磁场驱动法制备ZrO_2-Co功能梯度材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料是具有独特微观结构的新型材料,其连续变化的组成、结构和性能,可以满足在单一材料内部的不同部位实现不同功能的需要,具有广泛的应用前景。本论文基于组元磁导率的差异,利用运动磁场对磁性组元的磁驱动作用,设计并搭建了磁场驱动装置,制备了成分和性能连续变化的Zr02-Co功能梯度材料。通过金相显微镜、显微硬度仪和振动样品磁强计等手段,系统的研究了复合浆料成分(包括浆料固相分数、Co含量、粒子粒径)和磁场驱动参数(包括磁场强度、磁场运动速度、磁场作用次数)等因素对Zr02-Co梯度材料组织和性能的影响。
     主要研究结果如下:
     利用运动磁场驱动磁性组元制备功能梯度材料的方法,成功制备了成分和性能连续变化的Zr02-Co梯度材料。
     随着浆料固相分数的增加,样品致密度逐渐增加,而成分梯度却逐渐降低。采用抽滤过程进行脱水处理,能够在低固相分数的条件下获得较高致密度的样品。随着Co含量由4 wt.%增加到20wt.%,样品中Co沿着磁场运动方向成梯度分布。在各成分样品中,沿长度方向形成了硬度和归一化饱和磁化强度梯度,其结果同Co的成分分布相吻合。随着Co和Zr02粒径比的增加,Co的成分梯度逐渐增加。在粒径比相当的情况下,降低Co和Zr02粒径,有助于成分梯度的增加。
     随着磁场强度的增加,Co沿着磁场运动方向梯度分布,且成分梯度逐渐增加。随着磁场运动速度的增加,Co沿着磁场运动方向梯度分布,且成分梯度逐渐减小。当磁场运动速度增加到3mm/s时,样品中基本无成分梯度形成。浆料中粒子移动与磁场作用次数有关。磁场作用次数越多,最终形成成分梯度越大。建立了磁性粒子在运动磁场中的受力模型,合理解释了试验结果。
Functionally graded materials (FGMs) are a class of novel materials. The composition, microstructure and properties of these materials vary continuously and smoothly. They have been extensively used in many engineering field, where a material is required to perform different functions at different locations. Based on the distinct difference in magnetic susceptibility between components, new magnetic-field-driving method was developed to prepare ZrO2-Co FGMs. The magnetic-field-driving device was designed and built to meet the need of experiments. The influences of mixed slurry composition (including solid content, Co concentration and particle size) and magnetic field strength, magnetic field velocity and the action times on composition distribution, microhardness and normallized saturation magnetization of ZrO2-Co FGMs were studied systematically by means of optical microscope, microhardness tester and vibrating sample magnetometer.
     The results are summarized as follows:
     The gradient of microstructure, composition distribution and properties were formed along the field moving direction in samples prepared by moving magnetic-field-driving method. As the solid content in suspension increased, the density of FGMs increased, but the composition gradient decreased. High density of the samples with low solid content can be obtained by vacuum filtration processing. With increasing Ni content from 5 to 20 wt.%, the composition gradient formed as well as microhardness and normallized saturation magnetization, the composition gradient increased with increasing of particle diameter ratio between Co and ZrO2.
     With increasing of magnetic field strength increased, the composition gradient of Co was formed and increased. As the magnetic field velocity increased from 0.25mm/s to 3mm/s, Ni gradient decreased. However, little gradient was formed as the velocity was up to 3mm/s. The composition gradient increased with adding the action times of magnetic field from 1 to 15. A schematic model was proposed to explain the distribution of particles in gradient magnetic fields.
引文
[1]A. Mortensen, S. Suresh, Functionally graded metals and metal-ceramic composites. I. Processing, International Materials Reviews,1995,40 (6):239-265.
    [2]新野正之,平井敏雄,日本复合材料学会志,1987,13(6):257.
    [3]S. Suresh, A. Mortensen, Functionally graded metals and metal-ceramic composites. II: Thermomechanical behaviour, International Materials Reviews,1997,42 (3):85-116.
    [4]Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials:Design, Processing and Applications,1999, Springer,230.
    [5]O. Sivakesavama, Y.V.R.K. Prasad, Hot deformation behaviour of as-cast Mg-2Zn-lMn alloy in compression:a study with processing map, Materials Science and Engineering A,2003, 362(1-2):118-124.
