用户名: 密码: 验证码:
气动人工肌肉驱动的仿人腿关节运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动产品以其不可替代的独特性能正越来越广泛地应用到社会生活、工业生产等各个领域,而气动人工肌肉作为一种新型的气动驱动器,在性能和结构上具有类似于生物肌肉的良好特性,正引起广泛的关注,可以预见其在理疗、仿生等领域将具有极为良好的应用前景。本文以气动人工肌肉为应用对象,基于理论模型并通过实验研究建立了气动人工肌肉的静态数学模型,设计了采用气动肌肉驱动的仿人下肢多自由度关节的机械结构,建立了单自由度和两自由度气动人工肌肉关节的数学模型,对系统特性进行了分析,并分别应用滑模变结构鲁棒控制和自适应鲁棒控制等多种算法实现了气动人工肌肉的高精度轨迹跟踪控制。
     论文分七章进行阐述,主要内容如下:
     第一章首先叙述了本课题的相关研究背景。介绍了气动人工肌肉的工作原理和发展历程,综述了国内外气动人工肌肉的相关领域研究现状以及发展趋势,阐述了本研究课题的来源及研究意义,最后给出了本文所要进行的主要工作和研究内容。
     第二章建立了研究课题采用的相关硬件系统。基于人体下肢的生理结构分析,以气动人工肌肉为驱动器设计了多自由度仿人下肢机构,针对移动机器人应用需要,在结构参数上进行了优化;确定了满足控制系统应用要求的相应元件;分别建立了两种完整的控制器设计平台,并进行了初步实验测试了整个系统的可行性。
     第三章对建立的多自由度仿人腿关节系统进行数学建模。以德国FESTO公司的气动肌腱产品为具体研究对象,测试了某型号气动人工肌肉的相关物理性能,包括其外部橡胶层的弹性模量,等压、等张和等长等多种不同条件下的力学性能,分析了导致静态理论模型与实验结果差距较大的原因,并从控制器设计角度出发,对理论模型进行了参数修正,建立了与实验结果较为吻和的静态数学模型;测试了驱动气动人工肌肉的PWM高速开关阀的流量特性;结合热力学方程以及关节动力学模型,分别建立了单自由度和两自由度气动人工肌肉关节的数学模型;对建立的模型进行了静、动态实验验证,结果表明建立的数学模型与实验结果较为接近;仿真分析了气动人工肌肉关节的动态工作特性以及相关的系统性能影响因素。
     第四章针对气动人工肌肉关节系统具有强非线性、难以建立精确数学模型的特点,在对其特性分析的基础之上,对气动人工肌肉关节的数学模型进行了简化,设计了基于参考模型的滑模变结构鲁棒控制器。仿真和实验结果表明,变结构控制器对于扰动和外部参数变化具有较好的鲁棒性和稳定性,稳态误差小于0.005 rad,单自由度低频跟踪误差小于0.04 rad,高频跟踪误差小于0.06 rad。两自由度低频跟踪误差小于0.025 rad,高频跟踪误差小于0.06 rad。
     第五章基于滑模变结构鲁棒控制设计,为了进一步提高控制精度,采用了一种自适应鲁棒控制策略(ARC),综合了自适应控制和鲁棒控制策略,在保证闭环系统稳定的同时,通过对模型参数进行自适应调整,进一步减小了轨迹跟踪误差,提高了系统性能。实验结果表明,ARC控制器的稳态误差小于0.003 rad,单自由度关节的低频跟踪误差小于0.01 rad,高频跟踪误差小于0.05 rad。两自由度低频误差小于0.015 rad,高频跟踪误差小于0.03 rad。
     第六章从实际应用角度出发,为了降低应用成本,采用了仅需要位置反馈信号的饱和自适应鲁棒控制器(SARC),仍然在鲁棒控制的基础之上,通过结合参数自适应律提高控制精度,由于不需要压力反馈,极大地提高了控制系统的实用性。实验结果表明,SARC控制器在控制单自由度气动人工肌肉关节时,低频连续轨迹跟踪误差小于0.01 rad,高频跟踪误差小于0.03 rad,控制两自由度关节跟踪低频连续轨迹误差小于0.025 rad,高频跟踪误差小于0.03 rad。
     第七章对全文作了总结,阐述了本课题的研究成果和结论,并对后续研究工作做出了展望。
Pneumatic products are increasingly applied to a wide range scope of social life, industrial production due to its unique properties. As a new type of pneumatic actuators, pneumatic artificial muscle has the good performance similar to the nature muscle and is causing more and more attention. It is foreseeable that extremely good prospects in the therapy, bionics, and some other fields.
