新型卟啉,偶氮类功能材料的非线性光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学材料作为光电子技术的基础材料,在光信息存储、光调制器、光开关等方面具有广阔的应用前景。本论文主要对卟啉以及偶氮两类非线性光学材料进行了以下几方面的研究工作:
     1:通过Z-扫描的方法,研究系列羟基苯基卟啉化合物三阶非线性特性。该系列卟啉化合物具有相同的取代基,但取代基的数量和取代的位置各不相同,通过Z-扫描的方法,可以测定这一系列化合物的三阶非线性光学系数,并研究其性质对结构的依赖关系。
     2:研究了系列卟啉二聚体的三阶非线性特性。该系列化合物具有不同桥连基团,通过Z-扫描的方法,可以测量其非线性折射和非线性吸收系数,并研究了不同桥连基对非线性光学性质的影响。
     3:研究了两种卟啉二聚体在连续光以及脉冲光作用下的光限幅行为,对不同机理下的光限幅行为做出了相应的解释。
     4:对侧链含偶氮基团以及超支化结构的偶氮类聚合物进行光致双折射的研究,通过对不同样品的结果进行对比,得出含量以及结构对其光存储性质的影响。
     5:对超支化结构以及氢键结构的偶氮类聚合物进行不同温度下的光致双折射性质研究,主要关注样品在不同温度下,光致取向的动态行为,对各拟合参数与样品的结构的联系做出相应的解释,使其对未来的合成等工作具有一定的指导意义。
NLO materials are the basic materials of optoelectronic technology. Research on organic materials nonlinearity has provided valuable applications such as storage, modem and switch. The porphyrin compound is a kind of macrocyclic conjugated organic molecules which have an extensive system of delocalizedπelectrons. It can be applied in many fields, such as macromolecule materials, chemical catalysis, electroluminescence materials and photodynamic therapy. Porphyrin oligomers have better properties in electron transfer, energy conversion, molecular devices and nonlinear optical materials than monomers. So there become very popular realm in synthesis and investigation of porphyrin oligomers. Polymers bearing azobenzene moieties (azo-polymers) are fascinating materials and have attracted considerable attention in the past few years because of their unique reversible photoisomerization and photoinduced anisotropy of the azobenzene chromophores. The photoinduced isomerization and photoinduced anisotropy can cause significant bulk, surface property variation and polarity of the polymers, such as photoinduced phase transition, photoinduced birefringence and photoinduced surface relief gratings (SRGs) et al. They can be used in the fields of optical data storage, optical switch, electro-optical (EO) modulators, and nonlinear optical materials, etc. Based on these reasons, we have done some researches as below:
     1: We tested the third order optical nonlinearity of a series of porphyrin compounds which contains the same substituents. But the numbers and the positions of these substituents are quite different. The substituent is the hydroxyl group which is an electron donating group. The results gave the relationship of the NLO properties and the structures of these porphyrin compounds. The open aperture results of z-scan indicated that all the samples showed the RSA (Reverse Saturable Absorption). The nonlinear refractive indexes of these samples were quite different. The density of the electron cloud was increased because of the electron donating group. So the third order nonlinear refractive index became larger. However, when we introduced another or more electron donating groups to the compound, the third order nonlinear refractive index did not increased effectively. This was because of the repulsion between the substituents. For the compound with two substituents, the nonlinear refractive index of the trans structure was quite different from that of the cis structure. It was also because of the effect of the repulsion. This conclusion told us that if we wanted to achieve large third order nonlinear refractive index of these compounds through increasing the number of the substituents, we must consider the repulsion effects between these groups.
     2: We also try another substituent carboxyl group which is an electron withdrawing group. The results showed that a withdrawing group could reduce the density of the electron cloud. We also tested the third order optical nonlinearity of a series of porphyrin dimers which contains the different bridging groups. The results gave the relationship of the NLO properties and the different bridging groups. The bridging group was an important part of the porphyrin dimer. When the dimer was linked by a phenyl group, the whole dimer was composed by three conjugated systems. So the third order nonlinear refractive index of this dimer was the largest. However, if there was an electron withdrawing group in the bridging group, the density of the electron cloud would be reduced. It would also cause different effects if the position of the substituent is different. For example, the electron density of two porphyrin rings was reduced for one sample, and the density of the bridging group was reduced for another, so it would lead to different results.
     3: The optical limiting behaviors of some porphyrin compounds were investigated by using the pulsed laser and CW laser respectively. The optical limiting behavior was based on RSA. When intensity of the input laser was weak, the output intensity of the laser increased linearly. As the intensity of the laser increased, the molecules were pumped to the excited state, and the absorption was changed to RSA of the excited state, which leaded to the optical limiting behavior for the pulsed laser. The optical limiting experiment for the CW laser is based on self-defocusing. When the input laser power was very small, the laser beam can pass through the aperture freely, with out any obstacle. As the power increased, the sample could absorb the energy from the laser beam and the sample got heated. So the refractive index of the sample partly changed, leading the output laser beam disperse, and the area of the beam at the aperture plane became larger than the aperture. So the power detected behind the aperture changed nonlinearly.
