煤油及其裂解产物自点火现象的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文目的是研究煤油气溶胶及其裂解产物的点火延时和自点火现象。在新研制的两相激波管中,利用反射激波后气流,以瞬态压力和高分辨率发射或荧光测量为主,测量了点火延时并研究了自点火现象。主要内容如下:
     (1)第一章简要介绍了本文研究背景和相关的国内外研究进展、主要内容等。
     (2)第二章主要介绍了两相激波管研制和实验状态调试。包括激波管部件设计和安装、煤油雾化方法、煤油粒径Mie散射测量,给出了缝合接触面运行状态的计算和调试结果,并确认了实验时间。
     (3)基于压力和OH基自发光信号测量结果,第三章给出了煤油及其裂解产物点火延时测量结果。
     ●考察了温度T、压力p和当量比φ对点火延时τ_(ig)的影响。对于T=1163K~1653K、p=0.1、0.3和0.6MPa、φ=1煤油/空气溶胶,τ_(ig)约为0.10ms~6.36ms。当T相同,τ_(ig)随p升高而减小,拟合得到τ_(ig)=4.75×10~(-7)p~(-1.16)exp(17360/T),其中,τ_(ig)、p、T的单位分别为ms、MPa、K。对p=0.1MPa、T=1348K~1940K、φ=0.5、1和2的煤油裂解产物/空气混合物,τ_(ig)约为0.07ms~5.04ms。当丁相同,τ_(ig)随φ增大而减小。拟合得到τ_(ig)=1.45×10~(-7)φ~(1.85)exp(24950/T)。对不同压力和当量比的点火延时数据进行归一化处理,ln(τ_(ig))和温度T均满足线性分布,这为比较不同条件的点火延时数据提供了途径。
     ●对不同p的煤油/空气,p越大,发生爆燃对应的临界温度越低。对不同φ的煤油裂解产物/空气,φ越大,发生爆燃对应的临界温度越高。比较煤油及其裂解产物点火延时数据后发现,爆燃对应的点火延时均小于1ms。
     (4)针对不同压力、当量比的煤油及其裂解产物,第四章给出了自点火瞬态流场自发光成像、OH-PLIF、CH/OH基发射光谱测量结果,表征了火焰产生、传播特征和火焰内部结构。
     ●当p=0.1MPa、0.3MPa、0.6MPa和φ=1,测量了煤油/空气溶胶自点火燃烧流场自发光成像,给出不同温度的自点火流场火焰结构和特征,显示了不同的高、低温点火机理。对于低温点火,在点火起始阶段,诱导区出现多个随机分布的火核,火核扩展、融合形成火焰面,并向反射端面传播。对于高温点火,在点火起始阶段,靠近反射端面形成了火核。当点火温度T>1600K时,点火直接自从反射端面开始。
     ●对相同φ、不同T的煤油裂解产物/空气,其自点火图像与煤油类似。当φ=0.5,火焰区图像表明:当T=1536K~1568K,仍为弱点火模式。当T=1700K,点火起始阶段为爆燃,火焰在传播过程中追赶反射激波,并在观察窗内赶上反射激波形成爆轰。当T=1850K,点火起始阶段在反射端面就形成了爆轰,火焰呈狭窄的带状。
     ●针对激光器(YAG+DYE)预热后再起动,定性地测量了首次脉冲激光能量,确定了达到激光能量稳定的最大间隔时间,解决了OH-PLIF系统和激波管运行的时间同步控制问题,给出了煤油裂解产物自点火流场OH-PLIF测量结果,确认了湍流火焰内部的三维结构。
     ●测量了自点火流场CH基(CH_4/空气、波长431nm)、OH基(H_2/O_2、波长308nm)自发辐射的瞬态光谱特征谱线,与LIFBASE计算结果进行了比较,给出了拟合的辐射温度。
     (5)第五章给出了全文总结和下一步研究工作建议。
     本文主要特色和创新为:
     (1)提出“管外预混”和“循环进气”思想,研制了两相激波管、配套的雾化燃料形成和进气系统,保证了煤油气溶胶在低压段进气和静置的均匀性,为低饱和蒸汽压的液态碳氢燃料两相点火提供了新的途径。激波管所模拟低温点火的压力、温度等均和超燃发动机燃烧室参数接近。
     (2)测量了煤油/空气溶胶、煤油裂解产物/空气混合物的点火延时,为超燃发动机燃烧室设计提供了基础性的数据。
     (3)结合点火延时和点火燃烧流场自发光图像,揭示了煤油气溶胶及其裂解产物高、低温的不同点火机理。
     (4)将PLIF方法用于自点火燃烧流场诊断,较好地解决了激波管运行、PLIF系统的时间同步控制难题,获得了火焰内部时间、空间高分辨率的自由基荧光图像,为探索点火阶段的火焰结构和湍流燃烧机理提供了新方法,也为点火燃烧流场在线诊断应用先进光谱成像方法提供了基础。
     (5)本文得到的点火延时数据和自点火流场光谱图像,对于化学动力学机理验证和煤油超燃发动机(scramjet)和脉冲爆轰发动机(PDE)燃烧室设计有意义。
