高瓦斯煤层冲击地压发生理论研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对通常的冲击地压的发生机理已经有些基本认识,对其预测与防治已形成一些基本方法和技术。但迄今为止很少见到对高瓦斯煤层冲击地压的发生机理、预测、防治进行系统专门的研究。本文选择阜新矿区五龙等矿为试验矿井,采用理论分析、实验室试验和现场实验相结合的研究方法,对高瓦斯煤层冲击地压发生机理及预防技术进行研究。主要内容如下。
     1.现场调研与实验研究
     通过现场调研,对试验矿井地质情况、瓦斯赋存与抽放情况和冲击地压发生情况进行了统计分析。
     通过实验室试验测定了试验矿井煤样的视密度、抗压强度、弹性模量等物理力学参数,测定瓦斯渗透率、水渗透率、峰值强度与瓦斯含量的关系、弹性模量与瓦斯含量的关系、湿润接触角、浸水过程中力学性质随含水率的变化规律。
     2.高瓦斯煤层冲击地压发生理论研究
     揭示了高瓦斯煤层冲击地压发生机理、冲击地压发生后的瓦斯涌出机理、瓦斯煤层冲击地压与煤和瓦斯突出的区别与联系。建立了高瓦斯煤层冲击地压发生理论及其数学模型,对煤巷和采煤工作面冲击地压进行了解析分析。
     瓦斯压力存在一个临界值,当瓦斯压力大于临界值时,Klinbenberg效应消失,煤对瓦斯的吸附达到饱和,有效应力系数随瓦斯压力增大而减小,渗透系数随瓦斯压力增大而增大,表现为高瓦斯特性。
     含瓦斯煤体孔隙中的瓦斯对煤体通过孔隙压力以有效应力的方式施加于煤体,煤体的变形破坏过程受有效应力控制,在有效应力作用下,煤体中的裂纹发生发展,当局部的有效应力超过峰值强度时,此局部区域的煤体成为应变软化的非稳定介质,形成了由此局部区域的非稳定介质与外部区域的稳定介质组成的变形系统。采掘过程中,在瓦斯吸附、解吸、渗流与煤层变形耦合作用下,系统处于非稳定平衡状态,遇外部扰动时,系统将会失稳而形成冲击地压灾害。
     高瓦斯煤体发生冲击地压时,在冲击点形成了瓦斯卸压带,在瓦斯压力差和浓度差作用下,煤体内瓦斯的解吸、扩散和渗流同时进行,因此会有大量瓦斯涌出,并会持续一段时间。
     瓦斯煤层冲击地压与煤和瓦斯突出的孕育过程是完全相似的,但发生过程和能量来源有很大区别。瓦斯煤层冲击地压是煤层变形系统整体受压失稳而发生的,而煤和瓦斯突出是拉性有效应力超过煤抗拉强度发生的拉伸失稳破坏。
     高瓦斯煤层冲击地压的发生条件与瓦斯压力和煤的力学性质有关。煤巷冲击地压的临界载荷随瓦斯压力增大而增加。采煤工作面冲击地压的临界载荷随有效应力系数和瓦斯压力增大而增加。
     3.高瓦斯煤层冲击地压预测技术研究
     考虑瓦斯的作用与影响,确定了瓦斯煤层钻屑量指标,讨论相关参数对钻屑量指标的影响规律,并与不考虑瓦斯情况的钻屑量指标进行了对比分析。确定了钻屑法检测冲击地压危险的工艺参数,通过现场实施验证了其正确性和可行性。
     考虑瓦斯的作用与影响时,钻屑指标低于不考虑瓦斯影响时的理论值,随瓦斯压力增大而减小,随有效应力系数增大而减小
     4.高瓦斯煤层冲击地压防治技术研究
     分别应用单孔介质和双孔介质模型,建立瓦斯煤层注水过程水气驱替理论。通过求解平面径向流水气驱替基本方程,得到计算注水时间的解析式。对阜新矿区煤层注水防治瓦斯煤层冲击地压的可行性进行了研究,确定了瓦斯煤层注水防治冲击地压的工艺参数和过程,并通过现场实施进行了验证。提出了阜新矿区高瓦斯煤层冲击地压总体防治方案、具体解危措施和冲击地压后瓦斯涌出防治措施。
     煤被水湿润后物理力学性质发生改变,凡是注水充分的工作面,冲击地压发生的频度和强度均大大降低。瓦斯煤层注水过程是水驱替瓦斯的过程。煤体孔隙率、瓦斯压力和注水半径越大注水时间越长,渗透率和注水压力越大注水时间越短。注水工艺参数主要有注水半径、注水量、注水时间、注水孔封孔长度、注水压力等。
There is some basic knowledge to the mechanism of common rockburst, the conventional method and technique of rockburst forecast and prevention formed already, however, the special exposition is few about the mechanism, forecast and prevention of rockburst occurring in high gassy seam so far. Wulong and some other coal mines in Fuxin Coal Area were selected as experiment mine in this paper. The mechanism, forecast and prevention technique of the rockburst occurring in high gassy seam were studied with the method combining theoretical analysis with spot practice and test in laboratory. The main contents are as follows.