     4: The experiments of photoinduced birefringence on two kinds of Poly(aryl ether)s (PAEs) were investigated. Through the investigation on the PAEs with the azobenzene chromophores in the side chain, we concluded that the amounts of the chromophores affected the values of the birefringence greatly. We also tested the photoinduced birefringence of hyperbranched poly(arylene ether)s (HPAEs) with the azobenzene chromophotes. For the structure of the azobenzene group located in the main chain, the restriction made the reorientation of the chromophotes harder. So the values that they could achieve became smaller. On the other hand, the structure of side chain made the movements of the chromophotes easier, and the value of the photoduced birefringence became larger.
     5: The growth and decay processes of the optically induced birefringence in two novel azobenzene polymers, one is a hyper-branched poly (aryl ether) containing azobenzene groups and the other is a hydrogen-bonded complex, have been studied. Both the saturated value and the relaxed value decreased with the increase of the temperature as thermal relaxation of the chromophores was facilitated. Both growth and relaxation processes involved a“fast”and a“slow”process caused by different mechanisms. The curves for buildup and decay of birefringence were fitted well with bi-exponential functions. The dependence of the fitted time constants on the temperature was also discussed. For the HPAE structure, the fraction of the induced birefringence that preserved was much better when the pump light turned off, however it took a long time to achieve the saturated value. On the other hand, the time of response was much less for the host- guest structure, but the fraction of the induced birefringence that could preserved was much smaller.
     The results of our investigations showed that both of these two kinds of materials were good nonlinear optical materials with potential applications. And the research in these areas would attract more attentions in the future. We hope that our conclusions in this thesis would be a helpful guidance to develop further practical materials in these fields.
引文
[1] N. Bloembergen. Nonlinear Spectroscopy [M]. North-Holland, Amsterdam, 1977.
    [2] Robert W. Boyd. Nonlinear Optics [M]. New York, Rochester, 1992.
    [3] P. A. Franken, A. E. Hill, C. W. Peter and G. Weinreich. Generation of Optical Harmonics [J]. Phys. Rev. Lett. 1961, 7: 118-122.
    [4] T. Ishiwata and I. Tanaka. Stepwise Two-Photon Excitation of Cl2 to the E(Og+) Ion-Pair State [J]. Chem. Phys. Lett. 1984, 107: 434-441.
    [5] R. Y. Chiao, E. Garmire and C. H. Townes. Self-Trapping of Optical Beams [J]. Phys. Rev. Lett. 1964, 13: 479-483.
    [6] M. Gibbis, S. L. Mccall and T. N. C. Venkatesan. Differential Gain and Bistability Using A Sodium-Filled Fabry-Perot Interferometer [J]. Phys. Rev. Lett. 1974, 36: 1135-1142.
    [7] A. Ashkin, G. D. Boyel, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein and K. Nassau. Optically Induced Refractive Index Inhomogenities In LiNbO3 and LiTaO3 [J]. Appl. Phys. Lett. 1966, 9(1): 72-74.
    [8] W. Blau, H. Burne, W. M. Dennis and J. M. Kelly. Reverse Satuable Absorption in Tetraphenylporphyrins [J]. Opt. Comm. 1985, 56: 25-29.
    [9]钱士雄,王恭明.非线性光学-原理与进展[M].上海:复旦大学出版社, 2001.
    [10] R. Lahtinen, D. J. Fermin, K. Kontturi, et al., Artificial photosynthesis at liquid vertical bar liquid interface: photoreduction of benzoquinone by water soluble porphyrin species [J]. Journal of Electroanalytical Chemistry, 2000, 483: 81-87.
    [11] K. Toshifumi, I. Atsushi, S. Seiji. Supramolecular design of photocurrent-generating devices using fullerenes aimed at modeling artificial photosynthesis [J]. Tetrahedron, 2005, 61: 4881-4899.
    [12] E. Rose, M. Quelquejeu, R. P. Pandian, et al., Synthesis of porphyrins: models of natural hemoproteins and impressive catalysts for asymmetric epoxidation of olefins [J]. Polyhedron, 2000, 19: 581-596.
    [13]刘育,尤长城,张衡益.超分子化学[M].天津:南开大学出版社, 2001.
    [14] M. J. Crossley, P. L. Burn. An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system [J]. J. Chem. Soc., Chem. Commun., 1991, 21: 1569-1571.
    [15]金志平,彭孝军,孙立成.卟啉超分子化合物在分子器件中的应用[J].化学通报, 2003, 66(7): 464-473.
    [16] D. A. Parthenopoulos, P. M. Rentzepis. Three-dimensional optical strorage memory [J]. Science, 1989, 245: 843-845.
    [17] K. Lieberman, S. Harush, A. Lewis, et al., A light-source smaller than theoptical wavelength [J]. Science, 1990, 247: 59-61.
    [18] M. J. Feldstein, P. Vorhringer, W. Wang, et al., Femtosecond Optical Spectroscopy and Scanning Probe Microscopy [J], J. Phys. Chem., 1996, 100: 4739-4748.
