发展性阅读障碍儿童认知特征与脂肪酸代谢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展性阅读障碍(Developmental Dyslexia,简称“阅读障碍”)是指部分学龄儿童虽然智力正常,并且享有均等的教育及社会文化机会,但却达不到与其年龄和智力相当的阅读和书写水平。学龄儿童阅读障碍的发生率为5%-10%,是一种最常见的学习障碍。儿童一旦发生阅读障碍,对其认知、情感、自我概念以及社会性发展都会产生重大的影响。语音加工障碍与视觉空间加工障碍之争一直是阅读困难基本认知加工过程研究的热点问题。从20世纪70年代到80年代,汉语阅读障碍研究经历了不存在阅读障碍和探讨阅读障碍行为特点的转变。汉语作为一种有形、声、意的表意文字符号系统,结构密集,字形要比表音文字复杂的多,因此,视觉空间认知能力在汉语阅读过程中似乎更为重要,但是就视觉与语音加工在汉语发展性阅读障碍中的作用仍未能达成一致意见,还需进一步研究。近期关于阅读障碍生化学机制方面的一些研究,从另一个侧面为视觉在阅读障碍的作用提供了有力的支持。越来越多的研究发现,发展性阅读障碍儿童在行为学和生化检测上均被发现有脂肪酸缺乏症状,阅读困难与脂肪酸特别是长链多不饱和脂肪酸(PUFA)代谢异常密切相关,尤其是与视觉改变有关。国内关于阅读障碍脂肪酸特征的研究还是一个空白。视觉与语音加工能力在汉语发展性阅读障碍中的作用如何?汉语发展性阅读障碍儿童是否存在脂肪酸缺乏?而这种脂肪酸缺乏和阅读障碍又有什么关系?其表现与表音文字国家是否相同?这些问题都有必要进一步研究探讨。本研究拟利用调查研究、心理认知研究及生化学研究等方法,以汉语阅读障碍儿童为研究对象,探讨汉语阅读障碍儿童的阅读特点;汉语阅读障碍儿童语言学特征和非语言学特征;汉语阅读障碍儿童的脂肪酸代谢特征,为阅读障碍发病本质的研究提供不同的语言学线索。
     第一部分发展性阅读障碍儿童阅读特点
     目的研究汉语发展性阅读障碍儿童的读写能力特点及其分型,以期为阅读障碍儿童的预防和矫治提供理论依据。
     方法采用简单随机整群抽样的方法,抽取武汉市城区三所小学三~五年级学生820名,根据ICD-10诊断标准,采取了分层检测的策略筛查出阅读障碍儿童55名。按1:2配比选取年龄、性别、家庭经济状况相似的正常儿童110名进行配对研究,采用《儿童中文阅读能力检查表》(DCCC)对汉语发展性阅读障碍儿童和正常儿童的阅读特点及其分型进行分析评估。
     结果检出阅读障碍儿童55名,汉语发展性阅读障碍的筛出率为6.7%,男女比例为3.6:1;阅读障碍组儿童DCCC各项得分均高于正常对照组儿童上(P均<0.001);单因素条件logistic回归分析表明,各个因素的OR值均具有显著性意义(P均<0.001),多因素条件logistic回归发现,只有听知觉进入方程(OR=2.00);DCCC各项得分的性别间比较显示,正常儿童男生各项目分数均高于女生(P<0.05),阅读障碍儿童仅在口语能力上具有性别差异(P<0.05)。DCCC各项得分的年级间比较,三年级各项得分均为最高;进一步对三年级正常儿童与五年级阅读障碍儿童在DCCC各项目评分进行比较,结果发现,除口语能力较差,但差异无显著性以外,五年级阅读障碍儿童在其余各分量表粗分均明显高于三年级正常儿童,差异均具有显著性(P<0.05);汉语阅读障碍儿童以“听知觉”障碍类型比重最高,其次是不良“阅读习惯”类型和“书面表达”障碍类型,但各分量表异常人数差异无显著性(P>0.05)。
     结论汉语阅读障碍儿童并不少见,这些儿童是学校中的特殊群体,应该引起医学、心理、教育学界的充分重视;汉语发展性阅读障碍儿童在阅读中的各个环节如视知觉、听知觉、意义理解、注意力等均受损害,但以听知觉损害为主,提示汉语阅读障碍可能与西方拼音文字的阅读障碍一样表现为语音加工缺陷;汉语阅读障碍儿童阅读能力的异质性不同于正常儿童;汉语阅读障碍在某种程度上是一种发展性缺陷。
     第二部分发展性阅读障碍儿童的认知特征
     第一节发展性阅读障碍儿童的智力水平
     目的分析汉语发展性阅读障碍儿童的智力水平、结构及其对阅读障碍的影响,以期为汉语阅读障碍的鉴别及其机制的进一步研究提供理论依据。
     方法根据ICD-10诊断标准,采取了分层检测的策略筛查出阅读障碍儿童55名,按1:1配比选取年龄、性别、家庭经济状况相似的正常儿童55名进行配对研究,采用联合型瑞文测验中国第二次修订版分析阅读障碍儿童的智力缺陷。
     结果汉语阅读障碍儿童智力水平分布多集中在智力中等及以下水平(占58.1%),正常对照组多集中在智力良好及智力超常水平(占70.9%),两组儿童智力水平分布状况差异有显著性(P<0.01);汉语阅读障碍儿童在除A单元外的各分测验得分以及智商总分,均低于正常对照组,差异有显著性意义(P<0.05);联合型瑞文测验各分量表得分与DCCC各因子得分做相关分析显示,在正常儿童中,两者的相关系数很低,且无显著性意义(P>0.05),而在阅读障碍儿童中,智力得分与阅读能力评分有较强的相关性,特别是A和AB两个单元,相关系数具有显著性意义(P<0.05);单因素条件logistic回归显示除A、E外,瑞文测验各分测验对阅读障碍均有显著影响(P<0.05),均为阅读障碍的保护因素,进一步的多因素条件logistic回归分析显示,B单元对阅读障碍有显著影响(P<0.01,OR=0.673,OR 95.0%CI: 0.503-0.902),为阅读障碍的保护性因素。
     结论阅读障碍儿童和对照组之间存在明显的智力结构上的差异;在智力结构中,以类比能力与阅读障碍的相关性最显著。预防汉语儿童阅读障碍的发生及干预工作中要特别注重对其直接观察辨别能力的培养,以求减少阅读障碍发生的可能性。
     第二节发展性阅读障碍儿童的语音加工能力
     目的测查汉语阅读障碍儿童的语音意识——前音音素判别和后音音素判别,以评估阅读障碍儿童对较小语音单元的加工能力,探讨汉语阅读障碍儿童是否存在语音意识方面的障碍。
     方法采取病例—对照的研究方法,在符合ICD-10诊断标准的55名儿童中,有53人参加了本次实验,按1:1的比例选择同班级、同性别、年龄相差小于半岁(±6个月)、家庭经济状况相似的53名正常儿童为对照组。根据汉字特点,借鉴西方国家语音意识的实验范式,采用了语音识别任务:包括声母识别和韵母识别两项,利用Visual C++语言编程,纪录被试正确率和平均反应时,比较阅读障碍儿童与正常儿童首音判断、押韵判断等语音分割能力,进一步考察语音加工能力对阅读障碍的影响和预测性。
     结果阅读障碍儿童与对照组儿童相比,无论是前音判断还是后音判断,正确率较低,差异均有显著性意义(P<0.05);阅读障碍儿童,语音提取过程需要更长的反应时间,速度较慢,差异无显著性意义(P>0.05);语音意识与阅读能力相关分析显示,全体被试以及正常对照组中,语音加工能力与DCCC各项得分及总分呈负相关,相关系数均有显著性意义(P<0.05),即语音意识判断正确率越高,其DCCC各项得分及总分越低;但在阅读障碍组中,仅在后音判断任务(韵母识别)与听知觉、注意力和总分三项上的相关系数有显著性意义(P<0.05),其余相关系数无显著性意义(P>0.05);语音意识对阅读障碍的预测能力的条件logistic回归分析显示,声母识别正确率对阅读障碍有影响(P<0.01, OR=0.001, OR95.0%CI: 0.000-0.177),为保护性因素。