     1. Spot investigation and test in laboratory.
     Some specific data of test mines were collected and analyzed through spot investigation, such as geological structure, rockburst, inherent gas and its pumping.
     The physical and mechanical properties of coal sample were determined through tests in laboratory. Their properties are apparent density, compression strength, elastic modulus, gas permeability, water permeability, contact angle, relation of compression strength and gas content, relation of elastic modulus and gas content, variation of mechanical properties with water ratio in the different soaking water time and so on.
     2. Theoretical research of rockburst occurring in high gassy coal seam.
     The mechanism of rockburst occurring in high gassy coal seam and gas gushing after rockburst were revealed. The distinction and connection were discovered between rockburst occurring in gassy seam and burst of coal and gas. The theory and its mathematical model of rockburst occurring in high gassy seam were established. This theory was applied to analyze the rockburst of tunnel and coal face.
     There is a critical value of gas pressure. When gas pressure is greater than this critical value, the Klinbenberg effect disappears, the gas adsorbing quantity reaches saturation, the effective stress coefficient decreases and the permeability increases if gas pressure increases. This is the behavior of high gassy seam.
     The action of gas to coal mass is called porous pressure, and the coal mass undertake effective stress. The process of its deformation and rapture is controlled by the effective stress. In this process the cracks appear and expend. When effective stress is greater than compression strength in some areas the coal mass become to strain softening media that is instable. Total system consists with instable media in some areas and stable media in outer areas. In process of the excavation this system understands the coupling action of gas adsorption, desorption, transfusion and coal deformation, its balance state is instable. In situation of external disturbance its balance will be lose and rockburst will occur.
     When the rockburst occurs a band is formed around the rockburst point. The pressure and density of gas decrease in this band. The gas desorption, diffusion and transfusion happened at the same time, a great quantity of gas will pour out and continue after rockburst.
     By comparative analysis between rockburst occurring in gassy seam and burst of coal and gas it show that the breeding process is similar completely but occurring process and source of energy is different. When the coal seam deformation system undertake compression stress and lose stability the rockburst will occur. When tensile effective stress is greater than tensile strength of coal the system appear tensile instability and the burst of coal and gas will occur.
     The occurring conditions relate to gas pressure and mechanical properties of coal. The critical load of tunnel rockburst increases if gas pressure increases. The critical load of coal face increases if gas pressure and effective stress coefficient increase.
     3. Research of forecast technique of rockburst occurring in high gassy seam.
     Drilling bits index of gas seam was determined and the inference law of someparameters were discussed. Comparative analysis was made to no gas situation. Some technological parameters of drilling bits method were determined. The correctness and feasibility were verified through actual operation. Drilling bits index of gassy seam is lower, it decreases if gas pressure and effective stress coefficient increase.
     4. Research of prevention technique of rockburst occurring in high gassy seam.
     Theories of driving and replacement of water and gas were established throughporous medium model and double-porous medium model respectively. The expression of water injection time was obtained by solving fundamental equation of plane radical flow. The feasibility of water injection into coal seam to prevent rockburst in Fuxin Mining Area was analyzed. The technological parameters and process were improved. It was verified through actual operation. The prevention scheme of rockburst occurring in high gassy seam, dispelling rockburst danger measure and gas gushing prevention method were put forward.
