大民屯凹陷油气性质与成藏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是在中石油辽河油田分公司提供的《大民屯凹陷温压场演化及油气成藏机理研究》
    项目基础上进行研究和编写的。论文以含油气系统和成藏动力学理论为指导思想,探讨了
    大民屯凹陷油气成藏的动力学和运动学过程,应用油气地球化学、油藏地球化学和盆地模
    拟等领域中先进的分析技术与研究方法,分析了大民屯凹陷油气藏油气性质、成因类型和
    成藏特征,结合成藏背景与相对能量场分析,揭示出本区油气藏的成藏条件与主控因素,
    从而为指导和预测油气有利远景区及勘探目标优选提供了依据。研究过程中,应用了近年
    来石油地质、石油勘探领域中一些新方法、新理论:如利用流体包裹体激光拉曼技术、伊
    利石 K-Ar 定年技术确定油气成藏时间、期次;利用饱和烃气相色谱/质谱、单体烃碳同位
    素、红外光谱等分析测试手段进行精细油源对比;应用中性含氮化合物结合流体非均质性
    来判断油气的充注方向;磷灰石裂变径迹分析凹陷地温演化;同时还利用了盆地模拟等方
    法对研究区压力演化、油气运移路径进行了理论上的确定。
    大民屯凹陷是我国东部著名的“小而肥”新生代陆相小凹陷,也是世界上著名的高凝
    高蜡油生产基地,其独特的构造-沉积发育史、适宜的温压环境、多生烃洼陷、优质源岩、
    良好的输导系统、近源充注、多套成藏组合使得 800km2面积内已探明石油地质储量近 3 亿
    吨,有利的成藏背景伴随运移分异、生物降解等多种次生变化作用,形成了空间上正常原
    油、高蜡油、凝析油藏相互叠合的复式油气藏体系。
    
    通过研究,主要取得以下几点认识:
    1.大民屯凹陷原油含蜡量变化大,按含蜡量(20%)划分正常油和高蜡油。经过原油
    物性、甾萜等生物标志物、红外光谱分析,认为高蜡油油源沉积环境是较正常油贫粘土、
    盐度相对高的闭塞弱还原环境,其母质应由陆源高等植物和低等水生生物共同构成,且经
    微生物改造较强烈。正常油油源以高等植物为主体,处于相对氧化且富粘土的沉积环境。
    通过精细油源对比分析,大民屯凹陷高蜡油主要来源于沙四下部的“油页岩”, 而正常油
    母质主要为沙四上部和沙三四段的厚层泥岩。综合分析认为高蜡油成因主要受控于沉积母
    质和沉积环境的双重控制;
    2.大民屯凹陷现今地温梯度较低,平均为2.9℃/100m,古地温梯度较高,安福屯洼陷和
    荣胜堡洼陷分别 4.07 和 3.6℃/100m。凹陷沉降-沉积速率的变化及地温梯度的变化,使大民
    屯凹陷主力源岩进入生烃高峰后长期保持适合高蜡油形成和保存的温度条件。本区泥岩压实
    特征可分为强欠压实型、欠压实型、局部欠压实型和正常压实型四大类;纵向上,沙三段
    下部和沙四段地层内的超压幅度较为显著。横向上看,靠近凹陷中心部位的超压发育较强。
    压力演化经历了超压原始积累和超压释放两大阶段,地层快速深埋导致的欠压实和生烃增
    压是本区超压形成的主要机制。
    
    
    3.大民屯凹陷油浸砂岩的自生伊利石 K-Ar 同位素年龄分析表明其主要充注时期为
    37~33Ma,即沙一、二至东营早期;流体包裹体分析结果表明,大民屯凹陷下第三系和太
    古界潜山的主成藏期为沙三末期至东营早期,两结论基本一致,并且与本区主力源岩(E2S4
    和 E2S3 )主要生、排烃期在沙一、二期至东营早期的盆地模拟结论相吻合;
     4
    4.大民屯凹陷流体组成非均质性和中性含氮化合物分布特征揭示了原油的近源充注。
    油气的富集和分布是有效源岩、能量场演化和流体输导系统及其决定的流体流动样式共同
    控制的结果:优质源岩和适宜的温度条件有利于高蜡油的大量生成;较强的超压和有利的
    源岩-储层/输导层配置决定了高蜡油较高的排出效率;良好的泥岩封闭层和张性断裂较早地
    停止活动有利于原油的保存;汇聚型运移和近源成藏有利于原油的汇聚和大、中型油田的
    形成;
    5.静西构造带是高蜡油的汇聚区之一,目前尚无探明储量,具有较大的勘探潜力。
This dissertation is written on the base of the project “Study on temperature-pressure field
    evolution and hydrocarbon accumulation mechanism in Damintun Depression”, which is
    provided by Liaohe oil field of CNPC. The main leading ideas include petroleum system and
    dynamics of accumulation theories. We discussed hydrocarbon accumulating processes of
    dynamics and kinematics in Damintun Depression. Many advanced methods and technologies of
    oil-gas geochemistry, reservoir geochemistry and basin modeling have been used, such as fluid
    inclusion Laser Raman spectroscop, Illite K-Ar dating, saturated hydrocarbon GC/MS,
    monomeric carbon isotope, nitrogen-containing compound and fluid heterogeneity. Hydrocarbon
    characteristics, forming types, accumulation mechanism in this region have been well acquainted.
    At the same time, combining with accumulation background and energy field, we acquired