In this thesis,auto-ignition phenomena of kerosene aerosol and cracked kerosene were experimentally studied to obtain ignition delay and high resolution images of radical emission and fluorescence behind a reflected shock wave.Pressure and temperature can be changed in a wide range by changing Mach number of an incident shock wave.The works are summarized as follows:
     (1) In chapter one,related background and progress,as well as some topics in this thesis are briefly introduced for ignition studies.
     (2) In chapter two,an aerosol shock tube was developed for ignition studies, including its design and assembly,fuel atomization,aerosol inlet,SMD(Sauter mean diameter) measurement by Mie scattering.Finally,long test time was confirmed in conditions of tailored contact surface at low temperature.
     (3) In chapter three,ignition delay timeτ_(ig) was obtained at different equivalence ratioφ,pressure p and temperature T based on detected the time histories of pressure and OH-emission.τ_(ig) is ranged from 0.10ms to 6.36ms for stoichoiometric kerosene aerosol when pressure ranged from 0.1MPa to 0.6MPa and temperature from 1163K to 1653K.Andτ_(ig) decreases as p increases under the same temperature,τ_(ig) is fitted asτ_(ig)=4.75×10~(-7)p~(-1.16)exp(17360/T).Whereτ_(ig), p and T are in units of ms,MPa and K.τ_(ig) is ranged from 0.07ms to 5.04ms for atmospheric cracked kerosene,when temperature is ranged from 1348K to 1940K andφfrom 0.5 to 2.Andτ_(ig) increases asφincreases under the same temperature.Asφincreases,τ_(ig) deceases but ignition temperature increases,τ_(ig) is fitted asτ_(ig)=1.45×10~(-7)φ~(1.85)exp(24950/T).Regression on logarithm In(τ_(ig)) shows good linearity to T at different pressure and equivalence ratio.This provides a way to analyze the ignition delay at different pressure and equivalence ratio.According to the pressure time history,the critical temperature of deflagration increases as p decreases orφincreases.Andτ_(ig) is less than 1ms for the cases in which deflagration occurs.