     The physical and mechanical properties of coal will be transformed after soaking water. The face of full water injection the frequency and intensity of rockburst will decrease greatly. The water injection into coal seam is a process of driving and replacement of water and gas among coal seam. The water injection time increases if porous ratio, gas pressure and water injection radius increase, the time decreases if permeability and water injection pressure increase. The technological parameters consist of radius, quantity, time and pressure of water injection, closing length and so on.
引文
铩颷1]孙纳正.地下水流的数学模型与数值方法[M].北京:地质出版社,1981
    [2]胡佩清.地下水不稳定流有限元计算方法-“BT”法[M].北京:冶金工业出版社,1983
    [3]刘建军等.基于压水试验数据的渗透系数应力敏感性研究[J].岩石力学与工程学报,2005,24(S1):4724-4727
    [4]杨天鸿等.荷载和水压力作用下岩石裂纹贯通通过的数值模拟研究[J].岩石力学与工程学报,2005,24(S1):5026-5030
    [5]荣耀等.不同含水岩石蠕变试验电磁辐射频谱分析[J].岩石力学与工程学报,2005,24(S1):5090-5095
    [6]傅鹤林等.饱和岩层中地下水渗流与岩体变形的耦合数学模型及数值解法[J].湘潭矿业学院学报,2002,17(2):74-78
    [7]Handin J.Experimental deformation of sedimentary rocks under confiningpressure[J].Bull Abt.Ass.Petrol Ged.47,1963
    [8]W.F.Brace,et al.,The effect of Pressure on the electrical resistivity ofwater-saturated crystalline rocks.J.Geophys.Res.70.D.5669.1965
    [9]氏平增之.瓦斯突出的机理与防治,日本北海道大学氏平增之来华讲学材料,1986
    [10]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,(2)
    [11]林伯泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业大学学报,1987,(1)
    [12]赵阳升.煤体与瓦斯两相介质耦合作用的研究[D].同济大学博士论文,1992
    [13]梁冰等.瓦斯对煤的力学性质及力学行为响应影响的实验研究[J].岩土工程学报,1995
    [14]周世宁,孙辑正.煤层瓦斯流动理论及应用,煤炭学报,No.1,1965
    [15]周世宁.瓦斯在煤层中流动的机理,煤炭学报,1990,No.1,pp15-24
    [16]王佑安,杨其銮.煤屑瓦斯扩散理论及其应用,煤炭学报,1986.No.3
    [17]A.Saghafi et al.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯的应用,第22届国际采矿安全会议论文集,1987.11,中国北京
    [18]章梦涛,梁冰.采动影响下煤层内瓦斯流动状况的数学模型及数学分析,第二届全国岩石力学数值计算与模拟试验学术研讨会论文集,上海,同济大学出版社,1990,pp423-428
    [19]国家经贸委安全生产局.1999年上半年全国煤矿特大事故情况,煤矿安全,1999,No.8,45-46
    [20]潘一山.冲击地压发生和破坏过程研究[D].清华大学博士论文,1999
    [21]Cook N G W.The failure of rock.Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.,1965,4:389-403
    [22]Cook N G W.A note on rock bursts considered as problem of stability.J. South Afr.Int.Min.and Metallurgy,1965,65:437-446
    铩颷23]Cook N W G,Hoek E,et al.Rock mechanics applied to the study of rockburst.J.S.Afr.Inst.Min.Metall,1966,66:435-528
    [24]Petukhov I M,Linkov A M.The theory of post-failure deformations and theproblem of stability in rock mechanics.Int.J.Rock Mech.Mim.Sci.&Geomech.Abstr.1979,16:57-76