     This work took the bionic application of pneumatic muscles as the research target. The mechanical structure of humanoid leg joints actuated by pneumatic artificial muscles was designed. Based on the experimental results and theoretical model, the mathematical models of pneumatic artificial muscles, high-speed solenoid on-off valves were established. The modeling and analysis of single degree of freedom (DOF) and two-DOF pneumatic muscles joint were operated respectively. Several robust control methods including sliding mode control (SMC) and adaptive robust control (ARC) algorithm were applied to achieve high precision tracking performance. The paper is composed of seven chapters; main contents of each chapter are described as followed.
     The chapterⅠdescribe the issues related to the research background. The working principle and development of pneumatic muscles was introduced. Reviewed the research achievements and developing trends in the relevant fields at home and abroad. The origin and significance of the work is given and then the main work and research content are noted.
     ChapterⅡestablished the hardware system for research. Based on human physiological structure of the lower limb, designed a multi-DOF humanoid leg joints structure actuated by pneumatic muscles. To satisfy the needs of mobile robot application, Structural parameters has been optimized. Determine the corresponding components to meet the requirements of the control system. Two types of controller design platforms were established. And a preliminary experiment was conducted testing the feasibility of the whole system.
     ChapterⅢmodeled the multi-DOF humanoid leg joint system. Taking the Germany company Festo's fluidic muscles as specific subjects, the related physical properties of a certain type pneumatic muscles were tested including the elastic modulus of its external rubber layer, various mechanical properties under the conditions of isometric, isotonic and isobaric. The large gap between the static theoretical model and experimental results was analysis, and from the controller design perspective, modified the model parameters. Then a higher precision static model was established. The high-speed PWM switching valves' flow characteristics was tested. Set up a single DOF and two-DOF pneumatic muscle joint's mathematical model based on the thermodynamics equations, as well as joint combined kinetic model. The static and dynamic experimental results demonstrated that the mathematical model is close to the experimental results. The dynamic performance of pneumatic muscle joint and some related factors were analysis by simulation.
     Considering the strongly nonlinear of pneumatic muscles joint and difficult to build a precise mathematical model, ChapterⅣdesigned a sliding variable structure robust controller sliding mode controller on the basis of analysis of the characteristics and some simplifications. Simulation and experimental results show that the variable structure controller has good robustness and stability meeting the uncertain parameters and external disturbance. Steady-state error is less than 0.005 rad, low-frequency tracking error of single DOF joint is less than 0.04 rad, high-frequency tracking error is less than 0.06 rad. The two-DOF joint's low-frequency tracking error is less than 0.025 rad, high-frequency tracking error is less than 0.06 rad.
     In order to further improve control precision, ChapterⅤapplies a robust adaptive control (ARC) strategy based on robust control design which integrated the adaptive control and robust control strategy. It guaranteed the stability of the closed-loop system and at the same time further reduces the tracking error and increase system performance by adjusting the model parameters adaptively. The experimental results show that the steady-state error is less than 0.003rad, single DOF joint's low-frequency tracking error less than 0.01 rad, high-frequency tracking error is less than 0.05rad. Low-frequency error of two DOF joint is less than 0.015rad, high-frequency tracking error is less than 0.03 rad.
     In order to reduce the cost of practical application, ChapterⅥadopt the saturation robust adaptive controller (SARC) using the position feedback only. It is still on the basis of robust control, but by combining parameters adaptive laws improve the closed-loop control accuracy. As the pressure feedback is not need, thus the utility of the control system is greatly enhanced. The experimental results show that for the single DOF joint, the low-frequency continuous tracking error is less than 0.01 rad, high-frequency tracking error is less than 0.03 rad, and for two-DOF joint low trajectory tracking error is less than 0.025 rad, high-frequency tracking error is less than 0.03 rad.
     ChapterⅦmade the summation, some results and conclusions of the study were presented, and future research work were given.
引文
[1]F.Reuleaux.Lehrbuch der Kinematik.Von Friedrich Vieweg and his son,Braunschweig,Germany,1900.
    [2]T.M.Wilkins.Diaphragm.美国专利号:1057196,1913.
    [3]C.D.Stephens.Pump.美国专利号:1832258,1930.
    [4]C.W.Meyers.Pumping apparatus.美国专利号:2291912,1942.
    [5]Ridgewood N.J.Roland Chilton.Hydraulic plunger seal.美国专利号:2178953,1939.
    [6]et al A.J.Fausek.Diaphragm.美国专利号:2323985,1941.
    [7]R.H.Farquhar.Pneumatic jack.美国专利号:2328970,1941.
    [8]I.E.Dearsley.Expansibile wall receptacle.美国专利号:2584431,1952.
    [9]P.A.Yerger.Load-controUing apparatus for compressors.美国专利号:2372923,1945.
    [10]H.D.Haven.Tensioning device for producing a linear pull.美国专利号:2483088,1946.
    [11]A.H.Morin.Elastic diaphragm.美国专利号:2642091,1953.
    [12]R.H.Gaylord.Fluid actuator motor system and stroking device.美国专利号:2844126,1958.