    reservoir forming conditions and its controlling factors. Consequently, they help to forecast
    effective oil-gas perspectives and choose available exploration targets.
     Damintun Depression is located in the northeast of Liaohe Basin, well-known as “small but
    fertility”and rich high-wax oil in the world. The total area of Paleogene is only about 800 km2
    and its geologic reserve is about 300 million tons. The fertility reserve is mainly owing to its
    particular conformation-sediment development history, appropriate geothermal-pressure
    circumstance, more source sags, high quality sources, favorable conduit systems, near-source
    charging, multi-play types. Advantageous accumulation background, accompanying with
    secondary changing effects such as migration differentiation and biodegradation formed mutual
    overlapping complex reservoir systems, including normal crude oil, high-wax oil and condensate
    reservoirs.
    The following conclusions have been drawn:
     1. The characters of petroleum are complex, with normal oil whose waxy percent is less than
    20% and high-wax oil whose waxy percent is more than 20%. Comparing with normal oil, the
    environment of source rocks of high-wax oil features with poorer shale, higher salty and
    reduction, and the source features mainly composed with higher grade plant and lower grade
    aquatic creatures by the analysis of crude oil physics nature, sterane, terpane and infrared
    spectrum. Detailed oil-to-source correlation shows that high-wax oil originates from “oil shale”
    of E2S4 , whereas normal oil sources from shale of E2S4 and E2S3 . The reasons of high-wax oil
     2 1 4
    generation are mainly due to organic matter and sedimentary environment.
     2. The pale geothermal gradient is higher than the present, and in Anfutun and Rongshengpu
    Sags, the PGs have reached 41℃/km and 36℃/km. The variety from rate of deposition and basin
    tectonic subsidence to geothermal gradient have come into being properly low
    thermo-developing history, which made high-wax oil generated and enriched and preserved after
    
    
    peak time of hydrocarbon generation. Four types of compaction in Damintun Depression are
    classified from the characteristics of mudstone compaction. At planes, the strong overpressure is
    always formed in the sedimentary center of every sag. Yet From the point of profiles, it is mainly
    generated from bottom of E2S3 member to inside of E2S3 and E2S4 members. Overpressure is
     3 4
    stronger and formed widely. Pressure evolvement can be divided into two phases of stress
    accumulation and release. The under-compaction and hydrocarbon generation are the leading
    mechanisms for the formation of the overpressure in this region.