    [25]章梦涛.冲击地压失稳理论及数值计算.岩石力学与工程学报,1987,6(3):197-204
    [26]齐庆新,毛德兵,王永秀.冲击地压的非线性非连续特征[J].岩土力学,2003,24(S):575-579
    [27]周瑞忠.岩爆发生的规律和断裂机理分析.岩土工程学报,1995,17(6):111-117
    [28]李广平.岩体的压剪损伤机理及其在岩爆分析中的应用.岩土工程学报,1997,19(6):49-55
    [29]刘小明等.脆性岩石损伤力学分析与岩爆损伤能量指数.岩石力学与工程学报,1997,16(2):140-147
    [30]彭祝等.Griffith理论与岩爆的判别准则.岩石力学与工程学报,1996,15,15:491-495
    [31]谢和平.岩爆的分形特征和机理.岩石力学与工程学报,1993,(1)
    [32]潘一山等.煤体振动方法防治冲击地压的机理研究[J].岩石力学与工程学报,1999,(4):432-436
    [33]王来贵等.矿井不连续面冲击地压发生过程分析,中国矿业,1996,(3)
    [34]缪协兴,安里干,翟明华.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,(2)
    [35]周晓军,鲜学福.煤岩体变形失稳破坏条件的研究[J].西部探矿工程,1998,(4)
    [36]周晓军,鲜学福.基于粘弹性模型的煤体冲击倾向指标的试验研究[J].西部探矿工程,1999,(1)
    [37]谭云亮.岩层运动非线性动力学预测基本框架[J].中国地质灾害与防治学报,2000,(2)
    [38]宋维源,潘一山,沈连山.冲击地压的非线性动力反演及预报问题[J].辽宁工程技术大学学报(自然科学版),1999,(5)
    [39]朱清安,史蒙.冲击地压的混沌性及动力学模型研究[J].辽宁工程技术大学学报,2001,20(1)
    [40]潘一山等.洞室岩爆的尖角型突变模型.应用数学与力学,1994,15(10):893-900
    [41]费鸿禄等.地下洞室的突变理论研究.煤炭学报,1995,20(1):29-33
    [42]徐曾和等.坚硬顶板下煤柱岩爆的尖点突变理论分析.煤炭学报,1995,20(5):485-491
    [43]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,(1)
    [44]潘岳,解金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析 [J].岩石力学与工程学报,2001,(5)
    铩颷45]齐庆新,刘天泉,史元伟.冲击地压的摩擦滑动失稳机理[J].矿山压力与顶板管理,1995,(3-4)
    [46]徐思朋,缪协兴.冲击地压的时间效应研究现状[J].矿业安全与环保,2001,28(2):27-29
    [47]潘立友.冲击地压前兆信息的可识别性研究及应用[J].岩石力学与工程学报,2004,23(8):1411-1411
    [49]谭云亮等.冲击地压声发射前兆模式初步研究[J].岩石力学与工程学报,2000,19(4):425-428
    [49]纪洪广,王金安,蔡美峰.冲击地压事件物理特征与几何特征的相关性与统一性[J].煤炭学报,2003,28(1):31-36
    [50]吴章龙,唐典彩.冲击矿压的防治实践[J].煤矿安全,感1999,(4):25-26
    [51]王应启,马良,陈木华.钻屑法在监测冲击矿压中的研究与应用[J].煤矿现代化,2006,增:153-154
    [52]邓小林.东滩煤矿钻屑法检测冲击地压危险的认识[J].煤矿现代化,2006,(1):27-29
    [53]李忠华,潘一山.钻屑法孔壁破坍失稳现象研究[J].煤矿开采,2005,10(2):61-76
    [54]窦林名,何学秋,Be mard Drzezls.冲击矿压危险性评价的地音法[J].中国矿业大学学报,2000,29(1):85-88
    [55]李凤琴,张兴民,姜福兴.煤矿井下微震监测系统及应用[J].煤田地质与勘探,2006,34(4):68-70
    [56]李庶林,尹贤刚.矿山微震震源机制的初步研究.长沙矿山研究院建院50周年院庆论文集,2006
    [57]丁强,李德喜.微震监测技术预报冲击矿压在三河尖煤矿的应用[J].煤矿开采,2005,10(1):74-75
    [58]刘建辉,李化敏.电磁辐射法在岩爆监测中的应用[J].矿业研究与开发,2006,26(1):69-73
    [59]王洪涛等.电磁辐射法在冲击地压预测预报中的应用[J].山东煤炭科技,2004,(6):32-33
    [60]聂百胜,何学秋,王恩元,窦林名.电磁辐射法预测煤矿冲击地压[J].太原理工大学学报.2000.31(6):610-624
    [62]Gress G.O.Grady B.T.Rowell G.A.Sources of electrum agnatic radiationfrom fracture of rock samples in laboratory[J].Geo.Phy.Res.Lett.1987,(14):331-333
    [63]窦林名,谷德钟,曹树刚.冲击矿压及其防治[J].矿山压力与顶板管理,1999,(3-4):215-218