    [6]L.D Xie, X.Q. Ma, E.H. Jordan, N.P. Padture, D.T. Xiao, M. Gell, Identification of coating deposition mechanisms in the solution-precursor plasma-spray process using model spray experiments, Materials Science and Engineering A,2003,362 (1-2):204-212.
    [7]C. Sudakar, R. Naik, G. Lawes, Internal magnetostatic potentials of magnetization-graded ferromagnetic materials, Applied Physics Letters,2007,90:062502-062504.
    [8]Ye.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, Journal of European Polymer,2002,38 (10):1887-1897.
    [9]S.S. Ahankari, K. K. Kar, Processing and characterization of functionally graded materials through mechanical properties and glass transition temperature, Materials Letters,2008,62 (5):3398-3400.
    [10]M.A. Guler, F. Erdogn, Contact mechanics of two deformamble elastic solids with graded coatings, Mechanics of Materials,2006,38 (7):633-647.
    [11]A. Mortensen, S. Suresh, Funcitonally graded metals and metal-ceramic composites:Part 1 Processing, International Materials Reviews,1995,40 (6):239-265.
    [12]Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Powder metallurgical processing of functionally graded p-Pbl-xSnxTe materials for thermoelectric applications, Physics B,2007,391 (8): 256-265.
    [13]X. Li, J.P. Gao, L.J. Xue, Y.C. Han, Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection, Advanced Functional Materials, 2010,20 (2):259-265.
    [14]T.P.D. Rajan, R.M. Pillai, B.C. Pai, Functionally graded Al-A13Ni in situ intermetallic composites:Fabrication and microstructural characterization, Journal of Alloys and Compounds,2008,453 (1-2):L4-L7.
    [15]E. Miiller, C. Drasar, J. Schilz, W. A. Kaysser, Functionally graded materials for sensor and energy applications, Materials Science and Engineering A,2003,362 (1-2):17-39.
    [16]R. Jedamzik. A. Neubrand, J.Rodel, Functionally graded materials by electrochemical processing and infiltration:application to tungsten/copper composites. Journal of Materials Science,2000.35 (2):477-486.
    [17]T. Nakamura, T. Wang, S. Sampath, Determination of properties of graded materials by inverse analysis and instrumented indentation, Acta Materialia,2000,48 (17):4293-4306.
    [18]M. Koizumi, M. Niino. Overview of FGM research in Japan, In:Functionally Gradient Materials. MRS Bull,1995:19-21.
    [19]J.B. Holt, M. Koizumi, Z.A. Munirl, Ceramic Transactions. Proceedings of second international symoposium on functionally gradient material. Functionally Gradient Materials, 1992:152-160.
    [20]李永,宋健,张志民,梯度功能力学,北京:清华大学出版社.2003.
    [21]B. Inschner, M. Yamanouchi, M. Koizumi. Proceeding of the First International Symposium on Functionally G rad ientMaterials. FGM Forum,1990:101-103.
    [22]A. J. Markworthl, K. S. Ramesh, W. P. Parks. Modelling studies applied to functionally graded materials. Journal of Material Science,1995,30 (9):2183-2193.
    [23]M. Sasaki, Y. Wang, T. Hirano, T. Hirai. Design of SiC/C functionally gradient material and its preparation by chemical vapor deposition. Journal of the Ceramic Socciety Japan,1989, 97 (5):539-543.
    [24]S. Eroglu, N.C. Birla, M. Demirci, Synthesis of functionally gradient nickel-chromium-aluminum/magnesia-Zirconia coatings by plansma spray technique. Materials Letters,1993,12(14):1099-1102.
    [25]H. Ishibashi, H. Tobimatsu, T. Matsumoto, K. Hayashi, A. P. Tomsia, E. Saiz, Characterization of Mo-SiO2 functionally graded materials. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2000,31 (1):299-308.
    [26]X.F. Tang, L.M. Zhang, R.Z. Yuan, Thermal stress relaxation design and fabrication of PSZ/Mo Functionally Gradient Materials. Journal of the Chinese Ceramic Society,1994,22: 44-49.
    [27]Y.H. Ling, J.T. Li, C.C Ge, Processing and Evaluation of Graded SiC/Cu Facing Plasma Composite. Journal of University of Science and Technology Beijing,2001,23 (3):257-261.