     结论汉语阅读障碍儿童语音意识存在缺陷,语音加工能力不足,可能是影响其阅读能力的原因之一;但汉语阅读障碍儿童语音意识与其阅读能力的相关性不够显著,语音意识对阅读障碍的预测性不够强,汉字识别中语音激活作用的大小需进一步探讨。
     第三节发展性阅读障碍儿童的视觉加工能力
     目的测查汉语阅读障碍儿童的视觉加工能力——图形视觉加工和汉字视觉加工,以探讨汉语阅读障碍儿童是否存在视觉编码方面的障碍。
     方法采取病例—对照的研究方法,在符合ICD-10诊断标准的55名儿童中,有53人参加了本次实验,按1:1的比例选择同班级、同性别、年龄相差小于半岁(±6个月)、家庭经济状况相似的53名正常儿童为对照组。根据汉字特点,借鉴前人研究的经验,根据瑞文标准推理测验、本顿视觉形状辨别测试以及加德纳视觉认知技巧测试设计图形、汉字视觉辨识测试,纪录被试正确率和平均反应时,比较阅读障碍儿童与正常儿童图形视觉加工和汉字视觉加工能力,进一步考察视觉加工能力对阅读障碍的影响和预测性。
     结果正常儿童组无论在图形视觉辨别任务还是在汉字视觉辨识任务中的正确率均高于阅读障碍组,反应时间均短于阅读障碍组,但并没有达到显著水平(P>0.05);视觉加工能力与阅读能力相关分析果显示,除了在全体被试中,图形辨识任务正确率与注意力、总分有显著相关性外(P<0.05),在阅读障碍组和正常对照组中,视觉辨识任务与阅读能力的相关性未检出显著性意义(P>0.05);视觉加工能力对阅读障碍预测能力的logistic回归分析显示,图形/汉字视觉加工能力对阅读障碍的影响无显著性意义(P>0.05)。
     结论视觉加工能力对汉语儿童的阅读能力有一定的影响,但不够显著,视觉加工能力可能只是汉字识别的必要条件,而非充分条件。即:如果视觉加工能力落后,正确输出汉字的能力必将被阻碍。但是即使视觉加工能力正常,汉字识别仍可能由于其他原因而出现问题。
     第三部分发展性阅读障碍儿童的脂肪酸代谢特征
     第一节发展性阅读障碍儿童脂肪酸缺乏临床特征
     目的考察汉语阅读障碍儿童脂肪酸缺乏症状和体征的严重程度及其对阅读障碍的表现的影响。
     方法采取病例—对照的研究方法,在符合ICD-10诊断标准的55名儿童中,有52人完成问卷,按1:2的比例选择同班级、同性别、年龄相差小于半岁(±6个月)、家庭经济状况相似的52名正常儿童为对照组。利用DCCC和《脂肪酸缺乏临床表征》调查表分别考察被试的阅读能力和脂肪酸缺乏状况。
     结果两组儿童脂肪酸缺乏表征的比较结果显示,阅读障碍组各个脂肪酸缺乏表征平均得分均高于对照组,在“过度口渴,多饮”以及“注意力分散”、“情绪敏感”和“睡眠障碍”方面差异有显著性意义(P<0.05);阅读障碍儿童在《不饱和脂肪酸缺乏表征》问卷的得分上,无论是男生还是女生,显著高于正常儿童(P<0.05);52名阅读障碍儿童中有33名儿童得分大于3 (占63.46%) ,而在104名正常对照中,仅有40人得分大于3(占38.46%),两组比例差异具有显著性意义(χ2=8.702,P =0.003<0.01);脂肪酸缺乏表征与阅读能力相关分析显示,对于全体被试,脂肪酸缺乏表征得分越高,DCCC各项及总分越高,各项相关系数均具有显著性意义(P<0.001);正常对照组中,脂肪酸缺乏表征得分与DCCC各项及总分相关性具有显著性意义(P<0.001),其中,男生脂肪酸缺乏表征得分与DCCC各项及总分相关性具有显著性意义(P<0.001),女生除了口语外,其他项及总分与脂肪酸缺乏表征得分的相关性具有显著性意义(P<0.001);阅读障碍组中,除了口语、书面表达和阅读习惯外,其他各项得分与脂肪酸缺乏表征得分的相关性具有显著性意义(P<0.05),其中,男生仅有听知觉、书写技能和注意力分项得分与脂肪酸表征得分的相关性具有显著性意义(P<0.05),女生仅有书写技能和口语能力分项得分与脂肪酸表征得分的相关性具有显著性意义(P<0.05);条件logistic回归分析发现,“过度口渴,多饮”、和“毛囊角化”两个脂肪酸缺乏表征为阅读障碍的危险因素。
     结论阅读障碍儿童脂肪酸缺乏相对较严重;脂肪酸缺乏症状和体征的严重程度与阅读困难的表现有一定的相关性,不仅表现在视觉缺陷,而且在听觉、语言方面;“过度口渴,多饮”和“毛囊角化”现象是阅读障碍危险因素,阅读障碍儿童可能通过适当补充必需脂肪酸的摄入,提高其阅读能力。
     第二节发展性阅读障碍儿童血液脂肪酸组分测定
     目的分析汉语阅读障碍儿童血液脂肪酸组成,旨在从生化学水平揭示阅读障碍的病因机制,并为汉语阅读障碍的生化学——脂肪酸代谢因素研究提供实践基础。
     方法采取病例—对照的研究方法,本着自愿参加的原则,为了减少饮食对结果的影响,从55名符合ICD-10诊断标准的阅读障碍儿童及其正常对照组中的23对住宿儿童中选取被试,最后确定5对儿童(严格按照同班级、同性别、年龄相差小于半岁(±6个月)、家庭经济状况相似等条件进行配对)。利用气相色谱法分析被试的血浆及红细胞膜脂肪酸组成。
     结果阅读障碍组与正常对照组在血浆脂肪酸组成的差异无显著性意义(P>0.05);阅读障碍组与正常对照组在红细胞膜脂肪酸组成的差异无显著性(P>0.05);血浆PUFA含量与阅读能力的关系结果显示,无论在正常还是阅障组以及总被试中,n-3 PUFA总量与DCCC各项目呈负相关,即n-3 PUFA含量越高,儿童阅读能力越好;n-6PUFA总量和n-6/ n-3比值与DCCC各项目有不同程度的相关性;红细胞膜PUFA含量与阅读能力的关系结果显示,无论在正常还是阅障组以及总被试中,n-3 PUFA总量与DCCC各项目呈负相关;n-6PUFA总量和n-6/ n-3比值仅在总体被试中发现n-3 PUFA总量与“听知觉”、“口语能力”有显著相关(P<0.05),其他相关均无显著性意义(P>0.05)。
     结论汉语阅读障碍儿童有脂肪酸相对缺乏的趋势,但需要进一步扩大样本研究;脂肪酸含量特别是n-3 PUFAs含量与阅读能力有较强的相关性。提示,脂肪酸缺乏可能是汉语阅读障碍的潜在因素。
     本研究创新之处在于:关于脂肪酸代谢在阅读能力中的作用研究国内尚未见报道,本研究从新的视角——脂肪酸代谢——探讨汉语发展性阅读障碍的成因及机制,有助于阅读障碍生化基础的研究从而加快对这种复杂的神经发育障碍的机制的理解。本研究采用严格的配对研究,控制混杂因素,提高研究效率,研究将流行病调查、认知心理测验与生化实验研究有机结合,内容涉及医学、儿童心理学、认知心理学、营养学和气相色谱测量学等多学科的知识,涵盖内容较丰富。对汉语阅读障碍儿童脂肪酸代谢的研究,将为进一步的生化学基础研究及膳食干预、治疗研究奠定基础,从膳食营养途径预防阅读障碍具有重要推广价值。
