汽油在土壤中运移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤气相抽提(Soil Vapor Extraction)是一项被广泛接受经济有效的治理挥发性有机物(Volatile Organic Compounds)污染的非饱和带土壤的技术。VOCs饱和蒸汽压高,能在负压气流下被定向地带到地面收集处理。
     在非饱和带土壤中,非水相液体(Non Aqueous Phase Liquids)、界面相和气相VOCs为主要存在形式。NAPL将随着时间的推移逐渐减少至消失。NAPL存在时,毛细作用和铺展作用时刻发生,并使其污染范围扩大,VOCs气体在土壤孔隙中不断扩散。
     VOCs的污染多发生在非饱和带土壤中,本研究探讨液态VOCs进入土壤后的存在相态、非气态和气态的运移规律、运移机理、拖尾机理。
     室内实验,汽油液气两相在土壤中的运移规律研究和吸附机理分析
     1.液态汽油运移:定量向土柱中加入液态汽油,测试数据显示汽油的运移距离平方和运移时间呈线性关系,证明了毛细作用的和铺展作用的存在,证实了液态的汽油运移可以用Washburn方程描述时间和运移距离关系;
     2.气态汽油扩散:使用稳定的气相污染源,测试了汽油气相在空气介质和土壤介质中的扩散。测试结果显示:在均匀的固相土壤介质中,扩散速度受到土壤含水率、土壤颗粒、土壤密度等条件的影响。污染物的浓度分布呈现由污染源向污染外围递减趋势,随着时间的增长固定空间的浓度趋于稳定;气相的汽油运移可以用Einstein-Smoluchowski方程描述时间和运移距离关系;
     3.汽油吸附:采用直接和间接两种污染方式。直接方式既直接向土柱中定量加入液态汽油,间接方式既是使用气相污染源对土柱进行污染,静止稳定10天。通风实验显示:直接污染的土柱中的浓度下降缓慢,停止通风后浓度可以得到恢复,说明了污染物主要来源于NAPL的挥发;间接污染的土柱经过通风后,浓度下降速度快,并且不能恢复,间接污染的浓度来源于孔隙中的污染物。实验说明汽油被土壤吸附,导致通风后期低的汽油浓度;
     4.拖尾分析:液态汽油的运移直接导致吸附,随着时间的增长,汽油被吸附的范围加大。铺展现象的发生,说明汽油同土壤之间发生了吸附作用,吸附作用改变了液态汽油表面张力,使被吸附的汽油焓降低。使用BET法测量了实验用土壤的表面积,定量计算出被吸附的汽油量的范围。按照吸附理论和分压定律,被吸附的物质的饱和蒸汽压将出现降低,既宏观表现为浓度降低。实验估算了降低后的浓度值。野外实验:验证气液两相的运移规律
     5.液相规律:使用气相色谱测试了不同深度土壤中的汽油浓度和组分,测试数据显示:相同深度相同土壤构成时汽油具有相似的组分构成和相近的浓度。接近地面的组分由于受到气相蒸发的影响,短碳链的组分偏少。
     6.气相规律:通过测试场地的压力场分布,浓度分布和通风后浓度变化,表明场地土壤具有较好的通透性,适用于SVE方法。TVOC浓度由污染区向地面呈逐渐递减趋势。使用气相色谱测试了不同空间位置的汽油组分分布,数据显示相同深度土壤具有相似的组分分布,不同深度的组分分布不同;
     理论分析,并综合实验的气液运移规律,获得下述结论:
     1.润湿是NAPL在土壤中的主要运移方式,扩散是气相运移方式。VOCs污染区域划分为毛细作用、铺展作用和气相扩散三个区域;
     2.润湿和气相吸附形成的界面相和NAPL为非气相VOCs;
     3.润湿和气相吸附降低VOCs的焓,引起VOCs的饱和蒸气压降低,导致拖尾。
Soil vapor extraction (SVE) is a widely accepted and cost-effective technique that is used to remediate unsaturated soil contaminated with volatile organic compounds (VOCs). SVE is a simple process in which a vacuum induces advective airflow to enhance the volatilization of entrapped VOCs.