     (4) In chapter four,images of emission and OH-PLIF were got at different pressure and equivalence ratio for kerosene aerosol and its cracked products. Instantaneous emission spectrum of CH and OH were also presented.These results show detailed flame structure and its propagation with time marching. When p is 0.1MPa,0.3MPa and 0.6MPa respectively,emission images were obtained for stochiometric kerosene aerosol at different temperature.At initial stage of ignition,the images illustrate distinguished mechanism at high and low temperature.In the case of low temperature,several flame kernels locate randomly in induction zone.Then,kernels recombine and merge into a large zone and propagate outwards,especially to reflected end of shock tube.This means that auto-ignition doesn't take place in vicinity of the reflected end.In the case of high temperature,kernels move to the end as temperature increases. Finally,kernels locate at the end whenever temperature is greater than 1600K. Furthermore,approximate images and similar mechanism were observed for cracked kerosene at different temperature whileφis kept unchanged.Weak ignition mechanism is still kept when temperature is ranged from 1536K to 1568K.If temperature is higher than 1700K,flame can overtake shock front and deflagration appears in test section.When temperature up to 1850K,detonation occurs accompanying with incoming flows and flame completely combines with shock front at the end.
     In this chapter,the energy of first laser pulse was qualitatively measured to check whether laser can reach its steady state after re-firing.Usually,re-firing is necessary for laser external triggering in a shock tube.The maximum time interval was determined to keep laser steady state.After solving difficulties of synchronization,OH-PLIF can be successfully obtained and detailed flame structure can be seen in cracked kerosene air mixture.
     Instantaneous emission spectrum of CH(CH_4/air mixture,wavelength 431nm) and OH(H_2/O_2 mixture,wavelength 308nm) were detected and compared to those calculated by LIFBASE software.The radiation temperature was also fitted by LIFBASE.
     (5) In chapter five,some conclusion and proposals for future studies were presented in this thesis.
     Some fresh ideas and methodology are listed as follows:
     (1) To suggest kerosene atomized outside shock tube and aerosol filled into shock tube by a special inlet device.By this way,homogeneous aerosol can be obtained in a shock tube.This provides a new way to study ignition phenomena of hydrocarbon fuels with low vapour pressure.In this thesis,almost the same pressure,temperature and fuel aerosol are provided which correspond to those in a scramjet combustor.
     (2) Ignition delay time of kerosene and its cracked fuels at different conditions is measured and collected which is key important for design of engine combustor.
     (3) Emission imaging of combustion field shows that ignition mechanism at low temperature is quite distinguished from that at high temperature for both kerosene and its cracked products.
     (4) OH-PLIF images were obtained for combustion field of cracked kerosene while synchronization is solved among shock tube,laser and ICCD camera.The images of emission and fluorescence demonstrate flame structure at high time and space resolution.This provides more information to understand turbulence flame.PLIF is successfully extended to diagnose ignition phenomena in a shock tube.
     (5) The ignition delay and spectroscopy images are key important to verify fuel chemistry kinetics.Also,these are beneficial to design the combuster of scramjet and pulsed detonation engines.