Developmental dyslexia is marked by reading achievement that falls substantially below that expected given the individual's chronological age, measured intelligence, and age-appropriate education. Dyslexia is fairly widespread but with uncertain prevalence, ranging from 5% to 10%, it is the most common of the childhood learning disorders. The theories of dyslexia can be grouped within two opposed frameworks. One is linguist theory and another is sensorimotor theory especially. The debate on phonological processing and visual-spatial cognition of dyslexia is a hot topic in the research area of dyslexia. Developmental dyslexia is a problem not only with alphabetic readers, but also with nonalphabetic readers. Different from any alphabetic language, Chinese is a deep orthography used by a very large population in the world. The logographic nature of Chinese and the great number of visually distinct and complicated Chinese characters have led many people to think that visual skills are important in learning to read Chinese. Some studies did show that visual skills were related to Chinese children’s reading performance. The history of Chinese developmental dyslexia research is very short. The role of visual factors in Chinese developmental dyslexia is also controversial. There is increasing evidence that functional deficiencies or imbalances of omega-3 and omega-6 highly unsaturated fatty acids (HUFA) may play a role in dyslexia. However, data on the biochemistry of Chinese developmental dyslexia is still scarce. In the present study, we discussed the cognitive profiles and fatty acid metabolism of Chinese developmental dyslexia using investigative research, cognitional research and biochemistry teat to provide the reading feature of this disorder and lay academic foundations for diagnosis, and intervention of Chinese dyslexics.
     PartⅠReading Features of Chinese Children with Developmental Dyslexia
     Objective To explore the reading feature and subtype of Chinese children with developmental dyslexia.
     Methods 820 children in 3 primary schools in Wuhan City were selected by cluster sampling. 55 children with developmental dyslexia were chose according to ICD-10. And 110 normal children with the same age, sex and socioeconomic status were chose as control. The questionnaires included PRS (The Pupil Rating Scale Revised Screening for Learning Disabilities), DCCC (Dyslexia Checklist for Chinese Children) and WISC-CR (Wechsler Intelligence Scale for Children- Chinese Revision) were applied to investigate and collect data.
     Results There were 55 children being found to be dyslexics and the prevalence rate of developmental dyslexia is 6.7%. The prevalence rate of boys was higher than that of girls (P<0.01). The score of 8 items of DCCC of developmental dyslexics were mostly significantly higher than that of normal children. The conditional logistic analysis suggested that auditory perception can significant explain the developmental dyslexia (OR=2.00). There was significant sex difference of the DCCC score in control group. But there was no significant sex difference in dyslexic group expect for spoken language. The DCCC score at the 3rd grade was the highest among three grades. The DCCC score with dyslexics at the 5th grade was obviously higher than normal children at the 3rd grade (P<0.05) expect for spoken language. The main disorder subtype was auditory perception disorder, Bad reading custom and written expression disorder.