     VOCs’leakage usually happens in unsaturated zone. VOCs existing formats are non aqueous phase liquids,interface phase and vaporous phase. NAPL will gradually disappear with time elapsing. Capillary and wetting will enlarge the contaminated soil zone when NAPL is existing, VOCs vapor will transfer into soil porosity constantly.
     Transportation principle and mechanism, tailing mechanism of VOCs existing phase, non vapor and vapor VOCs when liquid VOCs goes into soil was studied.
     Laboratory Test: liquid and vapor transportation principle and absorption mechanism
     1. Liquid gasoline transportation: Quantitative liquid gasoline was added into the soil column. The relationship between square of liquid gasoline running distance vs. elapsed time is a liner one; it shows that the capillary and wetting exist between soil particle and liquid gasoline. The Washburn equation can be used to describe the running distance vs. elapsed time.
     2. Vaporous gasoline diffusion: Vaporous gasoline source in stable condition used to test vaporous gasoline diffuse in air and soil column. The results shows that diffusion velocity was affected by the soil water content, soil particle size, and soil density. The VOCs concentration is declining from the vaporous source. Concentration equilibrium will be built with the time elapsing. The relationship of vapor running distance vs. elapsed time can be described with Einstein-Smoluchowski equation.
     3. Gasoline absorption: Two methods were applied, for the direct method, adding quantitative gasoline into the column directly; the indirectly method, a stable gasoline vaporous source was applied and connected with the soil column. Venting the two columns after 10 days equilibrium, the venting shows that the concentration in the directly polluted column is declining slowly, and the concentration can be recovered after venting was stopped. It shows that the VOCs concentration comes from NAPL. For the indirectly polluted column, the concentration decline fast, and the concentration can’t be recovered after stop venting. The concentration came from the soil porosity. It also shows the low concentration comes from the desorption from the interface, which is one reason for low concentration in late venting period.
     4. Tailing: Sorption happened when the liquid gasoline impregnation into soil part. And the contaminated zone will be enlarged with the time elapsed. The wetting is a kind of interface sorption. The enthalpy will be low and the surface tension will be changed when the sorption happened between the soil and the gasoline. The quantitative gasoline was estimated based on the soil surface that was measured by BET. The sorpted VOCs vapor pressure will be low and the same for concentration based on adsorption theory and the law of partial pressure Field verification: liquid and vapor gasoline transporting principle
     5. Liquid principle: The concentration and components at different depth were measured. The results show that for the same depth and soil components, the gasoline components are similar and concentrations are closer. The evaporation affects the gasoline components close to ground surface; it contains less short carbon chain components.
     6. Gas phase principle: the pressure field, concentration field and variation of the concentration in field were measured. The results show the plot has permeability and it fits for SVE. TVOC concentration is declining from the polluted center to the ground surface. GC results show that the components are same at the same depth; the components are different at different depth.. Conclusions:
     1.Impregnation is the main transportation for NAPL in unsaturated soil and diffusion is the transportation for vapor. The VOCs contaminated zone should be defined as three zones: capillary zone, wetting zone and diffusion zone.
     2. Non gas phase VOCs should include NAPL and the new interface phase formed by wetting and vapor absorption.
     3. Wetting and vapor absorbing will reduce VOCs enthalpy, causing lowering of VOCs components vapor pressure, resulting in tailing.
引文
[1].北京市主要加油站.[EB/OL]. [2008-12-20] .http://auto.sohu.com/s2005/beijing_jiayou zhan.shtml.
    [2].中国石油化工股份有限公司北京石油分公司. [EB/OL]. [2008-12-20]. http://www.bjoil.com/jsps/web/ Content.jsp?menuId =80.2&typeId=50.1.
    [3]. 2001年-2005年北京工业发展规划, [EB/OL]. [2008-12-20]. http://www.bjid.gov.cn/ documents/ 200406/000200010002_77162.html.
    [4].周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社, 2004.
    [5].孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社, 2005.
    [6]. Mueller J G, Lin J E R, Lantz S E et al. Recent developments in cleanup technologies. Remediation, 1993, 4(3): 369-381.