     3. Petroleum charging history in Damintun Depression is also acquired by means of Illite
    K-Ar dating and fluid inclusion homogenous temperature technologies. Integrating with
    petroleum generation history by basin modeling technique, conclusions are drawn:To the
    reservoirs of Paleogene and Archean, one mainly charging period existed, w
引文
1. L.B.马贡, W.G.道主编, 张刚等译, 1998, 含油气系统-从烃源岩到圈闭, 石油工业
     出版社.
    2. 中科院有机地化国家重点实验室, 1990, 大民屯凹陷生油岩模拟, 排烃机理和排烃效率
     的实验研究.
    3. 陈义贤, 1996, 早第三纪辽河裂谷形成机理和石油地质问题的初步研究, 北京:石油工
     业出版社.
    4. 郝芳,陈建渝, 氧化还原条件对有机质生烃能力和热稳定性的影响, 地球科学, 1992, 15
     卷 15–24.
    5. 郝芳,邹华耀,姜建群, 油气成藏动力学及其研究进展[J], 地学前缘, 2000,7(3): 11-21.
    6. 郝芳,董伟良, 沉积盆地超压系统演化、流体流动与成藏机理, 地球科学进展, 2000,
     16(1): 79-85.
    7. 郝芳,李思田,龚再升等, 莺歌海盆地底辟发育机理与流体幕式充注, 中国科学(D 辑),
     2001,31(6):471-476.
    8. 张厚福, 1998, 石油地质学新进展, 北京:石油工业出版社.
    9. 张厚福,金之钧, 我国油气运移的研究现状与展望, 石油大学学报(自然科学版),
     2000,24(4),1-4.
    10. 郝芳,陈建渝,孙永传,有机相研究及其在沉积盆地分析中的应用, 沉积学报, 1994, 12
     卷,77–86.
    11. 郭永生,陈斯忠,王善书等, 1997, 辽河油区地质调研报告.
    12. 郭宝申,孟卫工, 1994, 辽河盆地大民屯凹陷三台子地区石油地质评价研究.
    13. 菲尔普, 1985, 化石燃料生物标志物–图谱和应用, 傅家谟,盛国英译, 北京: 科学出版
     社, 1987.
    14. 真柄钦次, 1978, 压实与油气运移(陈荷立等译), 北京:石油工业出版社.
    15. 陈发景,田世澄, 1989, 压实与油气运移, 武汉:中国地质大学出版社.
    16. 李晋超,黄第藩, 特高蜡原油及其生油岩中可溶有机质的地球化学特征和成因分析, 石
     油与天然气地质, 1985, 第六卷 1 期, 25-35.
    17. 郑容植,王桂珍, 大民屯凹陷高凝油低凝油特征及其分布规律, 石油实验地质, 1988
     Vol.10(3): 256-267.
    18. 杨绪充, 1991, 含油气区地下温压环境[M], 北京:石油大学出版社.
    19. 康铁笙,王世成, 1991, 地质热历史研究的裂变径迹法[M], 北京:科学出版社.
    20. 周中毅,潘长春, 1992, 沉积盆地古地温测定方法及其应用[M], 广州:广东科技出版社.
    21. 王世成,袁万明,王兰芳等, 花海坳陷的热演化和生烃期的磷灰石裂变径迹证据, 地球学
     报, 1999, 20(4):428-432.
    22. 杨峰平,陈发景, 松辽盆地中央坳陷磷灰石裂变径迹分析[J], 石油勘探与开发,
    
    
    2004.5 中国地质大学硕士学位论文 92
     1995,22(6):20-25.
    23. 姜亮,周新华,金强, 用磷灰石裂变径迹研究西湖凹陷的古地温, 石油大学学报,
     2001,25(1):30-34.
    24. 邱 楠 生 , 杨 海 波 , 王 绪 龙 , 准 葛 尔 盆 地 构 造 - 热 演 化 特 征 [J], 地 质 科 学 ,
     2002,37(4) :423-429.