     Conclusion Since the number of Chinese dyslexic children was not low, parents and teachers should pay more attention to them. The impairment involved all processes of reading in children with Chinese developmental dyslexia, and the main problem was auditory perception disorder. It suggested that there maybe exist phonological awareness deficits and disability of phonological processing in Chinese children with dyslexia. Chinese developmental dyslexia was a“developmental deficits”to some extent.
     PartⅡCognitive Profiles of Chinese Children with Developmental Dyslexia
     SectionⅠEffects of the Intelligence of Chinese Children with Developmental Dyslexia
     Objective To compare intelligence of children with developmental dyslexia with that of normal and try to find the effects of intelligence structure on developmental dyslexia.
     Methods According to ICD-10 criteria, 55 children diagnosed as dyslexia, a control group including 55 normal children was matched by gender, age, parental education levels, occupations and economic status and collected according to the rate of 1: 1. CRT-C2 (Combined Raven’s test in China Revision 2) was applied to both groups. And the intelligence effects on developmental dyslexia were explored by conditional univariate and multivariate logistic regression analysis.
     Results The intelligence quotients of the case and the control were 106.56±13.12 and 117.16±14.09, and were both on the normal level. Majority dyslexia children (58.1%) were with common IQ level or below. However, majority control children (70.9%) were with excellent IQ or above. The children's intelligence distribution of the dyslexia children was different significantly (P<0.01). The dyslexic children had significantly lower IQ scores and subset scores than those of control group (P<0.05). The score of IQ, especially that of perceptive discernment and analogical comparison, was significant correlated with the severity of dyslexic signs and symptoms (the score of CDDD) in dyslexia group (P<0.05). With the multiple logistic regression analysis, only the analogy ability entered the regression model (P<0.01, OR=0.673, OR95.0%CI: 0.503-0.902). The analogy ability was a protective factor.
     Conclusion The dyslexic children have multiple cognitive deficiencies in analog, analysis and abstract abilities. It suggested that we may focus on the direct observation abilities training with children to promote their reading abilities.
     SectionⅡPhonological Processing Ability of Chinese Children with Developmental Dyslexia
     Objective In order to explore the phonological processing ability with Chinese developmental dyslexia children.
     Methods 53 dyslexic children were chosen according to ICD-10, and control group was matched by gender, age, parental education levels, occupations and economic status and collected according to the rate of 1: 1. All subjects were asked to accomplish the phonological recognizing tasks including initial phoneme and final phoneme of Chinese syllable. Correct number and average response time with phonological processing tasks were compared between dyslexic group and control group. And predictability of phonological processing abilities on developmental dyslexia was explored by multiple conditional logistic regression analysis.
     Results The correct number of initial phoneme and final phoneme recognizing of a Chinese syllable with dyslexic children was less than that of control group (P<0.05). Dyslexic children need more response time than that of control group when they did the task, but the difference did not reach significant (P>0.05). Significant negative correlations were found between the correct number of phonological tasks and the score of all factors of DCCC (P<0.05) both in the whole sample and in control group (P<0.05). However, the negative correlation did not reach significant expect for that with auditory/language, attention and total score of DCCC in dyslexic group (P<0.05). The correct number of initial phoneme recognizing was a protect factor of developmental dyslexia (P<0.01, OR=0.001, OR95.0%CI: 0.000-0.177).
     Conclusions Chinese dyslexic children exist phonological processing deficits,just like the peers of alphabetic languages.Phonological processing deficits may be one of the causes for dyslexia. But correlation between phonological processing abilities and reading abilities in dyslexia was not obvious and the predictability of the phonological processing abilities on developmental dyslexia was week, the role of phonological awareness on developmental need further explore.
     SectionⅢVisual Processing Ability of Chinese Children with Developmental Dyslexia
     Objective In order to explore the visual processing ability including figure and Chinese character visual processing with Chinese developmental dyslexia children.
     Methods 53 dyslexic children were chosen according to ICD-10, and control group was matched by gender, age, parental education levels, occupations and economic status and collected according to the rate of 1: 1. On the basis of the feature of Chinese character, we designed some figure visual processing tasks according to the principle of the Raven's Progressive Matrices test, the Visual Form Discrimination test and the Gardner's test of Visual Perceptual Skills and some Chinese character visual processing tasks. All subjects were asked to accomplish the visual processing tasks. Correct number and average response time with visual processing tasks were compared between dyslexic group and control group. And predictability of visual processing abilities on developmental dyslexia was explored by multiple conditional logistic regression analysis.
     Results both with figure visual processing tasks and Chinese character visual processing tasks, there were no significant differences (P>0.05) between dyslexic group and control group on correct number and the average response time. Correlation between the right number of visual processing tasks and the score of all factors of DCCC did not reach significant expect for that with attention and total score of DCCC in the whole sample (P<0.05). The correlation did not reach significant in dyslexic group and control group (P>0.05).
     Conclusions There was not obvious effect on reading abilities with Chinese children by visual processing abilities. Visual processing abilities were probably not a sufficient condition but an essential condition on Chinese character discrimination.
     PartⅢFatty Acid Metabolism Feature of Chinese Children with Developmental Dyslexia
     SectionⅠRelationship between Fatty Acid Deficiency Signs and Reading Difficulties of Chinese Children with Developmental Dyslexic
     Objective To explore the relationship between fatty acid deficiency and reading developmental dyslexia in Chinese children.
     Methods 53 dyslexic children were chosen according to ICD-10 and 104 normal children was matched by gender, age, parental education levels, occupations and economic status and collected chosen according to the rate of 1: 2. All subjects were investigated by two parent-report questionnaires: clinical signs of fatty acid deficiency and symptoms associated with dyslexia (CDDD).