    [19] S. I. Yang, J. Seth, T. Balasubramanian, et al., Interplay of Orbital Tuning and Linker Location in Controlling Electronic Communication in Porphyrin Arrays [J], J. Am. Chem. Soc., 1999, 121: 4008-4018.
    [20] F. Li, S. I. Yang, J. Seth et al., Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments [J], J. Am. Chem. Soc., 1998, 120, 10001-10017.
    [21] S. I. Yang, R. K. Lammi, J. A. Riggs, et al., Excited-State Energy Transfer and Ground-State Hole/Electron Hopping in p-Phenylene-Linked Porphyrin Dimers [J], J. Phys. Chem. B, 1998, 102: 9426-9436.
    [22] D. Gust, T. A. Moore, A. L. Moore, Mimicking Photosynthetic Solar Energy Transduction [J], Acc. Chem. Res., 2001, 34: 40-18.
    [23] M. S. Chio, T. Aida, T. Yamazaki, et al., A large dendritic multiporphyrin array as a mimic of the bacterial light-harvesting antenna complex: molecular design of an efficient energy funnel for visible photons[J], Angew. Chem. Int. Ed., 2001, 40(17): 3194-3198.
    [24] D. Gust, T. A. Moore, A. L. Moore, Molecular mimicry of photosynthetic energy and electron transfer[J], Acc. Chem. Res., 1993, 26: 198-205.
    [25] R. W. Wagner, J. S. Lindsey, J. Seth, et al., Molecular Optoelectronic Gates[J], J. Am. Chem. Soc., 1996, 118: 3996-3997.
    [26] S. I. Yang, J. Seth, T. Balasubramanian et al., Interplay of orbital tuning and linker location in controlling electronic communication in porphyrin arrays[J], J. Am. Chem. Soc., 1999, 121: 4008-4018.
    [27] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, et al., Signaling recognition events with fluorescent sensors and switches[J], Chem. Rev., 1997, 97: 1515-1566.
    [28] M. P. O’Neil, M. P. Niemczky, M. R. Wasielewski, et al., Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule [J]. Science,1992, 257: 63-65.
    [29]彭必先,林童.光诱导电子转移理论及其在分子开关上的应用进展[J].功能材料,1996, 27 (4):289-294. [30」刘志斌,潘海滨,金锋等.取代基对卟啉三阶光学非线性及弛豫过程的影响[J].光学学报,1996,16(7):922-925.
    [31] Kandasamy K., Shetty J. S., Puntambekar P. N., et al. Non-resonant third- order optical non-linearity of derivatives [J]. J .Chem. Soc. Chem. Commun., 1997, 13: 1159-1160.
    [32] Mishra S.R., Rawat H.S., Laghate, M. Nonlinear absorption and optical limiting in metalloporphyrins [J]. Opt. Commun., 1998,147(4-6): 328-332.
    [33] Ono N., Ito, S., Wu, C.H., et al. Nonlinear light absorption in meso-substituted tetrabenzoporphyrin and tetraarylporphyrin solutions [J].Chem. Phys., 2000,262(2-3): 467-473.
    [34] Henari F. Z., Blau W. J., Milgrom L. R., et al. Third-order optical non- linearity in Zn(II) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins [J]. Chem.Phys.L ett., 1997, 267(3-4): 229-233.
    [35]刘志斌,张新夷,田宏健等.不同链长二元分子卟啉酞菁TTP-0-(CH2)n-O-Pc的三阶光学非线性研究[J].发光学报,1994, 15(3): 233- 236.
    [36] Dupuis B., Michaut C., Jouanin I., et al. Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting [J]. Chem. Phys. Lett., 1999, 300(1-2): 169-176.
    [37] Grieve M. B., Richardson T., Anderson H.L., et al. Optical properties of edge-linked polymer porphyrin LB films [J]. Thin Solid Films, 1996, 284-285: 648- 651.
    [38] Arun K. S., Bipin B., Braja K. M., et al. Nonlinear optical properties of a new porphyrin-containing polymer [J]. Macromolecules, 1995, 28(16): 5681-5683.
    [39] KueblerS .M,DenningR .G, Anderson H .L. Large third-order electronic polarizability of a conjugated porphyrin polymer [J]. J. Am. Chem. Soc., 2000, 122 (2 ): 339-347.
    [40] Ogawa K., Zhang T., Yoshihara K., et al. Large third-order optical non linearity of self-assembled porphyrin oligomers [J]. J .Am. Chem. Soc 2002, 124(1): 22-23.
    [41] Screen T. E. O,Thorne J. R. G, Denning R. G et al. Amplified optical nonlinearity in a self-assembled double-strand conjugated porphyrin polymer ladder [J]. J.Am.Chem. Soc., 2002, 124(33): 9712-9713.
    [42] Gust D, Moore T. A , Moore A. L,et al. Efficient multistep photoinitiated electron transfer in a molecular pentad [J]. Science,1990, 248:199-201.
    [43] Douglas G. J,Mark P. N., David W. M., et al. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads: the role of the porphyrin-bridgingm olecule [J]. J. Am. Chem. Soc., 1993, 115(13): 5692-5701.