    [64]潘一山等.煤体振动方法防治冲击地压的机理研究[J].岩石力学与工程学报,1999,18(4):432-436
    [65]杨正华,吴兴荣,井胜泉.煤层卸载爆破在冲击矿压防治中的应用[J].江苏煤炭,2000,(4):7-8
    铩颷66]李志华等.坚硬顶板卸压爆破对冲击矿压防治的数值分析[J].中国煤炭,2006,32(2):38-41
    [67]关杰,孙可明,朱月明.急倾斜煤层开采解放层防治冲击地压数值模拟[J].辽宁工程技术大学学报,2002,21(4):411-413
    [68]李国宏等.利用卸压钻孔防治冲击地压的实践[J].煤矿安全,2004,35(11):8-10
    [69]潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851
    [70]章梦涛.我国冲击地压预测和防治[J].辽宁工程技术大学学报,2001,20(4):434-435
    [71]潘一山,李忠华,唐鑫.阜新矿区深部高瓦斯矿井冲击地压研究[J].岩石力学与工程学报,2005,24(S1):5202-5205
    [72]梁冰.煤和瓦斯突出的固流耦合失稳理论的研究[D].东北大学博士学位论文,1994
    [73]章梦涛等.煤岩流体力学[M].北京:科学出版社,1995
    [74]M.A.Biot.Mechanics of incremental deformation[M].John Wiley & SonsInc.New York,1965
    [75]Zhenck P.Bazant.Stability of structures[M].Oxford University Press,NewYork,1991
    [76]丁继辉等.煤与瓦斯突出的固-流耦合失稳理论及数值分析[J].工程力学,1999,16(4):47-53
    [77]汪有刚等.煤层瓦斯流固耦合渗流的数值模拟[J].煤炭学报,2001,26(3):285-289
    [78]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].工程技术大学学报,2001,20(1):36-39
    [79]刘建军等.低渗透储层流-固耦合渗流规律的研究[J].岩石力学与工程学报,21(1):88-92
    [80]周志军等.低渗透储层流固耦合渗流理论模型[J].大庆石油学院学报,2002,26(3):29-116
    [81]李培超等.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419-426
    [82]Terzaghi.Theoritical soil mechanics.New York,1942
    [83]J.C.Jeager,N.G.W.Cook.岩石力学基础(中译本)[M].北京:科学出版社,1983
    [84]Robter L.Kranz.Crack-crack and crack-pore interaction in stressed granite[J]Rock Mechanics,1979,(16):37-47
    [85]A.L.Ettinger.Swelling stress in the gas-coal system as an energy source inthe development of gas bursts.Soviet Mining Science,1979,No.5:494-501
    [86]J.B.Walsh.Effect of pore pressure and confining pressure on fracturepermeability.Int.J.Rock Mech.& Min.Sci.,1981,Vol.18:429-439
    [87]A.A.Borisenko.Effect of gas pressure on stress in coal strata.SovietMining Science,1985,No.1:88-91
    铩颷88]段康廉,赵阳生等.孔隙水压作用下煤体有效应力规律的研究.北方岩石力学会议论文集,北京:科学出版社,1991
    [89]赵阳生等.应力与孔隙压对煤体渗透性的影响.第二届国际采矿会议论文,中国矿业大学,1991
    [90]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报20(增):1801-1804
    [91]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000
    [92]高玉臣.固体力学基础[M].北京:中国铁道出版社,1999
    [93]Kachanov L M.On the time to failure under creep condition.Izv Akad NaukUSSR[J],Otd.Tekhn.Nauk 1958,8,26-31
    [94]Rabotnov Y N.On the equations of state for creep.In:Progress in AppliedMechanics[J].1963,307-315
    [95]Jonson J.Hult J.Fracture mechanics and damage mechanics,a combinedapproach.Journal de Mecanique Appliqblce,1997,1(1):11-23