    25. 胡圣标,张容燕,周礼成, 油气盆地热历史恢复方法[J], 勘探家, 1998,3(4): 56-61.
    26. 王立志,冯石, 用磷灰石裂变径迹分析研究东濮凹陷白庙地区的热历史,石油勘探与开
     发,1994,21(5):38-44.
    27. 王世成,用裂变径迹研究地质热历史的方法及其在临清凹陷的应用[J], 石油学报,
     1990,11(2): 6-11.
    28. 修申成,吴守法,伊茂恒, 临清坳陷沈参 1 井磷灰石裂变径迹分析, 石油勘探与开发,
     1997,24(2):28-32.
    29. 金强, 中国断陷盆地主要生油岩中的火山活动及其意义[J], 地质论坛, 1998,18-22.
    30. 石广仁, 一维盆地模拟系统 BASI, 石油勘探与开发, 1989,16(6):1-10.
    31. 王建荣,张达景,赵文智等,吐-哈盆地古水动力条件与油气聚集规律, 石油与天然气地
     质. 1997,18(1):28-33.
    32. 曾 溅 辉 , 台北凹陷地下水动力特征及其对油气运移和聚集的影响 , 沉积学
     报,2000,18(2):273-278.
    33. 李思田,路凤香,林畅松等, 1994, 中国东部及邻区中新生代盆地演化及地球动力学背景
     武汉: 中国地质大学出版社.
    34. 李 琳 , 任 作 伟, 孙 洪 斌 , 辽 河 盆 地 西 部 凹 陷 深 层 石 油 地 质 综 合 评 价, 石 油 学
     报,1999,20(6):9-15.
    35. 张敏,张俊, 塔里木盆地轮台断隆油田水组成特征及其意义, 新疆石油地质,
     1998,19(3):200-258.
    36. 蔡春芳,梅博文,马亭等,1996, 塔里木盆地流体-岩石相互作用研究[M],北京: 石油工
     业出版社.
    37. 梅博文, 1994, 塔里木盆地油田水地球化学性质与储层性质, 江汉石油学院出版.
    38. 叶 加 仁 , 邵 荣 , 王 连 进 , 辽 河 盆 地 大 民 屯 凹 陷 流 体 压 力 场 研 究 , 地 球 科 学
     2000,25(2):127-131.
    39. 肖军,王华,郭齐军等, 南堡凹陷温度场,压力场及流体势模拟研究? ? 基于 Basin2 盆地
     模拟软件[J],地质科技情报,2003,22(3):67-74.
    40. 石万忠,陈开远,李梦溪等, JASON 在东濮凹陷 H99 块储层预测中的应用[J],地质科技情
     报,2001,20(2):46-50.
    41. 卢兵力,李晓东,耿德祥等, 松南十屋断陷盆地模拟[J],天然气工业,2000,20(增刊):23-25.
    42. 杨海波,兰文方,张闻林等, 准葛尔盆地南缘盆地模拟? ? PRA 盆地软件应用[J],新疆石
     油地质,1999,20(2):58-61.
    43. 张立新,李军, 试析岐北凹陷异常压力在深层油气藏成藏过程中的控制作用[J]. 石油勘
     探与开发, 2000,27(5):19-22.
    44. 丘比特,英格兰, 1997, 油藏储层地球化学, 王铁冠,张枝焕译, 北京:石油工业出版社.
    45. 刘洛夫,徐新德,毛东风, 咔唑类含氮化合物在油气运移研究中的应用初探, 科学通报,
    
    
    2004.5 中国地质大学硕士学位论文 93
     1997,42(4):620-622.
    46. 刘洛夫,徐新德, 含氮化合物与石油运移研究[J], 勘探家, 1996, 1(2):33-37.
    47. 李素梅,王铁冠, 原油中的吡咯类化合物的地球化学特征及其意义[J], 沉积学报, 1999,
     17(2):312-317.