引文
1.Dagaut P.On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel.Phys.Chem.Chem.Phys.,2002,4(11):2079-2094
    2.Minetti R,Carlier M,Ribaucour M,et al.A Rapid Compression Machine Investigation of Oxidation and Auto-Ignition of n-Heptane:Measurements and Modeling.Combustion and Flame,1995,102(3):298-309
    3.Healya D,Currana H J,Simmiea J M,et al.Methane/ethane/propane mixture oxidation at high pressures and at high,intermediate and low temperatures.Combustion and Flame(in Press)
    4.Gallaghera S M,Currana H J,Metcalfea W K,et al.A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime.Combustion and Flame,2008,153(1-2):316-333
    5.Belford R L,Strehlow R A.Shock tube technique in chemical kinetics.Annu.Rev.Phys.Chem.,1969,20:247-272
    6.Tsang W,Lifshitz A.Shock tube technique in chemical kinetics.Annu.Rev.Phys.Chem.,1990,41:559-599
    7.Tranter R S,Brezinsky K,Fulle D.Design of a high-pressure single pulse shock tube for chemical kinetic investigations.Review of Scientific Instrumentation,2001,72(7):3046-3054
    8.张新宇.高超声速吸气式发动机的研究进展与发展趋势.力学进展,2001,31(3):478-480
    9.贺武生.超燃冲压发动机研究综述.火箭推进,2005,31(1):29-32
    10.Colket M B and Spadaccini L J.Scramjet Fuels Autoignition Study.Journal Of Propulsion and Power,2001,17(2):315-323
    11.Tranter R S,Giri B R,Kiefer J H.Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies.Review of Scientific Instrumentation.2007,78(3),034101
    12.Bakali A E,Dagaut P,Pillier L,et al.Experimental and modeling study of the oxidation of natural gas in a premixed flame,shock tube and jet-stirred reactor.Combustion and Flame,2004,137(1-2):109-128
    13.Tranter R S,Sivaramakrishnan R,Brezinsky K,et all.High pressure,high temperature shock tube studies of ethane pyrolysis and oxidation.Phys.Chem.Chem.Phys.,2002,4(11):2001-2010
    14.Tranter R S,Ramamoorthy H,Raman A,et al.High-pressure single-pulse shock tube investigation of rich and stoichiometric ethane oxidation.Proceedings of the Combustion Institute,2002,29(1):1267-1275
    15.Tranter R S,Sivaramakrishnan R,Srinivasan N,et al.Calibration of reaction temperatures in a very high pressure shock tube using chemical thermometers.International Journal of Chemical Kinetics,2001,33(11):722-731
    16.Davidson D F,Hayllet D R,Hanson R K.Development of an aerosol shock tube for kinetic studies of Iow-vapor-pressure fuels,Combustion and Flame,2008 (in press)
    17.Tucker Carrington and Norman Davidson.Shock waves in chemical kinetics:the rate of dissociation of N_2O_4.J.Phys.Chem.,1953,57:418-421
    18.Glick H S,Klein J J and Squire W.Single-Pulse Shock Tube Studies of the Kinetics of the Reaction N2+O2=2NO between 2000-3000° K.J.Chem.Phys.,1957,27(4):850-857
    19.Skinner G B,Ruehrwein R A.Shock tube studies on the pyrolysis and oxidation of methane.J.Phys.Chem.,1959,63(10):1736-1742
    20.Skinner G B,Sokoloski E M.Shock tube experiments on the pyrolysis of ethylene.J.Phys.Chem.,1960,64(8):1028-1031
    21.Lifshitz A,Scheller K,Burcat A,et al.Shock-tube investigation of ignition in methane-oxygen-argon mixtures.Combustion and Flame,1971,16(3):311-321
    22.Burcat A,Lifshitz A,Schellerb K,et al.Shock-tube investigation of ignition in propane-oxygen-argon mixtures.Symposium (International) on Combustion,1971,13(1):745-755
    23.Burcat A,Scheller K,Lifshitz A.Shock-tube investigation of comparative ignition delay times for C1-C5 alkanes,Combustion and Flame,1971,16(1):29-33
    24.Grillo A and Slack M W.Shock tube study of ignition delay times in methane/oxygen/nitrogen/argon mixtures.Combustion and Flame,1976,27(3):377-381