    [7].王焕校主编.污染生态学[M].北京:高等教育出版社, 2000.
    [8].郗祥远,钟桂香,樊永红等.大型原油储罐钢材国产化的探讨与分析[J].石油化工建设, 2007, 29(5): 23-25.
    [9].马永芳.钢制储油罐腐蚀破坏原因分析及修复措施[J].化工设备与管道, 2000, 37(4): 59-61.
    [10].张雪松.浅析石油库环境危害因素及控制措施[J].安全健康与环境, 2006, 6(2): 43-45.
    [11].路佳,徐芳,蔡伟民.甲基叔丁基醚的污染治理技术研究进展[J].环境污染与防治, 2006, 28(5): 365-368.
    [12]. Faisal I Khan, Tahir Husain, Ramzi Hejazi. An overview and analysis of site remediation technologies. Journal of Environmental Management, 2004, 71: 95-122.
    [13].杨乐巍,黄国强,李鑫钢.土壤气相抽提(SVE)技术研究进展[J].环境保护科学, 2006, 32(6):62-65.
    [14]. Fall E W, Pickens W E. In-situ hydrocarbon extraction, A case study done by converse environmental consultants. California, 1988.
    [15].蒋小红,喻文熙,江家华等.污染土壤的物理/化学修复[J].环境污染与防治, 2006, 28(3): 210-214.
    [16]. Gregory J Rorech. In situ treatment technology [M], Chapter 3, 2000, 2nd: 76-79.
    [17]. William A Kuchaski. Remediation techniques -an overview. In: Paul Kostecki. Assessment and remediation of oil contaminated soils. New Delhi, India, New age international ltd, 1999: 164-174.
    [18]. Trvais C C, J M Mcinnis. Vapor extraction of organics from subsurface soils. Environ. Sci. Techno, 1992, 26: 1885-1887.
    [19].夏春林.土壤有机污染通风去除技术.环境科学学报, 1995, 15 (2): 246-250.
    [20]. Suthersan S S. 1997. Remediation Engineering: Design Concepts, Lewis Publishers, Boca Raton, FL. Texas Research Institute. 1980. Enterim report, API Publication 4245: 98.
    [21]. Zhan H, Park E, Vapor flow to horizontal wells in unsaturated zones [J]. Soil Science Society of America, 2002, 66(3): 710-721.
    [22]. Halmemies S, Grondahl S, Arffman M, Nenonen K, Tuhkanen T, Vacuum extraction based response equipment for recovery of fresh fuel spills from soil. Journal of Hazardous Materials, 2003, 97(1-4): 127-143.
    [23]. FRTR, 1999a. Landfarming. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W., Washington, DC, http://www.frtr. gov/matrix2/section4/4_15.html.
    [24]. FRTR, 1999b. Bioventing. Federal Remediation Technologies Roundtable. USEPA, 401 M Street, S.W., Washington, DC, http://www.frtr.gov/ matrix2/section4/4_1.html.
    [25].黄国强,李鑫钢,徐世民.土壤气相抽提作用机制探讨和基本数学模型建立[J].土壤学报, 2004, 141(13): 394-400.
    [26]. Barnes D L, Cosden E, Johnson B, et al. Operation of Soil Vapor Extraction in Cold Climates, Cold Regions Engineering Cold Regions Impacts on Transportation and Infrastructure, Proceedings of the Eleventh International Conference, Anchorage, AK, 2002: 956-967.
    [27]. Texas Research Institute. Laboratory Scale Gasoline Spill and Venting Experiment [R]. American Petroleum Institute. Interim Report 1980, 7743-5.
    [28]. Risk Reduction Engineering Laboratory, Office of Research and Development. Terra VAC in situ vacuum extraction system, Applications Analysis Report. U.S. Environmental Protection Agency, Cincinnati, OH 45268, EPA/540/A5-89/003 July1989.
    [29]. Hinchee R E, D C Downey R R Dupont. Enhancing biodegradation of petroleum hydrocarbon through soil venting[J]. Hazard Mater, 1991, 27: 315-325.