    [96]Jacky M.A description of micro-and-macroscale damage of concretestructures.J.Engng.Fracture Mechanics,1986,25(5/6):729-737
    [97]Lemaitre J.An equivalent strain hypothesis.J.Engng.Materials andTechnology,1985,107(1):83-89
    [98]潘一山,徐秉业.考虑损伤的圆形洞室岩爆分析[J].岩石力学与工程工程学报,1999,18(2):152-156
    [99]佩图霍夫.煤矿冲击地压(中译本)[M].北京:煤炭工业出版社,1980
    [100]章梦涛.冲击地压失稳理论与数值模拟计算.岩石力学与工程学报[J],1987,6(3):197-204
    [101]徐润.Liapunov稳定性理论基本定理的推广[J].商丘师范学院学报,2003,19(2):48-50
    [102]章梦涛等.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53
    [103]范学理,潘一山.冲击地压与突出的理论、预报及防治的现状和前景-第五届冲击地压与突出国际研讨会情况述评[J].阜新矿业学院学报,1995,14(1):34-38
    [104]邹德蕴,刘先贵.冲击地压和突出的统一预测及防治技术[J].矿业研究与开发第,2002,22(1):16-19
    [105]Y.-S.Pan and Z.-H.Li.Analysis of rock structure stability in coal mines[J].Int.J.Numer.Anal.Methods Geomech.2005,29(10):1045-1063
    [106]管原胜彦.煤壁压出及煤粉钻孔力学[J].日本矿业会志,1981,(1113):25-29
    [107]赵本钧,章梦涛.钻屑法的研究与应用[J].煤炭学报,1985,(1):45-55
    [108]崔乃鑫,李忠华,潘一山.考虑瓦斯影响的煤层冲击地压钻屑量指标研究[J].辽宁工程技术大学学报,2006,25(2):192-193
    [109]朱传征,许海涵.物理化学[M].北京:科学出版社,2000
    [110]高月英等.物理化学[M].北京:北京大学出版社,2000
    [111]王青松,金龙哲,孙金华.煤层注水过程分析和煤体湿润机理研究[J].安 全与环境学报,2004,No.1
    铩颷112]朝桂武,周英.巨厚煤层冲击地压的机理及预防措施[J].煤炭工程,3003,(10)
    [113]王茂松.波兰煤矿冲击地压防治经验[J]全国首届冲击地压研讨会论文集,1982
    [114]赵本钧.龙凤矿冲击地压的防治研究[J].阜新矿业学院学报,1985,增
    [115]宋维源.阜新矿区冲击地压及其注水防治研究[D].辽宁工程技术大学博士学位论文,2004
    [116]李信.天池矿注水预防冲击地压的研究[J].四川科技,1992,(6)
    [117]阳泉矿务局.阳泉矿煤层注水防尘及突出的研究[J].阳矿科技,1989,(3)
    [118]李颖川.煤层注水与采空区灌水防尘[M].北京:煤炭工业出版社,1987
    [119]牛锡卓.坚硬顶板煤层注水软化[J].矿山压力与顶板管理,1983,(2)
    [120]靳钟铭.浸湿软化顶板的试验研究[J].山西矿山学院学报,1959,(2
    [121]Muskat M.The Flow of Homogeneous Fluids Through Porous Media[J].NewYork:McGraw-Hill,1937;2nd printing by Edwards,Mich.1946
    [122]D.A.Neild and A.Bejan.Convection in Porous Media,New York:Springer-Verlag,1992
    [123]赵阳升.防治冲击地压与压力注水法[J].阜新矿业学院学报,1986,(3)
    [124]吴耀馄.煤层注水防治冲击地压的机理探讨[J].煤炭学报,1989,(3)
    [125]肖普朝.煤层注水防治煤与瓦斯突出机理探讨[J].平煤科技,1991,(2)
    [126]张延松.煤层注水润湿煤体的研究.煤炭学报[J],1995(增刊)
    [127]成军农.姚桥煤矿煤层注水难易性的理论研究[J].江苏煤炭,1998,(3)
    [128]Aktan T.F a r ou q Ali.M.Finite element analysis of temperature and thermalstresses induced by hot water injection.SPE J.,Oec.,1978:457-469
    [129]王青松,金龙哲,孙金华.煤层注水过程分析和煤体润湿机理研究[J].安全与环境学报,2004,4(1):70-73
    [130]李宗翔,孙广义,王继波.煤层长钻孔注水过程的数值模拟与参数的合理确定[J].煤炭学报,2001,26(4):389-392