    25.Ciezki H K and Adomeit G.Shock-tube investigation of self-ignition of n-heptane-air mixtures under engine relevant conditions.Combustion and Flame,1993,93(4):421-433
    26.Hidaka Y,Sato K,Henmi Y,et al.Shock-tube and modeling study of methane pyrolysis and oxidation.Combustion and Flame,1999,118(33):340-358
    27.Kim K and Shin K S.Shock tube and modelling study of the ignition of propane.Bull.Korean Chem.Soc,2001,22 (3):303-307
    28.Davidson D F,Herbon J T,Horning D C,et al.OH Concentration Time Histories in n-Alkane Oxidation.International Journal of Chemical Kinetics,2001,33(12):775-783
    29.Davidson D F,Oehlschlaeger M A,Herbon J T,et al.Shock Tube Measurements of Iso-Octane Ignition Times and OH Concentration Time Histories.Proceedings of the Combustion Institute,2002,29(1):1295-1301
    30.Spadaccini L J and Colket M B.Ignition delay characteristics of methane fuels.Progress in Energy and Combustion Science,1994,20(5):431-460
    31.Healy D,Curran H J,Simmie J M,et al.Methane/ethane/propane mixture oxidation at high pressures and at high,intermediate and low temperatures.Combustion and Flame,2008(in Press)
    32.Healy D,Curran H J,Dooley S,et al.Methane/propane mixture oxidation at high pressures and at high,intermediate and low temperatures.Combustion and Flame,2008(in Press)
    33.Puri P,Ma F,Choi JY,et al.Ignition characteristics of cracked JP-7 fuel.Combustion and Flame,2005,142(4):454-457
    34.Petersen E L,Davidson D F and Hanson R K.Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4/02 Mixtures at High Pressures and Intermediate Temperatures.Combustion and Flame,1999,117(l-2):272-290
    35.Petersen E L,Davidson D F and Hanson R K.Ignition delay times of ram accelerator CH4/02/diluent mixtures.Journal of Propulsion and Power,1999,15(11):82-91
    36.Woiki D,Votsmeier M,Davidson D F,et al.CH radical concentration measurements in fuel-rich CH4/02/Ar and CH4/02/NO/Ar mixtures behind shock waves.Combustion and Flame,1998,113(4):624-626
    37.Davidson D F,Horning D C,Herbon J T,et al.Shock tube measurements of JP-10 ignition.Proceedings of the Combustion Institute,2000,28(2):1687-1692
    38.Petersen E L,Rohrig M,Davidson D F,et al.High pressure methane oxidation behind reflected shock waves.Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute,1996,799-806
    39.Horning D C,Davidson D F and Hanson R K.Study of the high-temperature autoignition of n-Alkane/02/Ar mixtures.Journal of Propulsion and Power,2002,18(2):363-371
    40.Oehlschlaeger M A,Davidson D F,Herbon J T,et al.Shock tube measurements of branched alkane ignition times and OH concentration time histories.International Journal of Chemical Kinetics,2004,36(2):67-78
    41.Davidson D F,Gauthier B M,Hanson R K.Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures.Proceedings of the Combustion Institute,2005,30(1):1175-1182
    42.Vasudevan V,Davidson D F,Hanson R K.Shock tube measurements of toluene ignition times and OH concentration time histories.Proceedings of the Combustion Institute,2005,30(1):1155-1163
    43.Gauthier B M,Davidson D F,Hanson R K.Shock tube determination of ignition delay times in full-blend and surrogate fuel mixture.Combustion and Flame,2004,139(4),300-311
    44.Vasu S S,Davidson D F,Hanson R K.Jet fuel ignition delay times:Shock tube experiments over wide conditions and surrogate model predictions.Combustion and Flame,2008,152(1-2):125-143
    45.勾华杰,王苏,范秉诚.激波管中测量JP-10点火延时的吸附问题研究.实验流体力学,2006,20(4):69-72
    46.王苏,崔季平,范秉诚,等.促进剂对高碳数碳氢燃料点火特性的影响.实验流体力学,2007,21(2):25-28
    47.王苏,范秉诚,何宇中,等.硅烷对JP-10和煤油点火特性影响的激波管研究.力学学报,2007,39(4):460-465
    48.Wang S,Gou H J,Fan B C,et al.Shock tube study of jp-10 ignition delay time.Chinese Journal of Chemical Physics,2007,20(1),:48-52.