    [30].顾传辉,陈桂珠.石油污染土壤生物修复[J].重庆环境科学, 2001, 23(2): 42-45.
    [31]. Kenneth J Willianmson. Physical/Chemical treatment of petroleum contaminated soils. In: Paul Kostecki. Assessment and remediation of oil contaminated soils. New Delhi, India: New age international ltd., 1999: 225-247.
    [32]. Nader Al Awadhi, Amin El-Nawawy, Reyad Al Daher. Field-scale demonstration of bioremediation technologies. In: Paul Kostecki. Assessment and remediation of oil contaminated soils. New Delhi, India: New age international ltd, 1999: 375-391.
    [33]. Hongkyu Yoon, Joong Hoon Kim, Howard M. Liljestrand. Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction, Journal of Contaminant Hydrology. 2002, 54: 1-18.
    [34]. Yanjie Chua, Charles J Wertha, Albert J Valocchi. Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media, Journal of Contaminant Hydrology. 2004, 73: 15-37.
    [35]. Ulrich Fischer, Christoph Hinz, Rainer Schulin, Fritz Stauffer. Assessment of nonequilibrium in gas–water mass transfer during advective gas-phase transport in soils, Journal of Contaminant Hydrology, 1998, 33: 133-148.
    [36]. Aaron A Jennings. A vapor extraction teaching module based on AIRFLOW/SVE. Environmental Modelling & Software, 1998, 12(4): 335-353.
    [37]. C K H?ier, T O Sonnenborg, K H Jensen. Experimental investigation of pneumatic soil vapor extraction, Journal of Contaminant Hydrology, 2007, 89: 29-47.
    [38]. M E Rahbeh, R H Mohtar. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction. Journal of Hazardous Materials, 2007, 143: 156-170.
    [39]. Fischer U, Schulin R, Keller M. Experimental and numerical investigation of soil vapor extraction. Water Resour Res, 1996, 32(12): 3413-3427.
    [40]. David L. Barnes P E, M ASCE. Estimation of operation time for soil vapor extraction systems. Journal of environmental engineering, 2003, 9: 873-880.
    [41]. J. F. Campagnolo, A Akgerman. Modeling of soil vapor extraction (SVE) systems, Waste Management, 1995, 15(5/6): 379-389.
    [42]. [奥]A.E.薛定谔.王鸿勋,张朝琛等译.多孔介质中的渗流物理[M],北京:石油工业出版社,1982: 55-82.
    [43]. Marley M C. Quantitative and qualitative analysis of gasoline fractions stripped by air for the unsaturated soil zone. M.S. Thesis, Univ. of Connecticut. 1983.
    [44]. Thornton J C, W L Wootan. Venting for the removal of hydrocarbon vapors from gasoline contaminated soils [J]. Environ Sci Health, 1982, A17 (1): 31-44.
    [45]. Crow W L, Anderson E P, Minugh E M. Subsurface venting of vapors emanating from hydrocarbon product on ground water [J]. Ground Water Monit Rev, 1987, 7(4): 51-57.
    [46]. Fall E W, Pickens W E. In-situ hydrocarbon extraction, A case study done by Converse Environmental Consultants [J]. Hazardous Waste Contaminant, 1989, 1: 1-7.
    [47].何炜,陈鸿汉,刘菲等.土壤气相抽提去除土壤中汽油烃污染物柱实验研究.环境污染与防治, 2007, 29(3): 186-198.
    [48]. Hinchee R E. Bioventing of petroleum hydrocarbons [A]. Norris, R. D. et al.(Eds.) Handbook of bioremediation[C]. Lewis Publisher. 1994.
    [49]. Yoon H, J H Kim, H M Liljestrand. Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction [J]. Contamin Hydro, 2002, 54: 1-18.
    [50]. Wilkins M D, L M Abriola, K D Pennell. An experimental investigation of rate-limited non aqueous phase liquid volatilization in unsaturated porous media: Steady state mass transfer [J] .Water Resour Res, 1995, 31: 2159-2172.