    [44] Tsuyoshi A., Masaya O., Ryohzi M., Noboru M., et al. Intramolecular photoinduced charge separation and charge recombination of the production pair states of a series of fixed-distance dyads of porphyrins and quinones: energy gap and temperature dependences of the rate constants [J]. J. Am. Chem. Soc., 1993, 115(13): 5665-5674.
    [45] Eisenbach C. Cis-trans isomerization of aromatic azo chromophores, incorporated in the hard segments of poly(ester urethane)s [J]. Makromol. Chem., Rapid Commun.,1980,1(5):287-292.
    [46] Lamarre, L .; Sung, C. S. Studies of physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers [J]. Macromecules,1983,16 (11):1729-1736.
    [47] Kumar G. S., Neckers D.C. Photochemistry of azobenzene-containing polymers [J]. Chem. Rev,1989,89 (8):1915-1925.
    [48] Royal J. S., Victor J. G,Torkelson J. M. Photochromic and fluorescent probe studies in glassy polymer matrices. 4. Effects of physical aging on poly(methyl methacrylate) as sensed by a size distribution of photochromic probes[J]. Macromolecules, 1992, 25(2): 729-734.
    [49] Natansohn A., Rochon P. Photoinduced motions in azo-containing polymers [J]. Chem. Rev, 2002,102 (11): 4139-4176.
    [50] C. S. Palk, H. Morawetz, Photochemical and Thermal Isomerization of Azoaromatic Residues in the Side Chains and the Backbone of Polymers in Bulk [J]. Macromolecules , 1972, 5: 171-177.
    [51] T Todorov, L Nikolova. A new high-efficiency organic material with reversible photo-induced birefringence [J]. Appl. Opt., 1984, 23(23): 4309-4312.
    [52] T. Todorov, N. Tomova, L. Nikolova. High-sensitivity material with reversible photo-induced anisotropy [J]. Opt. Commun., 1983, 47(2): 123-126.
    [53] K Anerle, R Birenheile, M Eich, J H Wendroff. Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers [J]. Makromol. Chem., Rapid Commun.,1989(10): 477-483.
    [54] Jacquew A. Delaire and Keitaro Nakatani. Linear and nonlinear optical properties of photochromic molecules and materials [J]. Chem. Rev. 2000, 100: 1817-1845.
    [55] Rochon P, Batalla E, Natansohn A. Optical induced surface gratings on azoaromatic polymer films [J]. Appl. Phys. Lett., 1995, 66: 136-138.
    [56] Natansohn A, Rochon P, Barrett C, Hay A. Stability of photoinduced orientation of an azo compound into a high-Tg polymer [J]. Chem. Mater., 1995, 7:1612-1615.
    [57] Meng X, Natansohn A, Rochon P. Azo polymers for reversible optical storage:11.Poly{4,4’-(1-methylethylidene)bisphenylene-3-[4-(4-nitrophenylazo)-phenyl]3-aza-pent anedioate} [J]. J. Polym. Sci. B, 1996, 34: 1461-1466.
    [58] Meng X, Natansohn A, Rochon P. Azo polymers for reversible optical storage: 12. Poly{1-acryloyl-4-[4-(4-nitrophenylazo)phenyl]piperazine} [J]. Supramole. Sci., 1996, 3: 207-213.
    [59] Chen J, Labarthet F, Natansohn A, Rochon P. Highly stable optical induced birefringence and holographic surface gratings on a new azocarbazole-based polyimide [J]. Macromolecules, 1999, 32: 8572-8579.
    [60] Wu Y, Natansohn A, Rochon P. Photoinduced birefringence and surface relief gratings in novel polyurethanes with azobenzene groups in the main chain [J]. Macromolecules, 2001, 34: 7822-7828.
    [61] Iftime G, Labarthet F, Natansohn A, Rochon P, Murti K. Main chain-containing azo-tetraphenyldiaminobiphenyl photorefractive polymers [J]. Chem. Mater., 2002, 14: 168-174.
    [62] Wu Y, Natansohn A, Rochon P. Photoinduced birefringence and surface relief gratings in polyurethane elastomers with azobenzene groups in the hard segment [J]. Macromolecules, 2004, 37: 6090-6095.
    [63] Kim D, Tripathy S, Li L, Kumar J. Laser-induced holographic surface relief gratings on nonlinear optical films [J]. Appl. Phys. Lett., 1995, 66: 1166-1168.
    [64] Viswanathan N, Kumar J, Tripathy S, et al. Surface relief structures on azo polymer films [J]. J. Mater. Chem., 1999, 9: 1941-1955.
    [65] Wang X, Kumar J, Tripathy S, et al. Heteroaromatic chromophore functionalized epoxy-based nonlinear optical polymers [J]. Macromolecules, 1998, 31: 4126-4134.
    [66] Lee T, Kim D, Jiang X, Li L, Kumar J, Tripathy S. Photoinduced surface relief gratings in high-Tg main-chain azoaromatic polymer films [J]. J. Poly. Sci. A, 1998, 36: 283-289.
    [67] Fukuda T, Matsuda H, Kumar J, et al. Photofabrication of surface relief grating on films of azobenzene polymer with different dye functionalization [J]. Macromolecules, 2000, 33: 4220-4225.