     Results Total FADs were found to be highly significantly higher in the dyslexics (P<0.01). Subdivision of the sample by sex revealed that there were significant differences between total FADS scores for dyslexic and control subjects within males and females (P<0.05). 33 of the 52 dyslexia children (63.46%) but only 40 of 104 normal children (38.46%) had total FADS scores>3. This difference reaches significance (χ2=8.702, P =0.003). In the whole sample, significant correlations were found between FADS and all factors of DCCC (P<0.001). In control group, significant correlations were found between FADS and all factors of DCCC (P<0.001). Male controls showed all significant correlations. In female controls, scores on FADS were significantly correlated with all factors of CDDD except for that with spoken language problems. In dyslexic group, all the associations were significant (P<0.05) except for that with spoken language problems, disorder of written expression and bad reading custom. In dyslexic males FADS correlate significantly only with the auditory/language problems, writing disturbance and attention disorder of CDDD (P<0.05). Dyslexic females' scores on FADS were significantly correlated with writing disturbance and spoken language problems. It was notable that the correlations between FADS and visual problems, auditory/language problems, understanding disturbance and attention disorders were in the opposite direction although it didn’t reach significant. It was found that excessive thirst, dry skin and follicular keratosis were risk factors on developmental dyslexia by multiple condition logistic regression analysis.
     Conclusion Fatty acid deficiency signs were significantly elevated in dyslexic subjects relative to control. The severity of these clinical signs of fatty acid deficiency was correlated with the severity of dyslexic signs and symptoms not only in the visual domain, but also with respect to spoken language and attention problems. Our findings support the hypothesis that fatty acid metabolism may be abnormal in developmental dyslexia, and indicate the need for further studies using more objective measures.
     SectionⅡBlood Fatty Acid Composition in Chinese Children with Developmental Dyslexia
     Objective Analysis the blood fatty acid composition in Chinese children with developmental dyslexia to explore the role of fatty acid in Chinese children with developmental dyslexia.
     Methods 5 dyslexic children were chosen according to ICD-10 and 5 normal children was matched by gender, age, parental education levels, occupations and economic status and collected chosen according to the rate of 1: 1. Gas Chromatogram (GC) was adopted to analyze plasma fatty acid composition and red blood cell (RBC) membranes.
     Results There were no significant differences between the dyslexic and control group both on any of the plasma fatty acid measures and any of the RBC fatty acid measures(P>0.05). There were strong correlation between plasma fatty acid composition especially total omega-3 concentrations and reading abilities.
     Conclusion Our results suggest that there were no differences in fatty acid levels between the dyslexic and control subjects. And our results showed that omega-3 status was directly related to reading performance both in dyslexic and control group.
引文
[1] Stevenson H W, Stigler J W, Lucker G W, et al. Reading disabilities: the case of Chinese, Japanese and English. Journal of Child Development, 1982, 53: 1164-1181.
    [2]孟祥芝,周晓林,曾飚.发展性阅读障碍与知觉加工.心理学报, 2002, 34(4): 437-442
    [3] Stein J. The Magnocellular theory of developmental dyslexia. Dyslexia, 2001, 7(1): 13-26.
    [4] Slaghuis W, Ryan J. Spatio-temporal contrast sensitivity, coherent motion, and visible persistence in developmental dyslexia. Vision research, 1999, 39: 651-668
    [5] Lovegrove W. Visual deficits in dyslexia: Evidence and implications. In: Fawcett, Nicolson ed. Dyslexia in Children: Multidisciplinary perspectives. Harvester Wheatsheaf, 1994, 113-135
    [6] Demb J B, Boynton G M, Best M, et al. Psychophysical evidence for a magnocellular deficit in dyslexia. Vision research, 1998, 38: 1555-1559
    [7] Eden G F, Van Meter J W, Rumsey J M, et al. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 1996, 382: 66-69
    [8] Livingston M, Rosen G D, Drislane F W, et al . Physiological and anatomical evidence for a magnocellular defect in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88 :7943-7947
    [9]洪慧芳,曾志朗.文字组合规划与汉语阅读障碍一对当语阅读障碍学童的一项追踪研究台湾中正大学心理研究所硕士论文,1993
    [10] Hsie W L, Huang H S. Comparative study on visual recognition,visual memory and Chinese achievement between dyslexic children and normal children (in Chinese). Special Education Bulletin, 1997, 12: 321-337
    [11] Hu C F, Catts H W. The role of phonological processing in early reading ability: What we can learn from Chinese. Scientific Studies of Reading, 1998, 2(1):55-79
    [12]静进.学习障碍儿童的本顿视觉保持实验研究.中国心理卫生杂志, 1998, 2, 83-85
    [13]孟祥芝,周晓林,曾飚.动态视觉加工与儿童汉字阅读.心理学报2002, 34(1): 16–22
    [14] Richardson A. J., Calvin C.M., Clisby C., et al. Fatty acid deficiency signs predict the severity of reading and related difficulties in dyslexic children. 2000; 63(1-2), 69-74
    [15] Stevens LJ, Zentall SS, Deck JL, et al. Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am-J-Clin-Nutr 1995;62: 761-768.
    [16] Stordy BJ. Benefit of docosahexaenoic acid supplements to dark adaptation in dyslexia. Lancet 1995, 346-385.
    [17] MacDonell L.E. F,Skinner F. K,Ward P. E., et al. Increased levels of cytosolic phospholipase A2 in dyslexics. Prostaglandins, Leukotrienes and Essential FattyAcids 2000, 63(1/2), 37-39
    [18] Richardson A. J., Cox I. J., Sargentoni J., Puri B. K. Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR Biomed, 1997, 10: 309-314.
    [19] Birch, E.E., Hoffman, D.R., Uauy, R.,et al. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatric Research, 1998, 44: 201-209
    [20] Horrocks, L.A., Yeo, Y.K. Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 1999, 44: 201-209
    [21] WHO. ICD-10 clinical description and diagnostic guidelines: Specific academic skill developmental disorder. Geneva: WHO.1989
    [22] Hamilton SS, Glascoe FP.Evaluation of children with reading difficulties. Am Fam Physician. 2006, 74(12): 2079-2084.
    [23] Satz P, Morris R. Learning disability subtypes. In Pivozolo FJ, wittroch MC. Neuropsychological and cognitive process in reading. New York: Academic Press. 1981. 109-138
    [24] Masutto C, Bravar I, Fabbro F. Neurolinguistic differentiation of children with subtypes of dyslexia. J Learning Disabilities, 1994, 27(8): 520- 526
    [25] Silver LB. Specific developmental disorder of childhood. In Kaplan HI, Sadock BJ. Comprehensive textbook of psychiatry Vol2, 5th Edition, Chapter 36. Baltimore:Williams& welkins, 1989
    [26]赵微,方俊明.当代阅读困难儿童认知加工过程研究的热点.中国特殊教育. 2004, 4(46): 43-48
    [27]吴汉荣,宋然然,姚彬.儿童汉语阅读障碍量表的初步编制.中国学校卫生. 2006, 27(3): 189-190
    [28]静进,森永良子,海燕等.学习障碍筛查量表的修订与评价.中华儿童保健杂志. 1998, 9(6): 197-200
    [29]王栋,钱明.中国第二次修订联合型瑞文测验指导书(CRT- C2).天津市内分泌研究所,天津医科大学医学心理学教研室, 1997.