    [131]Kennerlery,Just G.D.Phillips R.Development of a coal seam water jet inlong hole drill[A].In:International Conference on Reliability Productionand Control in Coal Mine[C].Parkville:Australasian Institute of Mining &Metallurgy,1991,319-322
    [132]秦书玉等.煤层注水难易程度的BP神经网络评价法[J].中国地质灾害与防治学报,2006,17(3):87-90
    [133]金哲龙,欧盛南.煤层注水中粘尘棒溶液对接触角的影响[J].北京科技大学学报,2005,27(3):264-273
    [134]章梦涛,宋维源,潘一山.煤层注水预防冲击地压的研究[J].中国安全科学学报,2003,13(10):69-72
    [135]孔祥言.高等渗流力学[M].合肥:中国科技大学出版社,1999
    [136]曾欣.滤料表面性质的研究-润湿接触角的测定[J].西北民族大学学报,2006,27(3):25-27
    铩颷137]减红霞.接触角的测量方法与发展[J].福建分析测试,2006,15(2):47-48
    [138]朱红,马铁华.固液气相面接触角的软件处理及计算[J].计量与测试技术,2004,(9):39-41
    [139]籍延坤等.固体与液体接触角的测定[J].抚顺石油学院学报,2002,22(3):84-86
    [140]付万军等.煤水平衡接触角的影响因素研究[J].煤炭科学技术,2002,30(2):57-58
    [141]王钦福等.接触角测量的新方法[J].油气田地面工程,2001,20(5):91
    [142]宋维源等.煤层注水的水气驱替理论研究[J].中国地质灾害与防治学报,2006,17(2):147-150
    [143]孙超,宋维源.煤层注水水气驱替的理论分析[J].辽宁工程技术大学学报,2005,24(增):93-95
    [144]陈钟祥,刘慈群.双重孔隙介质中二相驱替理论[J].力学学报,1980,12(2):109-119
    [145]姚军,李爱芬.单孔隙介质渗流问题的统一解[J].水动力学研究与进展,1999,A辑14(3):317-324
    [146]黎水泉,徐秉业.双重孔隙介质非线性流固耦合渗流[J].力学季刊,2000,21(1):96-101
    [147]陈长华,郭嗣踪.非均匀孔隙介质工作面气体稳定渗流的模糊解研究[J].煤炭学报,2002,27(5):488-197
    [148]王志明等.双层孔隙介质中非饱和渗流的水势分布与变化[J].辐射防护,2004,24(6):356-363
    [149]邵龙潭,孙益振.考虑孔隙变形的孔隙介质本构关系初探[J].岩土力学2006,27(4):561-565
    [150]Aifantic E.C.On the problem of diffusion in solids.Actu.Mech.1980,(37):265-296
    [151]Wilson R.K.Aifantic E.C.On the theory of consolidation with doublepoprosity-Ⅱ.Int.J.Engg.Sci.1982,(20):1009-1035
    [152]Bear J.Bachmat Y.Transport phenomena in porous media-basic equations.Fundamentals of transport phenomena in porous Media.Boston:MartinusNijhoff,1984,3-62
    [153]邓英尔等.考虑吸渗的双重介质中垂直裂缝井两相渗流[J].重庆大学学报,2000,23(增):86-89
    [154]Deswaan A.Theory of water flooding in fractured reservoirs[J].1978,18(2):117-122
    [155]Cincoley H.Transient pressure analysis for fractured wells[J].1981,1749-1766
    [156]Bennett C.O.Renolds A.C.Raghavan R.Performance of finite-conductivityvertically fractured wells in single-layer reservoirs[J].1986,399-412
    [157]Craig F.F.The reservoir engineering aspects of water flooding.1971,3:244-256
    [158]程伟.特征线法在汕水两相渗流问题中的应用[J].天津商学院学报,2005,25(3):20-29
    铩颷159]Warren T E,Root P J.The behaviour of naturally fractured reservoirs.Soc PetEngg J,1963,(3):245-255
    [160]Aifantis E C.On the problem of diffusion in solids.Acta.Mech.1980,(37):265-296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700