    [68] Yang S, Kumar J, Tripathy S, et al. Synthesis and characterization of novel azobenzene- modified polymers: azocellulose [J]. Macromolecules, 2001, 34: 9193-9196.
    [69] You F, Paik M, Ober C, et al. Control and suppression of surface relief gratings in liquid-crystalline perfluoroalkyl-azobenzene polymers [J]. Adv. Funct. Mater., 2006, 16: 1577-1581.
    [70] Nikolova L, Todorov T, Dragostinova V, et al. Polarization reflection holographic gratings in azobenzene-containing gelatine films [J]. Optics Letters, 2002, 27: 92-94.
    [71] Nedelchev L, Nikolova L, Ramanujam P, et al. Light propagation through photoinduced chiral structures in azobenzene-containing polymers [J]. J Opt. A: Pure Appl. Opt., 2001, 3: 304-310.
    [72] Nikolova L, Nedelchev L, Todorov T, et al. Self-induced light polarization rotation in azobenzene-containing polymers [J]. Appl. Phys. Lett., 2000, 77: 657-659.
    [73] Sapich B, Vix A, Rabe J, Stumpe J. Photoinduced self-organization and photoorientation of LC main-chain polyester containing azobenzene moieties [J]. Macromolecules, 2005, 38: 2223-2229.
    [74] Kulikovska O, Goldenberg L, Stumpe J, et al. Smart ionic sol-gel-based azobenzene materials for optical generation of microstructures [J]. Chem. Mater., 2008, 20: 3528-3534.
    [75] Goldenberg L, Gritsal Y, Kulikovska O, Stumpe J. Three-dimensional planarized diffraction structures based on surface relief gratings in azobenzene materials [J]. Optics letter, 2008, 33: 1309-1311.
    [76] Gritsal Y, Goldenberg L, Kulikovska O, Stumpe J. 3D structures using surface relief gratings of azobenzene materials [J]. J. Opt. A: Pure Appl. Opt., 2008, 10: 125304.
    [77] Okano K, Shishido A, Ikeda T. An azotolane liquid-crystalline polymer exhibiting extremely large birefringence and its photoresponsive behavior [J]. Adv. Mater., 2006, 18: 523-527.
    [78] Yiliang Wu, Akihiko Kanazawa, Takeshi Shiono, Tomiki Ikeda, Qijin Zhang. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4. Dynamic study of the alignment process [J]. Polymer, 1999, 40: 4787-4793.
    [79] Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light [J]. Nature, 2003, 425: 145-145.
    [80] Yu Y, Ikeda T. Soft actuators based on liquid-crystalline elastomers [J]. Angew. Chem. Int. Ed., 2006, 45: 5416-5418.
    [81] Barrett C, Mamiya J, Yager K, Ikeda T. Photo-mechanical effects in azobenzene-containing soft materials [J]. Soft Matter, 2007, 3: 1249-1261.
    [82] Kerekes A, Lorincz E, Ramanujam P, Hvilsted. Light scattiering of thin azobenzene side-chain polyester layers [J]. Opt. Commun., 2002, 206: 57-65.
    [83] Ramanujam P, Holme N, Pedersen M, Hvilsted S. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope [J] J. Photoch. Photobio. A: 2001, 145: 49-52.
    [84] Rasmussen P, Ramanujam P, Hvilsted S, et al. A remarkably efficient azobenzene peptide for holographic information storage [J]. J. Am. Chem. Sco., 1999, 121: 4738-4743.
    [85] Ramanujam P, Pedersen M, Hvilsted S. Instant holography [J] Appl. Phys. Lett., 1999, 74: 3227-3229.
    [86] Chen C, Ghim J, Kim M, Kim D. Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer [J]. J. Polym. Sci. A: 2005, 43: 3525-3532.
    [87] He Y, Wang X, Zhou Q. Epoxy-based azo polymers: Synthesis, characterization and photoinduced surface-relief-gratings [J]. Polymer, 2002, 43: 7325-7333.
    [88] Liu B, He Y, Wang X. Fabrication of photoprocessible azo polymer microwires through a soft lithographic approach [J]. Langmuir, 2006, 22: 10233-10237.
    [89] Deng Y, Li N, He Y, Wang X. Hybrid colloids composed of two amphiphilic azo polymers: Fabrication, characterization, and photoresponsive properties [J]. Macromolecular, 2007, 40: 6669-6678.
    [90] Liu B, Wang M, He Y, Wang X. Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach [J]. Langmuir, 2006, 22: 7405-7410.
    [91] Li Y, He Y, Tong X, Wang X. Photoinduced deformation of amphiphilic azo polymer colloidal spheres [J]. J. Am. Chem. Soc., 2005, 127: 2402-2403.
    [92]车鹏超.新型超支化偶氮聚合物合成、表征和光响应性能研究[D].北京:清华大学化学工程系,2005.
    [93] Gao J, He Y, Xu H, et al. Azobenzene-containing supramolecular polymer films for laser-induced surface relief gratings [J]. Chem. Mater., 2007, 19: 14-17.