    48. 傅家谟, 茂名油页岩中生物输入的标志化合物[J],地球化学, 1985,14(2):99-114.
    49. 施继锡,李本超, 包裹体作为天然气运移判别标志的研究[J], 石油与天然气地质, 1991,
     12(2):186-194.
    50. 刘德汉, 包裹体研究-盆地流体追踪的有利工具[J], 地学前缘, 1995, 2(2):149-154.
    51. 柳少波,顾家裕, 包裹体在石油地质研究中的应用与问题讨论, 石油与天然气地质,
     1997, 18(4):326-331,342.
    52. 张金亮, 利用流体包裹体研究油藏注入史, 西安石油学院学报, 1998,13(4): 1-4.
    53. 王飞宇, 利用自生伊利石 K-Ar 定年分析烃类进入储层的时间, 地质评论, 1997,43(5):
     540-545.
    54. 赵文智,何登发等, 1999, 石油地质综合研究导论, 北京:石油工业出版社.
    55. 张文正,裵戈, 液态烃正构烷烃系列、姥鲛烷、植烷碳同位素初步研究[J], 石油勘探与
     开发, 1992,19(5):32-41.
    56. 赵孟军,黄第藩,张水昌, 原油单体烃的碳同位素组成研究[J], 石油勘探与开发, 1994,
     21(3):52-59.
    57. 黄海平,大民屯凹陷烃源岩中高分子量烃的形成与分布特征[J],石油试验地质, 2000,12
     (4):297-301.
    58. 黄海平, 李虹,马刊创等,大民屯凹陷高蜡油的形成条件, 石油与天然气地质,
     2001,22(1):64-67.
    59. Huang Yongsong,Geng Ansong, The investigation of characteristics of biomarker
     assemblages and their precursors in Damintun ultra-high wax oils and related source rocks.
     Org.Geochem. 1992 Vol.19(3):29-39.
    60. Laslett G M,et al., Thermal Annealing of Fission Tracks in Apatite 2. A Quantitative
     Analysis. Chem. Geol.,1987, 65:1-13.
    61. Willet S D, Issler D R, Beaumont Cet al, Inverse Modeling of Annealing of Fission Tracks
     in Apatite 1 : a controlled random search method. American Journal of Science , 1997,297:
     939-959.
    62. WANG Jiyang,QIU Nansheng, Thermal regime of sedimentary basins[J]. Petroleum Science,
     1998,1(1) : 2-6.
    63. Wang Shejiao,Hu Shengbiao,Li Tiejun, Terrestrial heat flow in Junggar Basin , Northwest
     China ,Chinese Sci. Bull., 1998,45(19) :1808-1813.
    64. Sweeney J J and Burnham A k. Evaluation of a simple model of vitrinite reflectance on
     chemical kinetics. AAPG Bull., 1990,74: 1559-1571.
    65. Toth J .Petroleum hydrogeology: a new basic in exploration [J]. World Oil,
     1987,205(3):48-50.
    66. Hitchon B. Geothermal gradients, hydrodynamics, and hydrocarbon occurrences, Alberta,
     Canada[J]. AAPG Bulletin, 1984,68(6):713-743.
    
    
    2004.5 中国地质大学硕士学位论文 94
    67. Roberts WH Ⅲ.Deep water discharge: key to hydrocarbon and mineral deposits, In: H
     itchon B,ed. proceedings of third Canadian/American conference on hydrogeology:
     hydrogeology of sedimentary basins.Banff.Alberta.1985, 46-77.
    68. Gosnold W D. Heat flow and groundwater flow in the Great Plaints of the United States[J].
     Joutrnal of Geodynamics,1985,(4):247-264.
    69. Verweij J M. Hydrocarbon migration systems analysis[M]. Elsevier Science
     publishers,1993,23-78.