    [51]. Vander Ham A, Grouwers H J. Molding and experimental investigation of transient, non equilibrium mass transfer during steam stripping of a non aqueous phase liquid in unsaturated porous media [J]. Water Resouc Res, 1998, 34 (1): 47-54.
    [52]. ArmstrongJ E, E O Frind, R D McClellan. Nonequilibrium mass between the Vapor, aqueous, and solid phases in unsaturated soils during vapor extraction [J], Water Resour Res, 1994, 30: 355-368.
    [53]. Grathwohl P, J Farrell, M Reinhard. Desorption kinetics of volatile organic contaminants from aquifer materials. In: ArendtF (eds.), Contaminated Soil, 90 Kluwer Academic Publishing, Netherlands, 1990: 343-350.
    [54]. Croise J, J E Armstrong, V Kaleris. Numerical simulation of rate-limited vapor extraction of volatile organic compounds in wed sands. In: T A Staufer (eds), Transport and reactive processes in aquifers. Balkema, Roterdam, 1994: 569-575.
    [55]. Wehrle K, J B Rauns. Column experiments concerning rate limited vapor extraction of volatile organic compounds from wet sands. In: T A Staufer (eds), Transport and reactive processes in aquifers. Balkema, Roterdam, 1994: 549-554.
    [56]. Brusseau M L, R E Jessup, S C Rao. Nonequilibrium sorption of organic chemicals: elucidation of rate limiting processes [J]. Environ Sci Tech, 1991, 25: 134-143.
    [57]. Brusseau M L, P S C Rao. The influence of sorbate-organic mater interactions on sorption non equilibrium [J] .Chemosphere, 1989, 18: 1691-1706.
    [58]. Baehr A L, Hoag G E, Marley M C. Removing volatile contaminants from the unsaturated zone by inducing advective air-phase transport [J]. Contam Hydrol, 1989, 4: 1-26.
    [59]. Sleep B E, Sykes J F, Modeling the transport of volatile organics in variably saturated soils [J]. Water Resour Res, 1989, 25: 81-92.
    [60]. Johnson P C, W K Marian, D C James. Quantitative analysis for the hydrocarbon contaminated soil by in-situ soil venting [J]. Ground Water, 1990, 28: 413-429.
    [61]. Massmann J W. Applying ground water flow models in vapor extraction system design. ASCE [J]. Environ Eng, 1989, 115: 13-18.
    [62]. Welty C, C J Joss, A L Baehr. Use of a three-dimensional air-flow model coupled with an optimization algorithm to aid in the design of soil venting systems. In: Prevention, Detection, and Restoration. Proceedings of the petroleum hydrocarbons and organic chemicals in ground water, Houston, Westin Galleria. TX. 1991: 221-229.
    [63]. Baehr A L, M F Hult. Evaluation of unsaturated zone air permeability through pneumatic tests [J]. Water Resour Res, 1991, 27: 2605-2617.
    [64]. Shan C, R W Falta, I Javandel. Analytical solutions for steady state gas flow to a soil vapor extraction well [J]. Water Resour Res, 1992, 28: 1105-1120.
    [65]. Mohr D H, P H Merz. Application of a 2D air flow model to soil vapor extraction a bioventing case studies [J]. Ground Water, 1995, 33: 433-444.
    [66]. Falta R W, K Pruess, D A Chesnut. Modeling advective contaminant transport during soil vapor extraction [J]. Ground Water. 1993, 31: 1011-1020.
    [67]. Charles S. Sawyer, Madhavi Kamakoti. Optimal flow rates and well locations for soil vapor extraction design [J]. Journal of contaminant hydrology, 1998, 32: 63-76.
    [68]. Lian Zhao, Richard G. Zytner. Estimation of SVE closure time. Journal of hazardous Materials, 2008, 153: 575-581.
    [69].马海斌,夏新,李金惠,等.油污染土壤气体抽排去污影响因素分析及机理模型.环境保护, 2002,23 (10): 43-45.
    [70].黄国强.土壤气相抽体(SVE)中有机污染物的运移与数学模型研究[D].天津:天津大学, 2002: 99-100.