    [28]R. Sivakumara, T. Nishikawaa, S. Hondaa, H. Awajia, F.D. Gnanamb, Processing of mullite-molybdenum graded hollow cylinders by centrifugal molding technique, Journal of the European Ceramic Society,2003,23 (5):765-772.
    [29]D.M. Zhang, L.M. Zhang, Z.H. Fu, J.K. Guo, W.H. Tuan, Differential sintering of A12O3/ZrO2-Ni composite during pulse electric current sintering, Ceramics International, 2006,32(3)241-247.
    [30]J.G. Santanacha, C. Estournesa, A. Weibela, A. Peigneya, G. Chevalliera, C. Laurent, Mechanical and tribological properties of Fe/Cr-FeAI2O4-A12O3 nano/micro hybrid composites prepared by spark plasma sintering, Scripta Materialia,2011,64 (8):777-780.
    [31]G. Anne, S. Hecht-Mijic, H. Richter, O. Van der Biest, J. Vleugels, Strength and residual stresses of functionally graded Al2O3/ZrO2 discs prepared by electrophoretic deposition. Journal of Materials Science,2006,54 (9):2053-2056.
    [32]S.P. Chen, Q.S. Meng, W. Liu, Z.A. Munir, Titanium diboride-nickel graded materials prepared by field-activated pressure-assisted synthesis process, Scripta Materialia,2009,44 (3):1121-1126.
    [33]S.A.R. Hashmi, U.K. Dwivedi, SiC Dispersed polysulphide epoxy resin based functionally graded material, Polymer Composites,2009,30(2):162-168.
    [34]Y. B. Zhu, N.Y. Ning, Y. Sun, Q. Zhang, Q. Fu, A new technique for preparing a filled type of polymeric gradient material, Macromolecular Materials and Engineering,2006, 291(11):1388-1196.
    [35]N. Gupta, A functionally graded syntactic foam material for high energy absorption under compression, Materials Letters,2007,61 (4):979-982.
    [36]A. Nigrawal, N. Chand, Development and electrical characterization of carbon soot filled polyester graded composites, Materials and Design,2010,31 (1):3672-3676.
    [37]X.L. Peng, M. Yan, W.T. Shang, A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field. Scripta Materialia,2007,56 (7): 907-909.
    [38]M. Yan, X.L. Peng, T.Y. Ma, Microstructures of Ni-ZrO2 functionally graded materials fabricated via slip casting under gradient magnetic fields, Journal of Alloys and Compounds, 2007,479 (3):750-754.
    [39]严密,彭晓领,磁学基础与磁性材料,杭州:浙江大学出版社,2006:29-36.
    [40]K. Pietrzak, D. Kalinski, M. Chmielewski. Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina heat resisting steel joints. Journal of the European Ceramic Society,2007,27 (2-3):1281-1286.
    [41]Y. Fukui, K. Takashima, C.B. Poton, Measurement of Young's modulus and internal friction of an in situ Al-Al3Ni functionally gradient matrials, Journal of Material Science,1994,69 (3):145-165.
    [42]A.J. Markworth, J.H. Saunder, A model of structure optimization for a functionally graded material, Materials Letters,199522 (9):103-107.
    [43]C.P. Shaw, R.W. Whatmore, J.R. Alcock. Porous. Functionally Gradient Pyroelectric Materials. Journal of the American Ceramic Society,2007,90(1):137-142.
    [44]A. Almajid, M. Taya, K. Takagi, J.F. Li, R. Watanabe. Fabrication and modeling of porous FGM piezoelectric actuators. Proceedings of SPIE,2002,4701:467-476.
    [45]S. Scudino, G. Liu, K.G. Prashanth, B. Bartusch, K.B. Surreddi, B.S. Murty, J. Eckert, Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles:Analysis and modeling of mechanical properties Acta Materialia, 2009,57 (3):4529-4538.
    [46]G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, H. Awaji. Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing. Materials Chemistry and Physics,2005,89 (2-3):238-243.
    [47]S. Eroglu, N.C. Birla, M. Demirci, Synthesis of functionally gradient nickel-chromium-aluminum/magnesia-Zirconia coatings by plansma spray technique, Materials Letters,1993,12 (14):1099-1102.