    [94] Gao J, He Y, Liu F, Zhang X, Wang Z, Wang X. Azobenzene-containingsupramolecular side-chain polymer films for laser-induced surface relief gratings [J]. Chem. Mater., 2007, 19: 3877-3881.
    [95] Chen X, Hong L, You X, Zhang Q, et al., Photo-controlled molecular recognition of alpha-cyclodextrin with azobenzene containing polydiacetylene vesicles [J]. Chem. Commun., 2009, 11: 1356-1358.
    [96] Wu S, Niu L, Shen J, Zhang Q, Bubeck C. Aggregation-induced reversible thermochromism of novel azo chromophore-functionalized polydiacetylene cylindrical micelles [J]. Macromolecules, 2009, 42: 362-367.
    [97] Han K, Su W, Zhong M, et al. Reversible photocontrolled swelling-shrinking behavior of micron vesicles self-assembled from azopyridine-containing diblock copolymer [J]. Macromol. Rapid Comm., 2008, 29: 1866-1870.
    [98] Yu X, Luo Y, Wu W, et al. Synthesis and reversible thermochromism of azobenzene-containing polydiacetylenes [J]. European Polymer Journal, 2008, 44: 3015-3021.
    [99] Zhou J, Yang J, Ke Y, et al. Fabrication of polarization grating and surface relief grating in crosslinked and non-crosslinking azopolymer by polarization holography method [J]. Opt. Mater., 2008, 30: 1787-1795.
    [100] Xu Pan, Changshun Wang, Chuanyu Wang, Xiaoqiang Zhang, Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer [J]. Appl, Opt. 2008, 47: 93-98.
    [101] Xu Pan, Changshun Wang, Xiaoqiang Zhang, Inverse relaxation of photoinduced birefringence in a liquid-crystalline azobenzene side-chain polymer [J], Chin. Phys. Lett. 2008, 25: 3227-3230.
    [102] Li Z, Wu W, Hu P, et al. Click modification of azo-containing polyurethanes through polymer reaction: Convenient, adjustable structure and enhanced nonlinear optical properties [J]. Dyes and Pigments, 2009, 81: 264-272.
    [103] Li Z, Hu P, Yu G, et al. "H"-shape second order NLO polymers: synthesis and characterization [J]. Physical Chemistry and Chemical Physics, 2009, 11: 1220-1226.
    [104] Zhu Z, Li Q, Zeng Q, et al., New azobenzene-containing polyurethanes: Post-functional strategy and second-order nonlinear optical properties [J]. Dyes and pigments, 2008, 78: 199-206.
    [105] Li Q, Lu C, Zhu J, et al. Nonlinear optical chromophores with pyrrole moieties as the conjugated bridge: Enhanced NLO effects and interesting optical behavior [J]. J. Phys. Chem. B, 2008, 112: 4545-4551.
    [106] Li Z, Yu G, Li Z, et al. New second-order nonlinear optical polymers containing the same isolation groups: Optimized syntheses and nonlinear optical properties [J]. Polymer, 2008, 49: 901-913.
    [107] Li Z, Ye C, Qin J, et al. Structural control of the side-chain chromophores to achieve highly efficient nonlinear optical polyurethanes [J]. Macromolecules, 2006, 39: 6951-6961.
    [108] Wang S, Zhao L, Yang S, et al. Fabrication of photo-cross-linked stableorganic-inorganic hybrid second-order nonlinear optical films [J]. Mater. Lett., 2009, 63: 292-294.
    [109] Shi Z, Zhang X, Cui Z. Synthesis and characterization of thiophene-containing chromophores for nonlinear optical (NLO) materials [J]. Journal of Nonlinear Optical Physics & Materials, 2008, 17: 243-254.
    [110] Wang Y, Wang X, Guo Y, et al. Electric-field-induced layer-by-layer fabrication of second-order nonlinear optical films with high thermal stability [J]. Langmuir, 2004, 20: 8952-8954.
    [111] Wang Y, Wang X, Chuai X, et al. Synthesis and properties of novel crosslinkable second-order nonlinear optical polymers based on 2,3,4,5,6-pentafluorostyrene [J]. Polymer International, 2004, 53: 1106-1112.
    [112] Jin M, Lu R, Yang Q, et al. Preparation of side-on bisazobenzene-containing homopolymers and block copolymers via ATRP and studies on their photoisomerization and photoalignment behaviors [J]. J. Polym. Sci. A, 2007, 45: 3460-3472.
    [113] Jin M, Yang Q, Lu R, et al. Syntheses of bisazo-containing polymethacrylates using atom transfer radical polymerization and the photoalignment behavior [J]. J. Polym. Sci. A, 2004, 42: 4237-4247.
    [114] Jin M, Lu R, Bao C, et al. Synthesis and characterization of hyperbranched azobenzene-containing polymers via self-condensing atom transfer radical polymerization and copolymerization [J]. Polymer, 2004, 45: 1125-1131.
    [115] Jin M, Yang Q, Lu R, et al. Synthesis and photo-induced birefringence of pyrazoline substituted azo-dyes in PMMA films [J] Opt. Mater., 2003, 24: 445-452.
