
    31.Pajukanta P,Cargill M,Viitanen L,et al.Two loci on chromosomes 2 and X for premature coronary heart disease identified in early- and late-settlement populations of Finland.Am J Hum Genet 2000;67(6):1481-93.
    32.Cardon LR,Palmer LJ.Population stratification and spurious allelic association.Lancet 2003;361(9357):598-604.
    33.Colhoun HM,McKeigue PM,Davey Smith G.Problems of reporting genetic associations with complex outcomes.Lancet 2003;361(9360):865-72.
    34.Dahlman I,Eaves IA,Kosoy R,et al.Parameters for reliable results in genetic association studies in common disease.Nat Genet 2002;30(2):149-50.
    35.Freedman ML,Pearce CL,Penney KL,et al.Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study.Am J Hum Genet 2005;76(1):82-90.
    36.Ioannidis JP,Ntzani EE,Trikalinos TA,et al.Replication validity of genetic association studies.Nat Genet 2001;29(3):306-9.
    37.Sing CF,Stengard JH,Kardia SL.Genes,environment,and cardiovascular disease.Arterioscler Thromb Vasc Biol 2003;23(7):1190-6.
    38.Ardlie KG,Kruglyak L,Seielstad M.Patterns of linkage disequilibrium in the human genome.Nat Rev Genet 2002;3(4):299-309.
    39.Pritchard JK,Cox NJ.The allelic architecture of human disease genes:common disease-common variant...or not? Hum Mol Genet 2002;11(20):2417-23.
    40.Cohen JC,Kiss RS,Pertsemlidis A,et al.Multiple rare alleles contribute to low plasma levels of HDL cholesterol.Science 2004;305(5685):869-72.
    41.Liu PY,Zhang YY,Lu Y,et al.A survey of haplotype variants at several disease candidate genes:the importance of rare variants for complex diseases.J Med Genet 2005;42(3):221-7.
    42.Zhu X,Fejerman L,Luke A,et al.Haplotypes produced from rare variants in the promoter and coding regions of angiotensinogen contribute to variation in angiotensinogen levels.Hum Mol Genet 2005;14(5):639-43.
    43.Ozaki K,Sato H,Iida A,et al.A functional SNP in PSMA6 confers risk of myocardial infarction in the Japanese population.Nat Genet 2006;38(8):921-5.
    44.Connelly JJ,Wang T,Cox JE,et al.GATA2 is associated with familial early-onset coronary artery disease.PLoS Genet 2006;2(8):e139.
    45.Song Y,Stampfer MJ,Liu S.Meta-analysis:apolipoprotein E genotypes and risk for coronary heart disease.Ann Intern Med 2004;141(2):137-47.
    46.Boekholdt SM,Peters RJ,Fountoulaki K,et al.Molecular variation at the apolipoprotein B gene locus in relation to lipids and cardiovascular disease:a systematic meta-analysis.Hum Genet 2003;113(5):417-25.
    47.Boekholdt SM,Sacks FM,Jukema JW,et al.Cholesteryl ester transfer protein TaqIB variant,high-density lipoprotein cholesterol levels,cardiovascular risk,and efficacy of pravastatin treatment:individual patient meta-analysis of 13,677 subjects.Circulation 2005;111(3):278-87.
    48.Klerk M,Verhoef P,Clarke R,et al.MTHFR 677C-->T polymorphism and risk of coronary heart disease:a meta-analysis.Jama 2002;288(16):2023-31.
    49.Ye Z,Liu EH,Higgins JP,et al.Seven haemostatic gene polymorphisms in coronary disease:meta-analysis of 66,155 cases and 91,307 controls.Lancet 2006;367(9511):651-8.
    50.Boekholdt SM,Bijsterveld NR,Moons AH,et al.Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction:a systematic review.Circulation 2001;104(25):3063-8.
    51.Casas JP,Bautista LE,Humphries SE,et al.Endothelial nitric oxide synthase genotype and ischemic heart disease:meta-analysis of 26 studies involving 23028 subjects.Circulation 2004;109(11):1359-65.
    52.Wessel J,Topol EJ,Ji M,et al.Replication of the association between the thrombospondin-4 A387P polymorphism and myocardial infarction.Am Heart J 2004;147(5):905-9.
    53.Kardys I,Klaver CC,Despriet DD,et al.A common polymorphism in the complement factor H gene is associated with increased risk of myocardial infarction:the Rotterdam Study.J Am Coll Cardiol 2006;47(8):1568-75.