    [30]黄秀霜,詹欣蓉.阅读障碍儿童之音韵觉识、字觉识及声调觉识之分析[J],特殊教育与复健学报,1997a(5),125-138。
    [31]张承芬,张景焕,殷荣生等.关于我国学生汉语阅读困难的研究.心理科学. 1996, 19(4): 222-226.
    [32]舒华,孟祥芝.汉语儿童阅读困难初探——来自阅读困难儿童的统计数据.语言文字应用, 2000. 3: 63~69.
    [33]刘靖,王玉凤,沈渔邨等.汉字阅读障碍患儿临床特点的研究.中华儿科杂志. 1999, 37(9): 536-538.
    [34] Lorian B, Dennis PC. Reading disorder.In: Harold I, Kaplan BS, Eds Comprehensive text book of psychiatry, 6th ed. Baltimore: Williams, 1995. 2246-2251.
    [35] Schonhaut S, Satz P. Prognosis for children with learning disailities: review of follow-up studies. In: Rutter M, ed. Development neuropsychiatry. 2nd Ed. New York: Guilford Press, 1983. 473- 497.
    [36] Joseph HB, Arlene PY. Learning disorders with a special emphasis on reading disorders: a review of the past 10 years. J Am Acad Child Adoles Psychiatry, 1997, 36: 1020-1031.
    [37]曾守锤,吴华清.探讨阅读障碍性质的四条技术路线.宁波大学学报(教育科学版). 2004, 4(26): 8-12
    [38] Francis DJ, Shaywitz SE, Stuebing KK, Shaywitz BA, Fletcher JM. Developmental lag versus deficit models of reading disability: a longitudinal, individual growth curves analysis. J Educ Psychol. 1996;88:3–17
    [39] Kulark A G. Parallels between math and readingdisability: Common Issues and approaches [J], Journal of Learning Disabilities, 1993, 26(10): 666- 673.
    [40]姚彬.儿童汉语阅读障碍流行病学及其认知机制的fNIRI研究.华中科技大学.博士学位论文. 2004.
    [41] Frith U Brain, Mind and Behaviour in Dyslexia. In Hulme C, Snowling M (Eds). Dyslexia; Biology, Cognition and Intervention <1-19> [M]. UK: Whurr Publishers. 1997
    [42] Stuart M, Coltheart M. Does reading develop in a sequence of stages [J]. Cognition, 1988, 30 (2): 139-181.
    [43] Simos PG, Paulesu E, Walsh V, et al. Assessment of functional cerebral laterality for language using magneto encephalography. J Clin Neurophysiol, 1998, 15 (4): 364-372.
    [44] Joseph K: Why IQ is relevant to the definition of learning disabilities. J Learning Disabilities, 1989; 22(8):484-486
    [45] Wu-Tian Zhang, Zhou Yong, Ling Wang, et al. Difficulties in auditory organization as a possible cause of reading backwardness [J]. Nature, 1998, 271 (3): 746-747.
    [46]姚彬,吴汉荣.汉语阅读障碍儿童智力水平及其结构病例对照研究.疾病控制杂志. 2003, 7(6): 487-490
    [47]陈洪波,杨志伟,唐效兰.汉语儿童阅读障碍的临床评定与分型研究.中国临床心理学杂志, 1998, 6(3): 136-138.
    [48] Harm, M.W. and M.S. Seidenberg. Computing the Meanings of Words in Reading: Cooperative Division of Labor Between Visual and Phonological Processes. Psychological Review, 2004. 111(3):662-720.
    [49] Stanovich KE.The sociopsychometrics of learning disabilities. J Learn Disabil. 1999. 32(4): 350-361.
    [50] Mann VA. Phoneme awareness and future reading ability. J Learn Disabil. 1993. 26(4):259-69.
    [51] Wagner, R.K., J.K. Torgesen, C.A. Rashotte, et al. Changing Relations Between Phonological Processing Abilities and Word-Level Reading as Children Develop From Beginning to Skilled Readers: A 5-Year Longitudinal Study. Developmental Psychology, 1997. 33(3):468-479.
    [52] Marlow, A.J., S.E. Fisher, A.J. Richardson, et al. Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. Behav Genet, 2001. 31(2):219-230.
    [53] Bradley, L. and P.E. Bryant. Categorizing sounds and learning to read- a causal connection Nature 1983. 301:419~421
    [54] Shaywitz, S.E., J.M. Fletcher, J.M. Holahan, et al. Persistence of dyslexia: the Connecticut Longitudinal Study at adolescence. Pediatrics, 1999. 104(6):1351-1359.
    [55] Bryant, P.E., M. MacLean, L.L. Bradley, et al. Rhyme and Alliteration, Phoneme Detection, and Learning to Read. Developmental Psychology, 1990. 26(3):429-438.
    [56] Paulesu, E., U. Frith, M. Snowling, et al. Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 1996. 119 ( Pt 1):143-157.
    [57] Hatcher, P.J. and C. Hulme. Phonemes, rhymes, and intelligence as predictors of children's responsiveness to remedial reading instruction: evidence from a longitudinal intervention study. J Exp Child Psychol, 1999. 72(2):130-153.
    [58] Georgiewa P, R.R., Gaser C, et al. Phonological processing in dyslexia children- a study combining functional imaging and event related porentials. Neurosience Letters, 2002. 318:5~8.
    [59]钟毅平, C. McBride-Chang., and C.S.H. Ho.中国香港双语儿童初步阅读能力与语音、文字加工关系的研究.心理科学, 2002. 25(2):173~176.
    [60] Dominica, S. and L.S. Siegel. Learning to read Chinese: Semantic, syntactic, phonological and working memory skills in normally achieving and poor Chinese readers. Reading and Writing 1997. 9(1):1~21.