    49.Vermeer D J,Meyer J W and Oppenheim A K.Auto-ignition of hydrocarbons behind reflected shock waves.Combustion and Flame,1972,18(3):327-336
    50.Pfahl U,Fieweger K and Adomeit G.Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions.Twenty-Sixth symposium(International) on combustion/The Combustion Institute,1996,781-789
    51.Fieweger K,Blumenthal R and Adomeit G.Self-ignition of S.I.engine model fuel:a shock tube investigation at high pressure.Combustion and Flame,1997,109(4):599-619
    52.Blumenthal R,Fieweger K,Komp K H,et al.Gas dynamic features of self ignition of non diluted fuel/air mixtures at high pressure.Combustion Science and Technology,1997,123(1):1-30
    53.Herzler J,Jerig L,and Roth P.Shock-tube study of the ignition of propane at intermediate temperatures and highpressures.Combustion Science and Technology,2004,176(10):1627-1637
    54.Herzler J,Jerig L,and Roth P.Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures.Proceedings of the Combustion Institute,2005,30(1):1147-1153
    55.Herzler J,Fikri M,Hitzbleck K,et al.Shock-tube study of the autoignition of n-heptane/toluene/air mixtures at intermediate temperatures and high pressures.Combustion and Flame,2007,149(1-2):25-31
    56.陈强.激波管流动理论和实验技术.中国科学技术大学讲义,1976
    57.Tsuboi T,Hozumi T,Hayata K,Ishii K.Study of diesel spray combustion in air containing burnt gas using a shock tube.Combustion Science and Technology,2005,177(3):513-537
    58.Cadman P.Shock tube combustion of liquid hydrocarbon sprays of toluene.Phys.Chem.Chem.Phys,2001,3(19):4301-4309
    59.Fikri M,Herzler J,Starke R et al.Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures.Combustion and Flame,2008,152(1-2):276-281
    60.李萍,胡栋,袁长迎,等.环氧丙炕燃烧转爆轰过程中的瞬态发射光谱.光谱学和光谱分析,2004,24(7):784-786
    61.肖海波,李萍,袁长迎,等.环氧丙烷爆燃转爆轰过程中产物C_2的发射光谱.光学学报,2005,25(2):261-264
    62.李萍,胡栋,袁长迎,等.瞬态光谱法测量环氧丙烷DDT过程中其主导作用的基团.光谱学和光谱分析,2006,26(9):1569-1572
    63.Philippe Dagaut,Michel Cathonnet.The ignition,oxidation,and combustion of kerosene:A review of experimental and kinetic modeling.Progress in Energy and Combustion Science,2006,32:48-92
    64.栾和林,姚文,吴萌.煤油的化学组成与稀释性能之间的关系.湿法冶金,2002,21(3):131-135
    65.关亚风,赵景红,刘文民,等.油品族组成的详细分析和燃油中芳烃的分析.色谱,2004,22(5):509-514
    66.范学军,俞刚.大庆RP23航空煤油热物性分析.推进技术,2006,27(2):117-192
    67.Fan X J,Yu G,Li J G,et al.Effects of entry conditions on cracked kerosene-fueled supersonic combustor performance.Combustion Science and Technology,2007,179(10):2199-2217
    68.Fan X J,Yu G,Li J G,et al.Combustion and ignition of thermally cracked kerosene in supersonic model combustors.Journal of Propulsion and Power,2007,23(2):317-324
    69.Hanson R K,Seitzman J M,Paul P H.Planar laser-fluorescence imaging of combustion gases.Applied Physics B,1990,50(6):441-454
    70.Frank J H,Kalt P A M,Bilger R W.Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV.Combustion and Flame,1999,116(1-2):220-232
    71.Donbar J M,Driscoll J F,Carter C D.Reaction zone structure in turbulent non-premixed jet flames from CH-OH PLIF images.Combustion and Flame,2000,122(1-2):1-19