    54.Helgadottir A,Manolescu A,Helgason A,et al.A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction.Nat Genet 2006;38(1):68-74.
    55.Ozaki K,Ohnishi Y,Iida A,et al.Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction.Nat Genet 2002;32(4):650-4.
    56.Hansson GK.Inflammation,atherosclerosis,and coronary artery disease.N Engl J Med 2005;352(16):1685-95.
    57.Almasy L,Blangero J.Endophenotypes as quantitative risk factors for psychiatric disease:rationale and study design.Am J Med Genet 2001;105(1):42-4.
    58.Williams JT,Blangero J.Power of variance component linkage analysis to detect quantitative trait loci.Ann Hum Genet 1999;63(Pt 6):545-63.
    59.Patterson N,Hattangadi N,Lane B,et al.Methods for high-density admixture mapping of disease genes.Am J Hum Genet 2004;74(5):979-1000.
    60.Smith MW,Patterson N,Lautenberger JA,et al.A high-density admixture map for disease gene discovery in african americans.Am J Hum Genet 2004;74(5):I001-13.
    61.Smith MW,O'Brien SJ.Mapping by admixture linkage disequilibrium:advances,limitations and guidelines.Nat Rev Genet 2005;6(8):623-32.
    62.Zhu X,Luke A,Cooper RS,et al.Admixture mapping for hypertension loci with genome-scan markers.Nat Genet 2005;37(2):177-81.
    63.Darvasi A,Shifman S.The beauty of admixture.Nat Genet 2005;37(2):118-9.
    64.Manly KF.Reliability of statistical associations between genes and disease.Immunogenetics 2005;57(8):549-58.
    65.Pritchard JK,Rosenberg NA.Use of unlinked genetic markers to detect population stratification in association studies.Am J Hum Genet 1999;65(1):220-8.
    66.Devlin B,Roeder K.Genomic control for association studies.Biometrics 1999;55(4):997-1004.
    67.Freedman ML,Reich D,Penney KL,et al.Assessing the impact of population stratification on genetic association studies.Nat Genet 2004;36(4):388-93.
    68.Ransohoff DF.Rules of evidence for cancer molecular-marker discovery and validation.Nat Rev Cancer 2004;4(4):309-14.
    69.Helgason A,Yngvadottir B,Hrafnkelsson B,et al.An Icelandic example of the impact of population structure on association studies.Nat Genet 2005;37(1):90-5.
    70.Vaisse C,Clement K,Durand E,et al.Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity.J Clin Invest 2000;106(2):253-62.
    71.Cohen J,Pertsemlidis A,Kotowski IK,et al.Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9.Nat Genet 2005;37(2):161-5.
    72.The International HapMap Project.Nature 2003;426(6968):789-96.
    73.Skelding KA,Gerhard GS,Simari RD,et al.The effect of HapMap on cardiovascular research and clinical practice.Nat Clin Pract Cardiovasc Med 2007;4(3):136-42.
    74.Patil N,Berno AJ,Hinds DA,et al.Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21.Science 2001;294(5547):1719-23.
    75.Daly MJ,Rioux JD,Schaffner SF,et al.High-resolution haplotype structure in the human genome.Nat Genet 2001;29(2):229-32.
    76.Ding K,Zhou K,Zhang J,et al.The effect of haplotype-block definitions on inference of haplotype-block structure and htSNPs selection.Mol Biol Evol 2005;22(1):148-59.
    77.Ding K,Kullo IJ.Methods for the selection of tagging SNPs:a comparison of tagging efficiency and performance.Eur J Hum Genet 2007;15(2):228-36.
    78.McPherson R,Pertsemlidis A,Kavaslar N,et al.A common allele on chromosome 9 associated with coronary heart disease.Science 2007;316(5830):1488-91.
    79.Genome-wide association study of 14,000 cases of seven common diseases and 3,000shared controls.Nature 2007;447(7145):661-78.
    80.Helgadottir A,Thorleifsson G,Manolescu A,et al.A common variant on chromosome 9p21 affects the risk of myocardial infarction.Science 2007;316(5830):1491-3.
    81.Helgadottir A,Thorleifsson G,Magnusson KP,et al.The same sequence variant on 9p21associates with myocardial infarction,abdominal aortic aneurysm and intracranial aneurysm.Nat Genet 2008;40(2):217-24.