    70. Bethke,C.M., Inverse hydrologic analysis of txe distribution and origin of Gulf Coast–type
     geopressured aones:Journal of Ceophsical Research, 1986,vol.91, p.6535-6545.
    71. Bethke,C.M., Reply to discussion on“A numerical model of compaction-driven groundwater
     flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary
     basins”:Journal of Geophysical Research, 1988,Vol.93,p.3500-3504.
    72. Dorbon M, Schmitter J M, Garrigues P, etc.Distribution of carbazole derivatives in
     petroleum, Organic Geochemistry .1984, 7:111-120.
    73. Larter S R. ,B F.J.Bowler, M Chen, D Brincat, et al , Molecular indicators of secondary oil
     migration distance. Nature, 1996, 383:593-597.
    74. Gleadow A J W, Tingate P R ,Laslett G M. Therm annealing of fission track in apatite :a
     quantitative description. Chemical Geology,1986,59:237-253.
    75. Duddy I R,Green P F ,laslett G M. Therm annealing of fission track in apatite.three variable
     temperature behavior. Chemical Geology,1988,73(1/96):25-38.
    76. Eadington P J,et al. Fluid history analysis - A new concept for prospect evaluation,The
     APEA Journal, 1991 ,(31) :202-294.
    77. Hamilton P J, Kelley S and Fallick A E. K-Ar dating of illite in hydrocarbon reservoirs. Clay
     Minerals, 1989 24: 215-231.
    78. Thanh NX, HsiehM, PhilpRP.Waxes and asphaltenes in crude oils[J].OrgGeochem,1999,
     30:119-132.
    79. WangFY,HeP,HaoSS.Origin of Chinese lascustrine high-wax oil sand organic petrology-wax
     oil sand organic petrology of its source rocks[J].AAPG bulletin,1997,81:1567.
    80. Chen, J. H., J. M. Fu, G. Y. Sheng, D. H. Liu, and J. J. Zhang, 1996, Diamondoid
     hydrocarbon ratios: novel maturity indices for highly mature crude oils: Organic
     Geochemistry, v. 25, p. 179-190.
    81. Chen, Jianyu, Hao Fang, Ding Zhengyian and Liu Yianzong, 1994, Petroleum potential and
     thermal history of the Yitong basin, China: Organic Geochemistry, v. 22, p. 331-341.
    82. Chen, P. H., Z. Y. Chen, and Q. M. Zhang, 1993, Sequence stratigraphy and continental
     margin development of the northwestern shelf of the South China Sea: AAPG Bulletin, v. 77,
     p. 842-862.
    83. Duddy, I. R., P. F. Green, R. J. Bray, and K. A. Hegarty, 1994, Recognition of the thermal
     effects of fluid flow in sedimentary basins. in J. Parnell, ed., Geofluids: origin, migration
     and evolution of fluids in sedimentary basins: Geological Society Special Publication No. 78,
     p. 325-345.
    
    
    2004.5 中国地质大学硕士学位论文 95
    84. England W. A., A. S. Mackenzie, D. M. Mann, and T. M. Quigley, 1987, The movement and
     entrapment of petroleum fluids in the subsurface: Journal of Geological Society of London,
     v. 144, p. 327-347.
    85. England, W. A., A. L. Mann, and D. M. Mann, 1991, Migration from source to trap. in R. K.
     Merrill, ed., Source and migration processes and evaluation techniques: AAPG Treatise of
     Petroleum Geology, p. 23-46.
    86. Hao Fang , Chen Jianyu, 1992, The cause and mechanism of vitrinite reflectance anomalies:
     Journal of Petroleum Geology, v. 15, p. 419-434.
    87. Hao Fang, Cheng Jianyu, Sun Yongchuan and Liu Yaozong, 1993. Application of organic
     facies studies to sedimentary basin analysis–A case study from the Yitong Graben, China.
     Organic Geochemistry, 19, 27-43.