    [71].黄国强,李鑫钢,姜斌,等.竖井SVE修复有机污染土壤的数值模拟分析[J].化工学报, 2003, 54(8): 1134-1140.
    [72].卢佩章,戴朝政,张祥民.色谱理论基础[M].北京:科学出版社, 2001: 49-58.
    [73]. Rathfelder K, Yeh W, Mackay D. Mathematical simulation of soil vapor extraction systems: Model development and numerical examples [J]. Contam Hydrol, 1991, 8: 263-291.
    [74].傅若农.色谱分析概述[M],北京:化学工业出版社, 2005: 26-34.
    [75].黄国强,李鑫钢,徐世民.土壤气相抽提作用机制探讨和基本数学模型建立[J].土壤学报, 2004, 41(3): 394-400.
    [76].卢佩章,戴朝政,张祥民.色谱理论基础[M],北京:科学出版社, 2001: 61-89.
    [77]. Yoon H, J H Kim, H M Liljestrand. Effect of water content on transient nonequilibrium NAPL-gas mass transfer during soil vapor extraction [J]. Contamin Hydro, 2002, 54: 1-18.
    [78]. J F Campagnolo, A Akgerman. Modeling of soil vapor extraction (SVE) systems part II. Biodegration aspects of soil vapor extraction [J]. Waste management, 1995, 15(Nos 5/6): 391-397.
    [79]. Wison D J, A N Clarke, J H Clarke. Soil cleanup by in-situ aeration: I. Math. Model [J]. Sci Tech, 1988, 23: 991-1037.
    [80]. Clifford K H, et al. Mechanisms of Multi-component Evaporation during Soil Venting. Journal of Environmental Engineering, 1998, 124: 504-513.
    [81]. Frank U. Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction [J]. Hazard Mater, 1995, 40: 191-201.
    [82]. Poppendieck D G, et al. Predicting hydrocarbon removal from thermally enhanced soil vapor extraction systems, 2. Field Study. Journal of Hazardous Materials, 1999, 69: 95-105.
    [83]. Timothy J Kneafseya, James R Huntb. Non-aqueous phase liquid spreading during soil vapor extraction. Journal of contaminant hydrology, 2004, 68: 143-164.
    [84]. Davies J T, Rideal E K. Interfacial phenomena [M]. New York: Academic Press, 1963.
    [85]. Tschapek M, Wasowski C. Spreading of a surfactant in an unsaturated disperse material [J]. Colloids Surf Sci, 1982. 5: 65-73.
    [86]. Ahmad J, Hansen R S. A simple quantitative treatment of the spreading of monolayers on thin liquid films [J]. Colloid Interface Sci, 1972, 38 (3): 601-604.
    [87].张培林,张佐光,李敏,孙志杰.液体在单向织物面内毛细浸润特性实验研究.复合材料学报[J],2006, 23(4): 9-14.
    [88]. Labajos Broncano L, Gonzalez Martin M L, Bruque J M, etc. Influence of the meniscus at the bottom of the solid plate on imbibition experiments. Journal of Colloid and Inter-face Science, 2001, 234(1): 79-83.
    [89]. Labajos Broncano L, Gonzalez Martin M L, Bruque J M. On the evaluation of the surface free energy of porous and powdered solids from imbibition experiments: Equivalence between height-time and weight-time techniques. Journal of Colloid and Interface Science, 2003, 262(1): 171-178.
    [90].孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M],北京,科学出版社,2005:29-39.
    [91]. [美]Ira N Levine物理化学[M],北京:北京大学出版社,下册,1983:71-72.
    [92].李吕辉,张报安等.物理化学[M],北京,高等教育出版社,第二册,1984:172-196.
    [93]. LY/T 1213-1999,森林土壤含水量的测定.
    [94]. LY/T 1224-1999,森林土壤土粒密度的测定.
    [95].张蔚榛.地下水与土壤水动力学[M],武汉,中国水利水电出版社,1996:279-300.
    [96]. Baehr A L, M F Hult. Evaluation of unsaturated zone air permeability through pneumatic tests [J]. Water Resour. Res, 1991, 27: 2605-2617.