    [13]Vernon L.nickel,J.Perry,and A.Garrett.Development of useful function in the severely paralyzed hand.Journal of Bone and Joint Surggery,45(5):933-952,1963.
    [14]L.B.Johnston.Fluid actuated displacement and positioning system.美国专利号:3202061,1965.
    [15]Jr.R.L.Orndorff.Gripping device.美国专利号:3601442,1971.
    [16]Kleinwachter et al.Device with a pressurizable variable capacity chamber for transforming a fluid pressure into a motion.美国专利号:3638536,1972.
    [17]J.M.Yarlott.Fluid actuator.美国专利号:3645173,1972.
    [18]H.M.Paynter.Fluid-driven torsional operators for turning rotary valves and the like.美国专利号:4108050,1978.
    [19]K.Inoue.Rubbertuators and applications for robotics.In 4th IEEE International Symposium on Robotics Research,pages 57-63,1987.
    [20]T.Takagi and Y.Sakaguchi.Pneumatic actuator for manipulator.美国专利号:4615260,1986.
    [21]T.Takagi,Y.Y.Sakaguchi,and Imamura.Brake device for robor arm.美国专利号:4664232,1987.
    [22]Ching-Ping Chou and B.Hannaford.Measurement and modeling of mckibben pneumatic artificial muscles.IEEE Transactions on Robotics and Automation,12(1):90-102,Feb.1996.
    [23]G.K.Klute and B.Hannaford.Fatigue characteristics of mckibben artificial muscle actuators.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 1776-1781,1998.
    [24]G.K.Klute,J.M.Czerniecki,and B.Hannaford.Mckibben artificial muscles:pneumatic actuators with biomechanical intelligence.In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,pages 221-226,1999.
    [25]G.K.Klute,J.M.Czemiecki,and B.Hannaford.Artificial tendons:biomechanical design properties for prosthetic lower limbs.In 22nd Annual EMBS International Conference,pages 1972-1975,2000.
    [26]D.W.Repperger,C.A.Phillips,and D.C.Johnson.A study of pneumatic muscle technology for possible assistance in mobility.In Annual EMBS International Conference,pages 1884-1887,1997.
    [27]D.W.Repperger,K.R.Johnson,and C.A.Phillips.A VSC position tracking system involving a large scale pneumatic muscle actuator.In 37th IEEE Conference on Decision and Control,pages 4302-4307,1998.
    [28]D.W.Repperger,C.A.Phillips,and M.Krier.ControUer design involving gain scheduling for a large scale pneumatic muscle actuator.In IEEE International Conference on Control Applications,pages 285-290,1999.
    [29]D.W.Repperger,C.A.Phillips,and M.Krier.The application of parameter identification methods with competing systems to model a human interface device.In IEEE International Conference on Control Applications,pages 1324-1329,1999.
    [30]D.W Repperger,K.R.Johnson,and C.A.Philips.Nonlinear feedback controller design of a pneumatic muscle actuator system.In American Control Conference,pages 1525-1529,1999.
    [31]D.W.Repperger and C.A.Phillips.Developing intelligent control from a biological perspective to examine paradigms for activation utilizing pneumatic muscle actuators.In IEEE International Symposium on Intelligent Control(ISIC),pages 205-210,2000.
    [32]S.M.Djouadi,D.W.Repperger,and J.E.Berlin.Gain-scheduling H_∞ control of a pneumatic muscle using wireless MEMS sensors.In IEEE Midwest Symposium on Circuits and Systems,pages 734-737,2001.
    [33]P.Carbonell,Z.P.Jiang,and D.W.Repperger.Nonlinear control of a pneumatic muscle actuator:backstepping vs.sliding-mode.In IEEE International Conference on Control Applications,pages 167-172,2001.
    [34]P.Carbonell,Z.P.Jiang,and D.W.Repperger.A fuzzy backstepping controller for a pneumatic muscle actuator system.In IEEE International Symposium on Intelligent Control,pages 353-358,2001.
    [35]J.Schroder,D.Erol,and K.Kawamura.Dynamic pneumatic actuator model for a model-based torque controller.In IEEE International Symposium on Computational Intelligence in Robotics and Automation,pages 342-347,2003.
    [36]R.T.Pack,J.L.Christopher Jr.,and K.Kawamura.A Rubbertuator-based structure-climbing inspection robot.In IEEE International Conference on Robotics and Automation,pages 1869-1874,1997.
    [37]R.T.Pack,D.M.Wilkes,and K Kawamura.A software architecture for integrated service robot development.IEEE Transactions on Systems,Man and Cybernetics,pages 3774-3779,1997.
    [38]M.Iskarous and K Kawamura.Intelligent control using a neuro-fuzzy network.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 350-355,1995.