    [116] Jin M, Yang Q, Lu R, et al. Synthesis and photoinduced birefringence of polymethacrylates with azo-substituted pyrazoline in the side chain [J] Mater. Chem. Phys., 2003, 82: 246-252.
    [117] Yu L, Zhang Z, Chen X, et al. Synthesis and Tetrazole-Containing Azo Polymers with Properities of Photo-Induced Birefringence and Surface-Relief-Gratings via RAFT Polymerization [J]. J. Polym. Sci. A, 2008, 46: 682-691.
    [118] Zhang Y, Cheng Z, Zhu X, et al. Synthesis and Photorespinsive Behaviors of Well-Defined Azobenzene-Containing Polymers via RAFT Polymerization [J]. Macromolecules, 2007, 40: 4809-4817.
    [119] P. D. Maker and R. W. Terhune Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength [J]. Phys. Rev. 1965, 137: A801-A818.
    [120] P. P. Ho and R. R. Alfono, Optical Kerr effect in liquids [J]. Phys. Rev. A 1979, 20(5): 2170-2187.
    [121] S. K. Ghoshel, P. Chopra, B. P. Singh, J. Swiatkiewicz and P. N. Prasad, Picosend degenerate four-wave mixing study of nonlinear optical properties of poly-N-vinyl carbazole: 2, 4, 7-trinitrofluorenone composite polymer photoconductor [J] J. Chem. Phys. 1989, 90: 5078-5081.
    [122] M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, High-sensitive, single beam n2 measurement [J], Optics Letters, 1989,14(17): 955-957..
    [123] A. Agnesi, G. C. Reali, A. Tomaselli. Beam quality measurement of laser pulses by nonlinear optical techniques [J], Optics Letters, 1992, 17(24): 1764-1766.
    [124] P. P.Banerjee, R. M. Misra, M. Maghraoui. Theoretical and experimental studies of propagation of beams through a finite sample of a cubically nonlinear material [J], J. Opt. Soc.Am. B, 1991, 8(5): 1072-1080.
    [125] M. Sheik-bahae, A. Said, Tai-huei Wei, David J. Hagan Sensitive Measurement of Optical Nonlinearities Using a Single Beam [J], IEEE Journal of Electronics, 1990, 26, 760-769.
    [126] Zhao W, Palffy-Murhory P. Z-scan technique using top-hat beams [J], Appl.Phys.Lett.,1993,63:1613-1615.
    [127] Xia T. Eclipsing Z-scan measurement ofλ/104 wave-front distortions [J], Opt.Lett.,1994,19:317-319.
    [128] Sheik-Bahae M, Wang J, De Salvo R. Measurement of nondegenerate optical nonlinearity using a two-color Z-scan [J], Opt.Lett.,1992,17: 258-260.
    [129] Sheik-Bahae M, Nonlinear refraction and optical limiting in thick media [J], Opt.Eng.,1991,30: 1228-1235.
    [130] Hermann J A, Analysis of spatial scanning with thick optically thick media [J]. J.Opt.Soc.Am B,1993,10: 2056-2064.
    [131] P. A. M. Aguilar ,J. J. S. Mondragon et al. Z-scan experiments with cubic photorefractive crystal Bi12TiO20 [J], Opt. Commun., 1995,118: 165-174.
    [132] S.Bian, J.Frejlich, Z-scan measurements of photorefractive nonlinearities for a SBN:Ce crystal [J], Appl . Phys. B, 1997, 64: 539-546.
    [133] D. V. G. L. Rao, F. J. Aranda, J. F. Roach et al. , Third order nonlinear optical interaction of some benzopoephyrins. [J], Appl. Phys. Lett. 1991, 58(12): 1241-1243.
    [134]石莹岩.卟啉低聚物基质材料的合成[D].长春:吉林大学,2002.
    [135] Kenneth J. McEwan, Paul A. Fleitz, et al. Reverse saturable absorption in the near-infrared by fused porphyrin dimers [J]. Advanced Materials. 2004, 21: 1933-1935.
    [136] Hongyao Xua, Shouchun Yin, Weiju Zhu, Yinglin Song and Benzhong Tang. Synthesis and optical properties of three novel functional polyurethanes bearing nonlinear optical chromophoric pendants with differentπelectron conjugation bridge structure [J]. Polymer. 2006, 47(20): 6986-6992.
    [137]郑文琦.卟啉化合物的合成及其光学,电化学和顺磁共振性质的研究[D].长春:吉林大学,2007.
    [138] J. P. Gordon, R. C. C. Leite, S. S. Porto, et al., Long-transient efects in lasers with inserted liquid samples [J]. J. Appl. Phys., 1965, 36: 3-8.
    [139] R. C. C. Leite, S .P. S. Porto and P. C. Damen. The thermal lens effects as a power limiting device [J]. Appl. Phys. Letts., 1967, 10: 100-101.
    [140]杨振寰(FRANCIS, YU TS.)等著,冯国英,陈建国等译.光信息技术及应用[M].北京:电子工业出版社,2006.
    [141]周海宪,程云芳.全息光学[M].北京:化学工业出版社,2006.
    [142]江涛.信息存储新领域—全息存储及其材料[J].信息记录材料,2006,7(6): 32-36.