    88. Hao Fang, Li Sitian, Sun Yongchuan and Zhang Qiming, 1996, Characteristics and origin of
     the gas and condensate in the Yinggehai basin, offshore South China Sea: Evidence for
     effects of overpressure on petroleum generation and migration. Organic Geochemistry, v. 24,
     p.363-375.
    89. Hao Fang, Li Sitian, Sun Yongchuan and Zhang Qiming, 1996, Organic-matter maturation
     and petroleum generation model in the Yinggehai basin: Sciences in China (Series D), v. 39,
     p. 650-658.
    90. Hao Fang, Sun Yongchuan, Li Sitian and Zhang Qiming, 1995 Overpressure retardation of
     organic-matter maturation and hydrocarbon generation: A case study from the Yinggehai and
     Qiongdongnan basins, offshore South China Sea. AAPG Bull. 79, 551-562.
    91. Hao, F., S. T. Li, W. L. Dong, Z. L. Hu, and B. J. Huang, 1998, Abnormal organic matter
     maturation in the Yinggehai Basin, offshore South China Sea: Implications for hydrocarbon
     expulsion and fluid migration from overpressured systems: Journal of Petroleum Geology, v.
     21, p. 427-444.
    92. Hao, F., S. T. Li, Y. C. Sun, and Q. M. Zhang, 1998, Geology, compositional heterogeneities
     and geochemical origin of the Yacheng Gas Field in the Qiongdongnan basin, South China
     Sea: AAPG Bulletin, v. 82, p. 1372-1384.
    93. Hoering, T. G., and H. E. Moore, 1958, The isotopic composition of the nitrogen in natural
     gases and associated crude oils: Geochimica et Cosmochimica Acta, v. 13, p. 225-232.
    94. Horstad, I., S. R. Larter, and N. Mills, 1995, Migration of hydrocarbons in the Tampen Spur
     area, Norwegian North Sea: a reservoir geochemical evaluation. in J. M. Cubitt, and W. A.
     England, eds., The Geochemistry of reservoirs: Geological Society Special Publication No.
     86, p. 159-183.
    95. Huang W.L., 1996, Experimental study of vitrinite maturation: Effect of temperature, time,
     pressure, water and hydrogen index. Organic Geochemistry, v. 24, 233-241.$
    96. Jenden P. D., Kaplan I. R., Poreda R. J. and Craig H., 1988, Origin of nitrogen-rich natural
     gases in the California Great Valley: evidence from helium, carbon and nitrogen isotope
     ratios. Geochim. Cosmochim. Acta, v. 52, p. 851-861.
    97. Larter, S. and N. Mills, 1991, Phase-controlled molecular fractionations in migrating
    
    
    2004.5 中国地质大学硕士学位论文 96
     petroleum charges. in W. A. England, and A. J. Fleet, eds., Petroleum migration: Geological
     Society Special Publication No. 59, 137-147.
    98. Price, K. L., and McDowell, 1993, Illite/smectite geothermometry of the Proterozoic Oronto
     Group, midcontinent rift system: Clays and Clay Minerals, v. 41, p. 134-147.
    99. Roberts, S. J. and J. A. Nunn, 1995, Episodic fluid expulsion from geopressured sediments:
     Marine and Petroleum Geology, v. 12, p. 195-204.
    100. Thompson, K. F. M., 1983, Classification and thermal history of petroleum based on light
     hydrocarbons: Geochimica et Cosmochimica Acta, v. 47, p. 303-316.
    101. Yardley G. S. and R. E. Swarbrick. Lateral transfer: a source of additional overpressure?
     Marine and Petroleum Geology, 2000, 17(4): 523-537.
    102. hedberg, h.d., 1968, Signifiance of high-wax oils with respect to genisis of petroleum.
     AAPG Bull.,vol.52,p.736-750.
    103. Tissot,B.P. and Welte,D.H., 1978, Petroleum formation and occurence. Sping-Verlag,
     Berlin.Heideberg. New York.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700