    72.Jeffrey M D,Mark R G,Thomas A J,et al.OH planar laser-induced fluorescence imaging in a hydrocarbon-fueled scramjet combustion.Proceedings of the combustion Institute,2000,28:679-687
    73.Kamel M R,Morris C I,Stouklov I G,et al.PLIF imaging of hypersonic reactive flow around blunt bodies.Twenty-sixth symposium on combustion,The combustion institute,1996:2909-2915
    74.Hartlieb A T,Atakan B,Kohse-Hoinghans K.Temperature measurement in fuel rich non-sooting low pressure hydrocarbon flames.Applied Physics B,2000,70(3):435-445
    75.王昌建,徐胜利,费立森.气相爆轰反应区结构的平面激光诱导荧光测量.力学学报,2007,39(5):661-667
    76.杨仕润,赵建荣,俞刚,等.超音速燃烧室氢氧基平面激光诱导荧光测量.激光技术,2004,28(1):20-22
    77.赵建荣,杨仕润,俞刚,等.火焰结构的平面激光诱导荧光技术观测.分析测试学报,2003,22(2):16-18
    78.俞刚,杨仕润,赵建荣.CARS在超音速燃烧研究中的应用.激光技术,2000,24(4):207-212
    79.关小伟,刘晶儒.利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布.强激光与粒子束,2003,15(7):629-631
    80.关小伟,刘晶儒,黄梅生,等.PLIF法定量测量甲烷-空气火焰二维温度场分布.强激光与粒子束,2005,17(2):173-176
    81.李麦亮,周进,耿辉,等.平面激光诱导荧光技术在超声速燃烧中的应用.推进技术,2004,25(4):381-384
    82.廖钦,徐胜利.两相激波管设计和气体燃料点火延时测量研究.北戴河,第七届全国实验流体力学会议论文集,2007,438-439
    83.廖钦,徐胜利.用于雾化煤油点火研究的两相激波管设计和调试.长沙,第十三届全国激波与激波管学术会议论文集,2008,374-379
    84.Davidson D F,Hanson R K.Interpreting shock tube ignition data.International Journal of Chemical Kinetics,2004,36(9):510-523
    85.Bull D C,Edwards D H.An investigation of the reflected shock interaction process in a shock tube.AIAA Journal,1968,6(8):1549-1555
    86.Petersen E L,Hanson R K.Nonideal effects behind reflected shock waves in a high-pressure shock tube.Shock Waves,2001,10(6):405-420
    87.Petersen E L,Hanson R K.Measurement of reflected-shock bifurcation over a wide range of gas composition and pressure.Shock Waves,2006,15(5):333-340
    88.Petersen E L.A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition.PhD thesis,Stanford University,1998
    89.W(u|¨)rmel J,Silke E J,Curran H J,et al.The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine.Combustion and Flame,2007,151(1-2):289-302
    90.Adamson T C and Messiter A F.Analysis of two dimensional interactions between shock waves and boundary layers.Ann.Rev.Fluid Mech,1980,12:103-38
    91.Williams F A.Combustion Theory:The fundamental theory of chemically reating flow systems,the Benjamin/Cummings Publishing Company,1985
    92.KUO K K.Principles of Combustion.John Wiley & Sons Inc.,1986
    93.周光炯等.流体力学:下册.第二版.高等教育出版社,2000
    94.陈听宽.两相流与传热研究.西安交通大学出版社,2004
    95.王昌建.气相爆轰波在复杂管道中传播现象的研究.博士论文,中国科学技术大学,2004
    96.Pintgen F,Eckett C A,Austin J M,et al.Direct observations of reaction zone structure in propagating detonations,Combustion and Flame,2003,133(3):211-229
    97.左克罗,霍夫曼.气体动力学.王汝涌等译.国防工业出版社,1984
    98.费立森.气相爆轰波在复杂管道中传播现象的研究.博士论文,中国科学技术大学,2007
    99.左金东,张伟伟,徐胜利.重活塞驱动气炮的弹丸和活塞速度测量.第七届全国实验流体力学学术会议论文集,北戴河,2007,143-147
    100.张伟伟.重活塞驱动立式二级气炮研制和初步调试.硕士论文,中国科学技术大学,2008
    101.Kahandawala M S P,Corera S A P,Williams S,et al.Investigation of kinetics of iso-octane ignition under scramjet conditions.International Journal of Chemical Kinetics,2006,38(3):194-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700