    [39]S.Thongchai,M.Goldfarb,and N.Sarkar.A frequency modeling method of rubbertuators for control application in an ima framework.In American Control Conference,2001.
    [40]Northrup S.,N.Sarkar,and K.Kawamura.Biologically-inspired control architecture for a humanoid robot.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 1100-1105,2001.
    [41]R.W.Colbrunn,Nelson G.M.,and R.D.Quinn.Modeling of braided pneumatic actuators for robotic control.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 1964-1970,2001.
    [42]G.M.Nelson.Learning about control of legged locomotion using a hexapod robot with compliant pneumatic actuators.PhD thesis,Case Western Reserve Univ.,USA,2002.
    [43]M.C.Birch,R.D.Quinn,and G.Hahm.Design of a cricket microrobot.In IEEE International Conference on Robotics and Automation,pages 1109-1114,2000.
    [44]R.W.Colbrunn,G.M.Nelson,and R.D.Quinn.Design and control of a robotic leg with braided pneumatic actuators.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 992-998,2001.
    [45]S.Laksanacharoen,A.J.Pollack,and G.M.Nelson.Biomechanics and simulation of cricket for microrobot design.In IEEE International Conference on Robotics and Automation,pages 1088-1094,2000.
    [46]M.C.Birch,R.D.Quinn,and G.Hahm.Cricket-based robots.IEEE Robotics and Automation Magazine,pages 20-30,Dec.2002.
    [47]K.S.Aschenbeck,N.I.Kern,and R.J.Bachmann.Design of a quadruped robot driven by air muscles.In First IEEE/RAS Annual EMBS International Conference on Biomedical Robotics and Biomechatronics(BioRob),2006.
    [48]D.A.Kingsley and R.D.Quinn.Fatigue life and frequency response of braided pneumatic actuators.In IEEE International Conference on Robotics and Automation,pages 2830-2835,2002.
    [49]D.A.Kingsley,R.D.Quinn,and R.E.Ritzmann.A cockroach inspired robot with artificial muscles.
    [50]K.Bharadwaj and T.G.Sugar.Kinematics of a robotic gait trainer for stroke rehabilitation.In IEEE International Conference on Robotics and Automation,pages 3492-3497,2006.
    [51]Jiping He,E.J.Koeneman,and R.S.Schultz.Design of a robotic upper extremity repetitive therapy device.9th International Conference on Rehabilitation Robotics(ICORR),pages 95-98,2005.
    [52]Jiping He,E.J.Koeneman,and R.S.Schultz.RUPERT:a device for robotic upper extremity repetitive therapy.In Annual EMBS International Conference,pages 6844-6847,2005.
    [53]E.J.Koeneman,R.S.Schultz,and S.L.Wolf.A pneumatic muscle hand therapy device.In Annual EMBS International Conference,pages 2711-2713,2004.
    [54]K.Bharadwaj,K.W.Hollander,and C.A.Mathis.Spring over muscle(som)actuator for rehabilitation devices.In Annual EMBS International Conference,pages 2726-2729,2004.
    [55]T.Hesselroth,K.Sarkar,and P.P.van der Smagt.Neural network control of a pneumatic robot arm.IEEE Transactions on Systems,Man and Cybernetics,24(1):28-38,Jan.1994.
    [56]Michael Zeller,Rajeev Sharma,and Klaus Schulten.Motion planning of a pneumatic robot using a neural network.IEEE Control Systems,pages 89-98,Jun.1997.
    [57]J.H.Lilly.Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations.IEEE Transactions on Neural Systems and Rehabilitation Engineering,11(3):333-339,Sep.2003.
    [58]J.H.Lilly and P.M.Quesada.A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups.IEEE Transactions on Neural Systems and Rehabilitation Engineering,12(3):349-359,Sep.2004.
    [59]J.H.Lilly and Liang Yang.Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration.IEEE Transactions on Control Systems Technology,13(4):550-558,Jul.2005.
    [60]Liang Yang and J.H.Lilly.Sliding mode tracking for pneumatic muscle actuators in bicep/tricep pair configuration.In American Control Conference,pages 4669-4674,2003.
    [61]A.S.Nouri,M.Hamerlain,and C.Mira.Variable structure model reference adaptive control using only input and output measurements for two real onelink manipulators,pages 465-472,1993.
    [62]A.S.Nouri,C.Mira,and P.Lopez.Variable structure model reference adaptive control using only input and output measurements with two sliding surfaces.In International Conference on Industrial Electronics,Control,and Instrumentation (IECON),pages 2171-2177,1993.
    [63]A.S.Nouri,C.Gauvert,and B.Tondu.Generalized variable structure model reference adaptive control of one-link artificial muscle manipulator in two operating modes.IEEE Transactions on Systems,Man and Cybernetics,pages 1944-1950,1994.