    [48]B. Mondal, P.K. Das, S.K. Singh, Advanced WC-Co cermet composites with reinforcement of TiCN prepared by extended thermal plasma route, Materials Science and Engineering:A, 2008,498 (1-2):59-64.
    [49]R. Molian, P. Molian, Pulsed laser deposition and annealing of Dy-Fe-B thin films on melt-spun Nd-Fe-B ribbons for improved magnetic performance, Journal of Magnetism and Magnetic Materials,2009,321 (4):241-246.
    [50]G.R. Liu, X. Han, Y.G. Xu, K.Y. Lam, Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network, Composites Science and Technology,2001,61 (10):1401-1411.
    [51]M. Sasaki, T. Hirai, Thermal fatigue resistance of CVD SiC/C functionally gradient material, Journal of the European Ceramic Society,1994,14 (3):257-260.
    [52]B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter, Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis:reaction mechanism and anisotropy in pore structure, Acta Materialia,2000,48 (15):3895-3904.
    [53]T.P.D. Rajan, R.M. Pillai, B.C. Pai, Functionally graded Al-Al3Ni in situ intermetallic composites:Fabrication and microstructural characterization, Journal of Alloys and Compounds,2008,453 (1-2):4-7.
    [54]Y. Hirano, D.J. Mooney, Peptide and protein presenting materials for tissue engineering, Advanced Materials,2004,16, (1):17-25.
    [55]Y. Liu, A. Wang, R.O. Claus, Layer-by-layer electrostatic self-assembly of nanoscale Fe3O4 particles and polyimide precursor on silicon and silica surface. Applied Physics Letters,1997, 71 (16):2265-2271.
    [56]李治,孔祥明,电场条件下高分子共聚混合物组分浓度梯度化的研究,高等学校化学学报,2000,22(10):1764-1766.
    [57]A.Mortensen, S.Suresh. Funcitonally graded metals and metal-ceramic composites:Part 1 Processing. International Materials Reviews,1995,40 (6):239-265.
    [58]W.Y. Lee, D.P. Stinton, C.C. Berndt, F. Erdogan, Y. Lee, Z. Mutasim, Concept of functionally graded materials for advanced thermal barrier coating applications, Journal of the American Ceramic Society,1996,79 (12):3003-3012.
    [59]F.H.B. Mertins,H. Kruidhof, H.J.M. Bouwmeester. Centrifugal Casting of Tubular Perovskite Membranes. Journal of the American Ceramic Society,2005,88 (11):3003-3007.
    [60]F. Ren, E.D. Case, J.R. Sootsman, M.G. Kanatzidis, H. Kong, C. Uher, E. Lara-Curzio, R.M. Ttrejo, The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy, Acta Materialia,2008,56(20):5954-5963.
    [61]T. Asaoka, Y. Kajihata, K. Furukawa, Solubility control of alpha TCP-HAp functionally graded porous beads in SBF for biomaterial use, Materials Science Forum,2010,638-642 (6): 2021-2027.
    [62]A. Pettersson, P. Magnuesson, P. Lundberg and M. Nygren. Titanium-titanium diboride composites as part of gradient armour material. International Journal of Impact Engineering. 2005,32(1-4):387-399
    [63]J. Liu, X.S. Cao, Z.K. Wang, Love waves in a smart functionally graded piezoelectric composite structure, Acta Mechamica,2009,208 (3):63-80.
    [64]D. Goll, A. Breitling, L. Gu, P.A. van Aken, W. Sigle, Experimental realization of graded LlO-FePt/Fe composite media with perpendicular magnetization, Journal of Applied Physics, 2008,108(8):083903-1-4.
    [65]T. Liu, Q. Wang, A. Gao, C. Zhang, C. J. Wang, J.C. He, Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients, Scripta Materialia, 2007,57 (11):992-995.
    [66]Q. Wang, T. Liu, A. Gao, C. Zhang, C.J. Wang, J.C. He, A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient, Scripta Materialia,2007,56 (12):1087-1090.
    [67]R.W. Chentrell. Modeling of interaction effects in fine particle systems. Journal of Magnetism and Magnetic Materials,1996,157:250-255.
    [68]M. Shliomis, Mathematical model of structure phenomena in magnetic fluids, Physics JEPT, 1972,34:1291-1294.
    [69]吴望一.流体力学(下).北京:北京大学出版社,2000:257-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700