    [61] Paulesu, E., J.F. Demonet, F. Fazio, et al. Dyslexia: cultural diversity and biological unity. Science, 2001. 291(5511):2165-2167.
    [62]宋然然.儿童汉语阅读障碍的发生机制研究.华中科技大学.博士学位论文, 2006.
    [63]季军,王玉凤,沈渔邨.儿童阅读困难与汉字识别缺陷.北京医科大学学报, 1996. 28:268~270.
    [64] Wagner R K.Torgesen J K The nature of phonological processing and its causal role in the acquisition of reading skil1.Psychological Bulletin,1987,2:192-212
    [65] Torgesen JK, Wagner RK, Rashotte CA..Longitudinal studies of phonological processing and reading. J Learn Disabil. 1994;27(5):276-291;
    [66] Durand, M., C. Hulme, R. Larkin, et al. The cognitive foundations of reading and arithmetic skills in 7- to 10-year-olds. J Exp Child Psychol, 2005. 91(2):113-136.
    [67] Boets, B., J. Wouters, A. van Wieringen, et al. Auditory temporal information processing in preschool children at family risk for dyslexia: Relations with phonological abilities and developing literacy skills. Brain Lang, 2006. 97(1):64-79.
    [68] Martin, F., C. Pratt, and J. Fraser. The use of orthographic and phonological strategies for the decoding of words in children with developmental dyslexia and average readers. Dyslexia, 2000. 6(4):231-247.
    [69] Mayringer, H. and H. Wimmer. Pseudoname learning by German-speaking children with dyslexia: evidence for a phonological learning deficit. J Exp Child Psychol, 2000. 75(2):116-133.
    [70] Desroches, A.S., M.F. Joanisse, and E.K. Robertson. Specific phonological impairments in dyslexia revealed by eyetracking. Cognition. In Press, Corrected Proof.
    [71] Faust, M. and S. Sharfstein-Friedman. Naming difficulties in adolescents with dyslexia: application of the tip-of-the-tongue paradigm. Brain Cogn, 2003. 53(2):211-217.
    [72] Ho, C.S.-H., P. Bryant. Phonological skills are important in learning to read Chinese. . Developmental Psychology, 1997. 33:946~951.
    [73]孟祥芝,沙淑颖,周晓林.语音意识、快速命名与中文阅读.心理科学, 2004. 27(6):1326-1329.
    [74] Ho, C.S.-H., T.P.-S. Law, and P.M. Ng. The phonological deficit hypothesis in Chinese developmental dyslexia. Reading and Writing, 2000. 13(1/2):57~79.
    [75]张厚粲.瑞文标准推理测验手册.北京:北京师范大学出版社. 1985, 1-60.
    [76] Lezak M.Neuropsychological assessments[M].2nd ed.,Oxford Uni versity Press,1983
    [77] Gardner, M. F. (1996). Test of Visual-Perceptual Skills (Non-Motor)–Revised. Hydesville, CA: Psychological and Educational Publications.
    [78]陈素梅.汉语儿童对图形和汉、英词汇的视觉加工.福建师范大学硕士学位论文. 2004.
    [79]现代汉语字典编委会.现代汉语字典.商务印书馆. 2004
    [80]张承芬.汉语阅读困难儿童认知特征研究.心理学报, 1998, 30(1): 50-54
    [81]张丽娜,刘翔平,吴洪培等.汉字听写障碍儿童形音联结个案研究.中国心理卫生杂志. 2006, 20(12): 832-835
    [82] Taylor KE, Higgins CJ, Calvin CM. et al. Dyslexia in adults is associated with clinical signs of fatty. Prostaglandins leukot essent fatty acids 2000, 63 (1-2): 75-78.
    [83] Taylor KE, Richardson AJ. Visual function, fatty acids and dyslexia. Prostaglandins leukot essent fatty acids 2000, 63 (1-2): 89-93.
    [84] Richardson A.J., Ross M.A. Fatty acid metabolism in neurodevelopmental disorder: a new prespective on associations between attention deficit hyperactivituy disorder, dyslexia dysprexia and the spoctom. Prostaglandins leukot essent fatty acids. 2000, 63(1-2):1-91
    [85] Horrobin D. F., Glen A. I., Hudson C. J. Possible relevance of phospholipidsabnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Med Hypotheses 1995; 45: 605-613.
    [86] Baker SM. A biochemical approach to the problem of dyslexia. J Learn Disabil 1985,18, 581-584.
    [87] Richardson AJ and Puri BK. A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 233-239.
    [88] Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003; 48(3) 195-203.
    [89] Peet M, Brind J, Ramchand CN, Shah S and Vankar GK. Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res. 2001, 49: 243-251.
    [90] Bell JG, MacKinlay EE, Dick JR, et al. Essential fatty acids and phospholipase A (2) in autistic spectrum disorders. Prostaglandins Leukot Essent Fatty Acids. 2004, 71(4) 201-4
    [91]宛思莹.肇事驾驶员红细胞膜不饱和脂肪酸浓度及人格分析.大连医科大学.硕士论文. 2006
    [92]张泉水.异戊二烯及多不饱和脂肪酸与精神分裂症的相关性研究.汕头大学.硕士论文.
    [93]张伟利, Adolf Grunert.毛细管气相色谱法测定人体血液中游离脂肪酸和总脂肪酸.中国临床营养杂志,1997, 5 (1) : 27-29
    [94]刘惠敏,姜秋芬,戴尚飞等.血浆中游离脂肪酸的测定及其临床意义.氨基酸和生物资源, 1998, 20 (2): 24-26
    [95]苗靖,陈正华,刘景英.我国成人血浆中花生四烯酸含量与年龄、性别的关系.天津医科大学学报. 1999, 5(1):17-18
    [96]徐惠珠,张伟利,陈瑞冠.气相色谱法测定人体血液中游离脂肪酸.营养学报, 1986, 8(2): 165-169
    [97] Kaduce TL, Folk GEJr. The Essential Fatty Acids and the Diet of Polar Bears.Pakistan Journal of Nutrition,2002,1(2):73-78
    [98]黎运源,庄海旗,莫丽儿等.血液和组织标本中脂肪酸组成的毛细管柱气相色谱分析.广东医学院学报, 1994, 12 (2):90-95
    [99]董伟,沈定国.人红细胞膜Na+-K+-ATP酶的研究.生物物理与生物化学进展, 1983, (3): 31-37.