    [64]B.Tondu,V.Boitier,and P.Lopez.Naturally compliant robot-arms actuated by mckibben artificial muscles.In IEEE Transactions on Systems,Man and Cybernetics,pages 2635-2640,1994.
    [65]B.Tondu.A dynamic model of the mckibben artificial muscle contraction.In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,pages 64-68,1997.
    [66]A.Sanchez,V.Mahout,and B.Tondu.Nonlinear parametric identification of a mckibben artificial pneumatic muscle using flatness property of the system.In IEEE International Conference on Control Applications,pages 70-74,1998.
    [67]S.Eskiizmirliler,B.Tondu,and C.Darlot.Motor control of a limb segment actuated by artificial muscles.In 23rd Annual EMBS International Conference,pages 865-868,2001.
    [68]B.Tondu and P.Lopez.Modeling and control of McKibben artificial muscle robot actuators.IEEE Control Systems Magazine,pages 15-38,Apr.2000.
    [69]Costa N.,Bezdicek M.,and Brown M.Joint motion control of a powered lower limb orthosis for rehabilitation.Automation and Computing,(3):271-281,2006.
    [70]C.J.Bowler,D.G.Caldwell,and G.A.Medrano-Cerda.Pneumatic muscle actuators:musculature for an anthropomorphic robot arm.In IEE Colloquium on Actuator Technology:Current Practice and New Developments.,1996.
    [71]D.G.Caldwell and R.K.Reddy.A chemo-pneumatic drive source for flexible operation of pneumatic muscle actuators.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 1360-1367,1994.
    [72]D.G.Caldwell,G.A.Medrano-Cerda,and M.J.Goodwin.Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow.In IEEE International Conference on Robotics and Automation,pages 3558-3563,1994.
    [73]D.G.Caldwell,G.A.Medrano-Cerda,and M.J.Goodwin.Braided pneumatic actuator control of a multi-jointed manipulator.IEEE Transactions on Systems,Man and Cybernetics,pages 423-428,1993.
    [74]G.A.Medrano-Cerda,C.J.Bowler,and D.G.Caldwell.Adaptive position control of antagonistic pneumatic muscle actuators.In IEEE/RSJ International Conference on 'Human Robot Interaction and Cooperative Robots',pages 378-383,1995.
    [75]D.G.Caldwell,G.A.Medrano-Cerda,and C.J.Bowler.Investigation of bipedal robot locomotion using pneumatic muscle actuators.In IEEE International Conference on Robotics and Automation,pages 799-804,1997.
    [76]D.G.Caldwell,G.A.Medrano-Cerda,and M.Goodwin.Control of pneumatic muscle actuators.IEEE Control Systems Magazine,pages 40-48,Feb.1995.
    [77]D.G.Caldwell,N.Tsagarakis,and D.Badihi.Pneumatic muscle actuator technology:a light weight power system for a humanoid robot.In IEEE International Conference on Robotics and Automation,pages 3053-3058,1998.
    [78]N.Tsagarakis,D.G.Caldwell,and G.A.Medrano-Cerda.A 7 DOF pneumatic muscle actuator(pMA) powered exoskeleton.In IEEE International Workshop on Robot and Human Interaction,pages 327-333,1999.
    [79]D.G.Caldwell,N.Tsagarakis,and G.A.Medrano-Cerda.Development of a pneumatic muscle actuator driven manipulator rig for nuclear waste retrieval operations.In IEEE International Conference on Robotics and Automation,pages 525-530,1999.
    [80]N.Tsagarakis and D.G.Caldwell.Improved modelling and assessment of pneumatic muscle actuators.In IEEE International Conference on Robotics and Automation,pages 3641-3646,2000.
    [81]D.G.Caldwell,N.Tsagarakis,and P.Artrit.Biomimetic and smart technology principles of humanoid design.In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,pages 965-970,2001.
    [82]S.Davis,J.Canderle,and P.Artrit.Enhanced dynamic performance in pneumatic muscle actuators.In IEEE International Conference on Robotics and Automation,pages 2836-2841,2002.
    [83]T.Noritsugu and T.Tanaka.Application of rubber artificial muscle manipulator as a rehabilitation robot.IEEE/ASME Transactions on Mechatronics,2(4):259-267,Dec.1997.
    [84]T.Noritsugu,H.Yamamoto,and D.Sasaki.Wearable power assist device for hand grasping using pneumatic artificial rubber muscle.In SICE Annual Conference,pages 420-425,2004.
    [85]D.Sasaki,T.Noritsugu,and M.Takaiwa.Development of wearable power assist device constructed with pneumatic artificial rubber muscle.In Technical Exhibition Based Conference on Robotics and Automation(TExCRA),pages 23-24,2004.
    [86]D.Sasaki,T.Noritsugu,and M.Takaiwa.Wearable power assist device for hand grasping using pneumatic artificial rubber muscle.In IEEE International Workshop on Robot and Human Interaction,pages 655-660,2004.