    [143]魏斌,吴谊群,顾冬红,干福熹.偶氮染料:新型高密度、多功能光盘存储介质[J].功能材料, 2003, 1: 1-4.
    [144]杨庆鑫.偶氮类有机薄膜的光物理特性研究[D].长春:吉林大学化学学院, 2000.
    [145]金明.新型偶氮苯类聚合物的设计、合成及其光诱导双折射性质研究[D].长春:吉林大学化学学院,2004.
    [146]王耀.新型二阶非线性光学聚合物膜材料的设计、制备与性能研究[D].长春:吉林大学化学学院,2005.
    [147] Matsui F, Taniguchi H, Yokoyama Y, et al. Application of photochromic 5-dimethylaminoindolylfulgide to photon-mode erasable optical memory media with non-destructive readout ability based on wavelength dependence of bleaching quantum yield [J]. Chem. Lett., 1994, 10: 1869-1872.
    [148] Kawanishi Y, Tamaki T, Ichimura K. Reversible photoinduced phase transition and image recording in polymer-dispersed liquid crystals [J]. J. Phys. D: Appl. Phys., 1991, 24: 782-784.
    [149] Moerner W, Silence S. Polymeric photorefractive materials [J]. Chem. Rev., 1994, 94: 127-155.
    [150] Ostroverkhova O, Moerner W. Organic photorefractives: mechanisms, materials, and applications [J]. Chem. Rev., 2004, 104: 3267-3314.
    [151] Feinberg J, Heiman D, Tanguay A, et al. Photorefractive effects and light-induced charge migration in barium titante [J]. J. Appl. Phys., 1980, 51, 1279-1305.
    [152] Sutter K, Gutter P. Photorefractive gratings in the organic crystal 2-cyclooctylamino- 5-niropyridine doped with 7, 7, 8, 8-tetracyanoquinodimethane [J]. J. Opt. Soc. Am. B: 1990, 7: 2274-2278.
    [153] Burland D, Miller R, Walsh C. Second-order nonlinearity in poled-polymer systems [J]. Chem. Rev., 1994, 94: 31-75.
    [154] Xu C, Wu B, Dalton L, et al. New random main-chain, second-order nonlinear optical polymers [J]. Macromolecules, 1992, 25: 6716–6718.
    [155] Wortmann R, Poga C, Tweig J, et al. Design of optimized photorefractive polymers: A novel class of chromophores [J]. J. Chem. Phys., 1996, 105(23): 10637-10647.
    [156] Colese H, Simon R. High-resolution laser-addressed liquid crystal polymer storage displays [J]. Polymer, 1985, 26: 1801-1806.
    [157] Sun J, Wu H, Li B, Ying Z. Preparation, third-order nonlinear optical property and optical information storage of polyimide attached with azobenzene chromophore side-chain [J]. Chem. J. Chin. Uni., 2004, 2: 372-375.
    [158]沈元壤,非线性光学[M].北京:科学出版社, 1987.
    [159] Gregg B, Fox M, Bard A. 2, 3, 7, 8, 12, 13, 17, 18-Octakis (.beta.-hydroxyethyl) porphyrin (octaethanolporphyrin) and its liquid crystalline derivatives: synthesis and characterization [J]. J. Am. Chem. Sco., 1989, 111: 3024-3029.
    [160] Liu C, Pan H, Tang H, Fox M, Bard A. Effect of structural order on the dark current and photocurrent in zinc octakis (.beta.-decoxyethyl)porphyrin thin-layer cells [J]. J. Phys. Chem., 1995, 99: 7632-7636.
    [161] Tay S, Blanche P, Voorakaranam R, et al. An updatable holographic three-dimensional display [J]. Nature, 2008, 451: 694-698.
    [162] Perry J. Update on 3D displays [J]. Nature, 2008, 451: 636-637.
    [163]陈兴波.含偶氮聚芳醚光响应材料的制备及其性能研究[D].长春:吉林大学化学学院,2009.
    [164] O. K. Song, C. H. Wang and M. A. Pauley. Dynamic Processes of Optically Induced Birefringence of Azo-Compounds in Amorphous Polymers Below Tg. [J]. Macromolecules 1997, 30, 6913-6919.
    [165] Christophe Maertens, Philippe Dubois, Robert Jerome, Pierre-Alexandre Blanche and Philippe C. Lemaire. Dynamics of the photo-induced orientation and relaxation of new polymethacrylates containing carbazolyl and azobenzene pendant groups [J]. Polym Int. 1999, 48, 205-211.
    [166] Josmary R. Silva, F. F. Dall’Agnol, O. N. Oliveira Jr, Jose A. Giacometti. Temperature dependence of photoinduced birefringence in mixed Langmuir-Blodgett (LB) films of azobenzene-containing polymers [J]. Polymer 2002, 43, 3753-3757.
    [167] N. Bohm, A. Materny, W. Kiefer, H. Steins, M. M. MUller, and G. Schottner, Spectroscopic Investigation of the Thermal Cis-Trans Isomerization of Disperse-Red-1 in Hybrid Polymers [J]. Macromolecules 1996, 29, 2599-2604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700