    [100]汪谦.现代医学实验方法.北京:人民卫生出版社, 1997, 839-840.
    [101]茅小燕.代谢综合征患者血清磷脂脂肪酸谱研究.浙江大学医学院.硕士学位论文. 2006
    [102]吴克刚,柴向华. n-3系多不饱和脂肪酸与健康.国外医学卫生学分册. 2000, 27(5): 300-303
    [103]伊冰摘译.有关人类膳食脂肪和油脂的专家会议.国外医学卫生学分册,1995, 22(3): 192-193.
    [104] Ip C. Review of the effects of trans fatty acids, oleic acid, n-3 polyunsaturated fatty acids, and conjugated linoleic acid on mammary carcinogenesis in animals. Am J Clin Nutr. 1997, 66(6 Suppl):1523S-1529S
    [105]池田郁男. n-3系多价不饱和脂肪酸摄取量与健康.医学指南, 1998, 184: 199-203.
    1. Shaywitz, S.E. and B.A. Shaywitz. Dyslexia (specific reading disability). Pediatr Rev, 2003. 24(5):147-153.
    2. Stein J., Walsh V. To see but not to read; the magnocellular theory of dyslexia. Trends Nuerosci 1997; 20: 147-152.
    3. Witton C., Talcott J. B., Hansen P. C. et al. Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexia and normal readers. Curr Biol 1998; 8: 791-797.
    4. Cornelissen P., Richardson A., Mason A., Fowler S., Stein J. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Res1995; 35: 1483-1494.
    5. Stordy B. J. Benefit of docosahexaenoic acid supplements to dark adaptation in dyslexia. Lancet 1995; 346-385.
    6. Slaghuis W. L., Lovegrove W. J. Spatial-frequency-dependent visible persistence and specific reading disability. Brain Cogn 1985; 4: 219-240.
    7. Eden G. F., VanMeter J.W., Rumsey J. M., Maisog J. M.,Woods R. P., Zeffiro T. A. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 1996; 382: 66-69.
    8. Demb J. B., Boynton G. M., Heeger D. J. Functional magnetic resonance imaging of early visual pathways in dyslexia. J Neurosci 1998; 18: 6939-6951.
    9. Ungerleider L. G., Haxby, J. V. `What' and `where' in the human brain. Curr Opin Neurobiol 1994; 4: 157-165.
    10. Peter Menell. Functional Mangetic Resonance Imaging Studies of Dyslexia in the United States. In: Junko Kato[R].The Report of Comparative Study in Japan&the U. S. Children with Learning Disabilities No. 2. Japan: Published byKananawa Research Institute of Learning Disabilities, 1998, 102- 112.
    11. Punh KR, Mencl WE, Jenner AR, et a1. Functional neuroimaging studies of reading and reading disability [J]. Ment. Retard. Dev. Disabil. Res. Rev., 2000, 6(3):207-213.
    12. Slagh uis W,Ryan J.Spatio-temporal contrast sensitivity,coherent motion, and visible persistence in developmental dyslexia. Vision research,1999,39:651-668
    13. Livingston M,Rosen G D,Drislane F W,et al . Physiological and anatomical evidence for a magnocellular defect in dyslexia. Proceedings of the National Academy of Sciences of the United States of America,1991,88 :7943-7947
    14. Eden G F,Van Meter J W,Rumsey J M,et al . Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature,1996,382 :66-69
    15.洪慧芳,曾志朗.文字组合规划与汉语阅读障碍——对当语阅读障碍学童的一项追踪研究.台湾中正大学心理研究所.硕士论文,1993
    16. Hsie W L, Huang H S. Comparative study on visual recognition,visual memory and Chinese achievement between dyslexic children and normal children (in Chinese). Special Education Bulletin, 1997, 12: 321-337
    17. Hu C F, Catts H W. The role of phonological processing in early reading ability: What we can learn from Chinese. Scientific Studies of Reading, 1998, 2(1): 55-79
    18.静进.学习障碍儿童的本顿视觉保持实验研究.中国心理卫生杂志, 1998 , 2, 83-85
    19.孟祥芝,周晓林,曾飚.动态视觉加工与儿童汉字阅读.心理学报2002, 34(1): 16– 22
    20. Connor DL, Connor WE, Hall R, et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial [J].Pediatrics, 2001,108 (2):359-371.
    21. Yehuda S.Omega-6/Omega-3 ratio and brain-related function [J].World Rev Neur Diet, 2003, 92(3):37-56.
    22. Reisbick S, Neuringer M, Hasnain R, et al. Homecage Behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids [J]. Physiol Behav, 1994, 55(2): 231-239.
    23.陈超刚,苏宜香,郑树森等.大鼠海马神经元脂肪酸构成中长链多不饱和脂肪酸的功能及其机制.中国临床康复. 2003, 7(31): 4230-4232
    24. Taylor KE , Higgins CJ , Calvin CM1et al Dyslexia in adults is associated with clinical signs of fatty1prostaglandins leukotessent fatty acids 2000 , 63 (1 - 2) : 75– 78.
    25. Richardson, A.J., Easton, T., McDaid, A.M., et al. Essential fatty acids in dyslexia: Theory, evidence and clinical trials. In M. Peet, I. Glen, & Horrobin, D.F. (Eds.), Phospholipid spectrum disorder in psychiatry. Lancs, UK: Marius Press. 1999: 225-242
    26. Richardson, A.J., Calvin, C.M., Clisby, C., et al. Fatty acid deficiency signs predict the severity of reading and related difficulties in dyslexic children. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2000, 63: 69-74.
    27. Stordy BJ. Benefit of docosahexaenoic acid supplements to dark adaptation in dyslexia. Lancet 1995, 346:385.
    28. MacDonnell, L.E.F., Skinner, F.K., Ward, P.E., et al. Type IV cPLA2 in red blood cells: Evidence for differences between 2 subgroups on dyslexia-type adults and controls. Schizophrenia Research, 2000, 41: 228-259.
    29. Richardson A. J., Cox I. J., Sargentoni J., Puri B. K. Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR Biomed 1997; 10: 309-314.
    30. Taylor KE, Richardson J. Visual function, fatty acids and dyslexia. Prostaglandins, Leukotrienes and Essential FattyAcids (2000) 63(1/2), 89-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700