    [97].何炜.汽油和柴油污染土壤通风修复实验研究[D],中国地质大学(北京),2007,20-21.
    [98].崔卫华.汽油污染土壤的SVE修复方法研究D],中国地质大学(北京),2007,23-2.
    [99].国家质量技术监督局. GB17930-1999,车用无铅汽油. 1999-12-28.
    [100].崔卫华.汽油污染土壤的SVE修复方法研究D],中国地质大学(北京),2007,17-17.
    [101]. GB/T 16913.8-1997粉尘物性实验方法,第8部分:浸润性的测定浸透速度法.
    [102].黄昌勇.土壤学[M],北京,中国农业出版社, 2000:119-122.
    [103].华孟,王坚.土壤物理学[M],北京:北京农业大学出版社, 1993:32-33.
    [104].何炜.汽油和柴油污染土壤通风修复实验研究[D],中国地质大学(北京),2007,104-105.
    [105]. Johnson P C, W K Marian, D C James. Quantitative analysis for the hydrocarbon contaminates oil by in-situ soil venting. Ground Water.1990, 28:413-429.
    [106]. Johnson P C, A L Baehr, R A Brown. Innovative site remediation technology. In: Vacuum Vapor Extraction Vol.8. American Academy of Environmental Engineers, Annapolis,1994.
    [107]. Hayden N J, T C Voice, M D Annble. Change in gasoline constituent mass transfer during soil venting. J. Environ. Eng., 1995, 120:1598-1614.
    [108]. [美]Ira N. Levine物理化学[M],北京,北京大学出版社,下册,1983:60-63.
    [109].杨斌武,常青,何超.毛细上升法研究水处理滤料的表面热力学特性.化工学报[J],2007,58(2):269-275.
    [110]. [美]Ira N Levine物理化学[M],北京:北京大学出版社,下册,1983:72-77.
    [111].杨欣.土壤孔隙形态结构对气体扩散影响的计算机模[D],中国农业大学,2006,8-18.
    [112].杨乐巍.土壤气相抽提(SVE)现场实验研究[D],天津,2006.
    [113]. J. A.迪安.兰氏化学手册[M].北京:科学出版社, 2005: 39-70.
    [114].李吕辉,张报安等.物理化学[M],北京,高等教育出版社,第二册,1984:218-218.
    [115].崔卫华.汽油污染土壤的SVE修复方法研究D],中国地质大学(北京),2007,34-34.
    [116]. USEPA, EPA 510-B-95-007. In situ soil vapor extraction. Office of Solid Waste and Emergency Response, Washington, DC, US Environmental Protection Agency, 1996b.
    [117].崔卫华.汽油污染土壤的SVE修复方法研究D],中国地质大学(北京),2007,43-44.
    [118]. John.B Gustafson, Joan Griffith Tell. Selection of Representative TPH Fractions Based on Fate and Transport Considerations United States: Amherst Scientific Publishers.1997. 18-75.
    [119].毛利华.石油污染土壤生物通风堆肥修复研究[D].北京:中国地质大学(北京),2006.
    [120]. Mrley M C. Quantitative and qualitative analysis of gasoline fractions stripped by air for the unsaturated soil zone.(M.S .thesis).University of Connecticut,1985.
    [121]. Johnson P C, W K Marian, D C James. Quantitative analysis for the hydrocarbon contaminated soil by in-situ soil venting. Ground Qater. 1990, 28: 413–429.
    [122]. Martin Ostoja Starzewski. Material spatial randomness: From statistical to representative volume element [J]. Probabilistic engineering mechanics, 2006, 21: 112-132.
    [123].黄国强,土壤中气相抽提(SVE)中有机污染物的运移与数学模拟研究[D],天津:天津大学,2003.
    [124]. Christine Switzer, David S. Kosson. Evaluation of air permeability in layered unsaturated materials [J], Journal of Contaminant Hydrology, 2007, 90:125-145.
    [125]. Bohn H L. Vapor extraction rates for decontaminating soils [J]. Pollution Engineering, 1997, (29): 52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700