    82.Herbert A,Gerry NP,McQueen MB,et al.A common genetic variant is associated with adult and childhood obesity.Science 2006;312(5771):279-83.
    83.Frayling TM,Timpson NJ,Weedon MN,et al.A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.Science 2007;316(5826):889-94.
    84.Grant SF,Thorleifsson G,Reynisdottir I,et al.Variant of transcription factor 7-like 2(TCF7L2) gene confers risk of type 2 diabetes.Nat Genet 2006;38(3):320-3.
    85.Scott LJ,Mohlke KL,Bonnycastle LL,et al.A genome-wide association study of type 2diabetes in Finns detects multiple susceptibility variants.Science 2007;316(5829):1341-5.
    86.Sladek R,Rocheleau G,Rung J,et al.A genome-wide association study identifies novel risk loci for type 2 diabetes.Nature 2007;445(7130):881-5.
    87.Saxena R,Voight BF,Lyssenko V,et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels.Science 2007;316(5829):1331-6.
    88.Zeggini E,Weedon MN,Lindgren CM,et al.Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.Science 2007;316(5829):1336-41.
    89.Jorgenson E,Witte JS.A gene-centric approach to genome-wide association studies.Nat Rev Genet 2006;7(11):885-91.
    90.A haplotype map of the human genome.Nature 2005;437(7063):1299-320.
    91.Thomas DC,Haile RW,Duggan D.Recent developments in genomewide association scans:a workshop summary and review.Am J Hum Genet 2005;77(3):337-45.
    92.Thomas D,Xie R,Gebregziabher M.Two-Stage sampling designs for gene association studies.Genet Epidemiol 2004;27(4):401-14.
    93.Perneger TV.What's wrong with Bonferroni adjustments.Bmj 1998;316(7139):1236-8.
    94.Storey JD,Tibshirani R.Statistical significance for genomewide studies.Proc Natl Acad Sci U S A 2003;100(16):9440-5.
    95.Svetkey LP,Moore TJ,Simons-Morton DG,et al.Angiotensinogen genotype and blood pressure response in the Dietary Approaches to Stop Hypertension(DASH) study.J Hypertens 2001;19(11):1949-56.
    96.Hunt SC,Cook NR,Oberman A,et al.Angiotensinogen genotype,sodium reduction,weight loss,and prevention of hypertension:trials of hypertension prevention,phase Ⅱ.Hypertension 1998;32(3):393-401.
    97.GenSalt:rationale,design,methods and baseline characteristics of study participants.J Hum Hypertens 2007;21(8):639-46.
    98.Aithal GP,Day CP,Kesteven PJ,et al.Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications.Lancet 1999;353(9154):717-9.
    99.Chasman DI,Posada D,Subrahmanyan L,et al.Pharmacogenetic study of statin therapy and cholesterol reduction.Jama 2004;291(23):2821-7.
    100.Psaty BM,Smith NL,Heckbert SR,et al.Diuretic therapy,the alpha-adducin gene variant,and the risk of myocardial infarction or stroke in persons with treated hypertension.Jama 2002;287(13):1680-9.
    101.Davis BR,Arnett DK,Boerwinkle E,et al.Antihypertensive therapy,the alpha-adducin polymorphism,and cardiovascular disease in high-risk hypertensive persons:the Genetics of Hypertension-Associated Treatment Study.Pharmacogenomics J 2007;7(2):112-22.
    102.Arnett DK,Baird AE,Barkley RA,et al.Relevance of genetics and genomics for prevention and treatment of cardiovascular disease:a scientific statement from the American Heart Association Council on Epidemiology and Prevention,the Stroke Council,and the Functional Genomics and Translational Biology Interdisciplinary Working Group.Circulation 2007;115(22):2878-901.
    103.Cohen JC,Boerwinkle E,Mosley TH,Jr.,et al.Sequence variations in PCSK9,low LDL,and protection against coronary heart disease.N Engl J Med 2006;354(12):1264-72.
    104.Seo D,Wang T,Dressman H,et al.Gene expression phenotypes of atherosclerosis.Arterioscler Thromb Vasc Biol 2004;24(10):1922-7.
    105.Moore DF,Li H,Jeffries N,et al.Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke:a pilot investigation.Circulation 2005;111(2):212-21.
    106.Chon H,Gaillard CA,van der Meijden BB,et al.Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment.Hypertension 2004;43(5):947-51.
    107.Batchelder K,Miller P.A change in the market--investing in diagnostics.Nat Biotechnol 2006;24(8):922-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700