    [87]T.Noritsugu,D.Sasaki,and M.Takaiwa.Application of artificial pneumatic rubber muscles to a human friendly robot.In IEEE International Conference on Robotics and Automation,pages 2188-2193,2003.
    [88]T.Noritsugu,Y.Tsuji,and K.Ito.Improvement of control performance of pneumatic rubber artificial musde manipulator by using electrorheological fluid damper.IEEE Transactions on Systems,Man and Cybernetics,(4):788-793,1999.
    [89]T.Noritsugu,T.Tanaka,and T.Yamanaka.Application of rubber artificial muscle manipulator as a rehabilitation robot.In IEEE International Workshop on Robot and Human Interaction,pages 112-117,1996.
    [90]T.Takuma,K.Hosoda,and M.Ogino.Stabilization of quasi-passive pneumatic muscle walker.In IEEE/RAS International Conference on Humanoid Robots,pages 627-639,2004.
    [91]T.Takuma,S.Nakajima,and K.Hosoda.Design of self-contained biped walker with pneumatic actuators.In SICE Annual Conference,pages 2520-2524,2004.
    [92]T.Takuma,K.Hosoda,and M.Ogino.Controlling walking period of a pneumatic muscle walker.
    [93]T.Nakamura,N.Saga,and K.Yaegashi.Development of a pneumatic artificial muscle based on biomechanical characteristics.In IEEE International Conference on Industrial Technology,pages 729-734,2003.
    [94]N.Saga,T.Nakamura,and Ueda Shinya.Study on peristaltic crawling robot using artificial muscle actuator.In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,pages 679-684,2003.
    [95]N.Saga,T.Nakamura,and J.Uehara.Development of artificial muscle actuator reinforced by kevlar fiber.In IEEE International Conference on Industrial Technology,pages 950-954,2002.
    [96]K.Kawashima,N.Nakamura,and T.Miyata.Application of robots using pneumatic artificial rubber muscles for operating construction machines.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 3384-3389,2003.
    [97]K.Kawashima,T.Sasaki,and A.Ohkubo.Application of robot arm using fiber knitted type pneumatic artificial rubber muscles.In IEEE International Conference on Robotics and Automation,pages 4937-4942,2004.
    [98]H.Kobayashi,Y.Ichikawa,and M.Senda.Toward rich facial expression by face robot.In International Symposium on Micromechatronics and Human Science,pages 139-145,2002.
    [99]T.Kerscher,J.Albiez,and K.Berns.Joint control of the six-legged robot AirBug driven by fluidic muscles.In 3rd International Workshop on Robot Motion and Control,pages 27-32,2002.
    [100]Yong Kwun Lee and I.Shimoyama.A skeletal framework artificial hand actuated by pneumatic artificial muscles.In IEEE International Conference on Robotics and Automation,pages 926-931,1999.
    [101]Yong Kwun Lee and I.Shimoyama.A multi-channel micro valve for micro pneumatic artificial muscle.In 15th IEEE International Conference on Micro Electro Mechanical Systems,pages 702-705,2002.
    [102]K.Balasubramanian and K.S.Rattan.Fuzzy logic control of a pneumatic muscle system using a linearing control scheme.In 22nd International Conference of the North American Fuzzy Information Processing Society,pages 432-436,2003.
    [103]K.Balasubramanian and K.S.Rattan.Feedforward control of a non-linear pneumatic muscle system using fuzzy logic.In 12th IEEE International Conference on Fuzzy Systems,pages 272-277,2003.
    [104]Shadow Robot Company.Using air muscles for compliant bipedal and manylegged robotics.1996.
    [105]Shadow Robot Company.Dextrous hand.2003.
    [106]A.Hildebrandt,O.Sawodny,R.Neumann,and A.Hartmann.Nonlinear torque and stiffness control of 2 D.o.F.manipulator driven by artificial pneumatic muscle actuators.
    [107]A.Hildebrandt,O.Sawodny,and R.Neumann.A flatness based design for tracking control of pneumatic muscle actuators.In 7th International Conference on Control,Automation,Robotics and Vision(ICARCV),pages 1156-1161,2002.
    [108]刘荣.并联机构柔顺控制及人工肌肉驱动研究.北京航天航空大学博士论文,1996.
    [109]刘荣,宗光华.人工肌肉驱动特性研究.高科技通讯,(6):34-38,1998.
    [110]沈伟,施光林,周爱国.气动肌肉主动悬架系统的仿真模型与分析.计算机仿真,21(6):162-166,2004.
    [111]田社平,丁国清,颜德田.人工肌肉系统神经网络建模与控制.中国生物医学工程学报,22(4):300-308,8 2003.
    [112]林良民,田社平.医疗机器人用空气压人工肌线性控制的研究.中国医疗器械杂志,26(1):7-13,2002.
    [113]颜国正,林良民,田社平.基于神经网络的人工肌肉非线性控制.上海交通大学学报,35(5):713-716,5 2001.
    [114]颜德田,林良明,丁国清.人工肌肉自适应预测控制.仪器仪表学报,22(3):85-86,6 2001.
    [115]田社平,林良民.人工肌肉静态特性及其测量.实用测试技术,(6):12-14,111998.
    [116]杜经民,朱端阳,杨钢.气动人工肌肉静态特性实验研究.液压与气动,(5):21-23,2005.
    [117]杨钢,李宝仁,刘军.气动人工肌肉特性分析的新方法.液压与气动,(10):22-25,2002.
    [118]杨钢,李宝仁,刘军.一种新型气动执行元件——气动人工肌肉.中国机械工程,(15):1347-1349,8 2003.
    [119]傅晓云,刘军,杨钢.气动人工肌肉执行系统动态特性的实验研究.液压气动与密封,(6):6-9,12 2003.
    [120]李宝仁,刘军,杨钢.气动人工肌肉系统建模与仿真.机械工程学报,39(7):23-28,72003.
    [121]杜经民,杨钢,傅晓云.气动人工肌肉系统控制性能的实验研究.华中科技大学学报,32(4):35-37,4 2004.
    [122]杨钢,李宝仁.基于CMAC的气动人工肌肉变结构位置控制研究.机械工程学报,40(10):92-96,10 2004.
    [123]杨钢.气动人工肌肉位置伺服系统研究及其应用.华中科技大学博士论文,2004.
    [124]范伟,彭光正,宁汝新.气动人工肌肉驱动器在六足步行机器人中的应用.机器人技术与应用,(1):40-42,2003.
    [125]黄雨,彭光正,范伟.气动人工肌肉驱动关节PID位置控制研究.液压与气动,(4):13-15,2003.
    [126]黄雨,彭光正,范伟.气动人工肌肉关节驱动特性实验研究.北京理工大学学报,23(3):310-312,6 2003.
    [127]黄雨,范伟,彭光正.气动人工肌肉驱动特性实验研究.液压与气动,(12):9-11,2002.
    [128]黄雨,彭光正,范伟.气动人工肌肉驱动器的研究现状及发展趋势.机床与液压,(1):32-36,2003.
    [129]范伟,彭光正,高建英.带修正因子的自组织模糊PID控制在气动人工肌肉位置控制中的应用.液压与气动,(9):30-33,2003.
    [130]宁汝新,高建英,彭光正.气动人工肌肉驱动三自由度球面并联机器人关节的位置控制研究.液压气动与密封,(6):1-5,12 2003.
    [131]柴森春,彭光正,范伟.单神经元自适应PID算法在气动人工肌肉位置控制中的应用研究.液压与气动,(1):18-20,2004.
    [132]张之璐,彭光正,朱智乾.气动人工肌肉驱动器驱动六足爬行机器人的步态选择和结构设计.液压与气动,(4):29-30,2004.
    [133]高建英,彭光正,范伟.基于bp网络的气动人工肌肉位置跟踪的研究.液压与气动,(5):5-7,2004.
    [134]李英,彭光正,范伟.模糊PID控制在气动人工肌肉位置控制中的应用.液压与气动,(4):31-33,2005.
    [135]范伟,彭光正,高建英.气动人工肌肉驱动球面并联机器人的位置控制研究.北京理工大学学报.,24(6):516-519,6 2004.
    [136]范伟,彭光正,高建英.气动人工肌肉驱动球面并联机器人的力控制研究.机器人,26(4):336-341,7 2004.
    [137]范伟,彭光正,李英.神经元自适应PSD控制在气动人工肌肉力控制中的应用.机床与液压,(10):53-54,2004.
    [138]王祖温,隋立明,包钢.气动肌肉驱动关节的输入整形研究.机械工程学报,41(1):66-70,1 2005.
    [139]隋立明,包钢,王祖温.气动肌肉在康复工程中的应用.中国临床康复,8(2):320-321,1 2004.
    [140]隋立明,王祖温,包钢.气动肌肉驱动仿人臂的设计.液压与气动,(9):7-8,2004.
    [141]隋立明,王祖温,包钢.气动肌肉与生物肌肉的力学特性对比研究.机床与液压,(6):22-24,2004.
    [142]隋立明,王祖温,包钢.气动肌肉的刚度特性分析.中国机械工程,15(3):242-244,2 2004.
    [143]王祖温,包钢,隋立明.气动肌肉结构参数的分析与设计.液压与气动,(10):12-14,2003.
    [144]隋立明,包钢,王祖温.气动肌肉及其构成的关节模型研究.机械设计与研究,18(6):19-20,12 2002.
    [145]隋立明,包钢,王祖温.一种由气动肌肉驱动的关节模型研究.机床与液压,(6):55-56,2002.
    [146]隋立明,包钢,王祖温.气动人工肌肉改进模型研究.液压气动与密封,(2):1-4,42002.
    [147]叶骞,王祖温.气动人工肌肉.液压气动与密封,(2):12-14,4 2000.
    [148]包钢,王祖温,隋立明.气动肌肉驱动人工关节的建模研究.机械科学与技术,22(增刊):77-79,11 2003.
    [149]隋立明,包钢,王祖温.气动人工肌肉驱动关节特性研究.液压与气动,(3):3-5,2002.
    [150]朱笑丛,陶国良.气动人工肌肉伺服平台的建模.浙江大学学报(工学版),38(8):1056-1060,2004.
    [151]G.L.Tao,X.C.Zhu,and J.Cao.Modeling and controlling of parallel manipulator joint driven by pneumatic muscles.机械工程学报(英文版),18(4):537-541,2005.
    [152]李小宁,卫玉芬.气动人工肌肉的进展和应用.机床与液压,(1):37-39,2003.
    [153]卫玉芬,李小宁.气动肌肉的驱动特性研究.液压与气动,(7):24-26,2004.
    [154]卫玉芬,李小宁.Mckibben气动人工肌肉在爬升和爬行机器人中的应用.液压与气动,(3):42-44,2003.
    [155]卫玉芬,李小宁.Mckibben型气动人工肌肉.机床与液压,(3):22-23,2003.
    [156]施光林,周爱国,钟廷修.气动人工肌肉驱动多自由度平台的非线性特性.华南理工大学学报,32(9):41-45,9 2004.
    [157]施光林,周爱国,钟廷修.气动人工肌肉与标准气缸的力特性比较.上海交通大学学报,38(8):1346-1349,8 2004.
    [158]周爱国,施光林,钟廷修.气动人工肌肉并联驱动多自由度平台的系统设计.液压与气动,(5):41-43,2004.
    [159]郑奇,李醒飞,张国雄.类人上肢的双肌肉驱动系统的设计.液压与气动,(11):7-8,2003.
    [160]李醒飞,郑奇,张国雄.类人气动肌肉模型与实验研究.天津大学学报,38(3):242-247,3 2005.
    [161]周泉,张立彬,杨庆华.柔性气动执行器的研究现状和趋势.机电工程,20(1):61-64,2003.
    [162]杨庆华,张立彬,阮健.气动弯曲关节的特性研究.工程设计学报,9(3):159-161,8 2002.
    [163]D.B.Reynolds,D.W.Repperger,and C.A.Phillips.Modeling the dynamic characteristics of pneumatic muscle.In Annals of Biomedical Engineering,volume 31,pages 310-317,2003.
    [164]A.Manuello Bertetto and M.Ruggiu.Characteristics and modeling of air muscles.Mechanics Research Communications,(31):185-194,2004.
    [165]F.Daerden,D.Lefeber,and B.Verrelst.Pleated pneumatic artificial muscles:actuators for automation and robotics.In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,pages 738-743,2001.
    [166]F.Daerden,D.Lefeber,and B.Verrelst.Pleated pneumatic artificial muscles:compliant robotic actuators.In IEEE/RSJ International Conference on Intelligent Robots and Systems,pages 1958-1963,2001. 138
    [167]K.Suzumori,T.Yokohama,and T.Matsumaru.Elastically deformable fluid actuator.美国专利号:4976191,1990.
    [168]Merlin系统公司.www.merlinsystems.net.
    [169]S.Davis and D.G.Caldwell.Pneumatic muscle actuators for humanoid applications-sensor and valve integration.In 6th IEEE/RAS International Conference on Humanoid Robots,pages 456-461,2006.
    [170]V.D.S.Patrick,E Groen,and S.Klaus.Analysis and control of a rubbertuator arm.Biological Cybernetics,75(5):443-440,1996.
    [171]B.Vanderborght,B.Verrelst,and R.Van Ham.Torque and compliance control of the pneumatic artificial muscles in the biped "lucy".In IEEE International Conference on Robotics and Automation,pages 842-847,2006.
    [172]L.Kopecny.Producing of tactile feedback via pneumatic muscles.In IEEE International Conference on Industrial Technology,2003.
    [173]B.Yao,M.Al-Majed,and Tomizuka M.High performance robust motion control of machine tools:an adaptive robust control approach and comparative experiments.IEEE/ASME Transactions on Mechatronics,(2):63-76,2 1997.
    [174]B.Yao and L.Xu.Adaptive robust motion control of linear motors for precision manufacturing.Mechatronics,(12):595-616,2002.
    [175]J.Q.Gong and B.Yao.Global stabilization of a class of uncertain systems with saturated adaptive robust control.In 39th IEEE Conference on Decision and Control,volume 2,pages 1882-1887,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700