液体参量对激光空泡产生和溃灭的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论、数值模拟和实验方面研究了激光空泡膨胀和收缩全过程及空泡溃灭诱导的射流对靶材的损伤机制,系统讨论了液体粘性、表面张力、温度、含气量以及材料弹性模量变化对空泡膨胀、收缩及溃灭过程的影响。
     首先从空泡动力学基本理论出发,得到了空泡各特征参量之间的关系,进而对空泡动力学模型进行了修正;采用有限差分法数值模拟不同参量液体中空泡的脉动行为,研究了液体粘性、表面张力、温度、含气量以及可压缩性等参量变化对空泡泡半径、泡壁运动速度、加速度以及溃灭周期等特征参量的影响。数值计算结果表明液体参量是影响空泡脉动的重要因素,它们将对空泡膨胀和收缩过程产生显著的影响。
     其次,采用基于光纤耦合的光束偏转测试系统进行了实验研究,探测了高功率激光烧蚀水下靶材所产生的激光等离子体冲击波、空泡等物理现象及空泡溃灭后期产生的射流对固壁面的冲击作用。深入分析了液体粘度、表面张力、温度等参量与空泡泡半径、泡壁运动速度、溃灭周期和靶材所受射流冲击力之间的定量关系,并通过数值计算进行了验证,给出了相应的理论解释。此外,考虑到固壁面对空泡溃灭周期的延长作用,对Rayleigh公式进行了修正,并根据修正后的Rayleigh公式建立了液体参量与射流速度、射流冲击压强大小之间的定量关系。实验研究结果表明液体粘性将减缓空泡膨胀和收缩过程,减小靶材所受射流冲击力,因而对空化起抑制作用;而表面张力延缓空泡膨胀加速空泡溃灭,增大靶材所受射流冲击力,促进了空化的作用效果。此外,还研究了液体温度变化对空泡动力学行为的影响。
     通过针对不同弹性模量的固壁面附近空泡脉动过程的研究,得到了壁面弹性模量变化对空泡的最大泡半径、溃灭周期及泡能等特征参量的影响,结果表明壁面弹性模量的增大,将导致空泡最大泡半径、泡能和脉动周期等参量减小。
     本文的研究结果不仅有助于加深对空化、空蚀现象的认识,从而减轻和消除空化对船舶、水利、水电设施和机械造成的危害,同时也为提高激光加工、激光医疗的效率提供理论和实验依据。
In this paper, the laser-induced bubble dynamics and bubble-collapse-induced liquid-jet are systemically investigated by numerical, theoretic and experimental analyses. Meanwhile, the effect of liquid viscosity, surface tension, temperature, gas content and the elastic modulus on bubble expansion and collapse are also performed.
     Firstly, based on the cavitation bubble dynamic theory, the relationships between each characteristic parameter are deduced and then an amended cavitation bubble dynamic model is provided. Employing the finite difference calculus, the behavior of the cavitation bubbles in liquids of different viscosity, surface tension, temperature, gas content and condensability are obtained. Meanwhile, the effects of liquid parameters on bubble radius, the velocity and the acceleration of the bubble wall, and the collapse time of the bubble are also analyzed. The numerical results show that liquid parameters have important effects on the expansion and collapse process of single bubble.
     Secondly, by the optical detection technique based on fiber-coupling beam deflection principle, the laser-induced plasma shock wave, laser-generated bubble and bubble-collapse-induced plasma shock wave are inveatigated by experiment during the high-power laser interacts with an underwater target. Then the dynamic behavior of a bubble in different liquids is systematically investigated. Quantitative relationships between liquid parameters, such as liquid viscosity, surface tension, temperature, and bubble characteristic parameters are also obatained. Good agreement has been established between numerical and experimental results. Moreover, from the modified Rayleigh theory, the liquid-jet velocity and corresponding liquid-jet impact pressure in different liquids can also be deduced. It is shown that the viscous force decreases bubble growth and collapse process, make it expand or collapse less violently. For a high viscosity, few liquid jets can impact the boundary and result in lower cavitation erosion. On the other hand, the surface-tension forces stave bubble growth progress and speed up bubble collapse process, so higher surface-tension increases liquid-jet impact force and produced higher erosive power. In addition, as the temperature of a liquid is one of the basic factors determining liquid viscosity, surface tension and the vapor pressure inside the bubble, it is an important factor determining cavitation and cavitation erosion.
     Based on the systematical investigation of cavitation bubble oscillation near different boundaries, the influence of the elastic modulus on the behavior of bubbles is obtained. Increasing elastic modulus leads to a significant decrease of bubble radius, collapse time and the bubble energy.
     These results are valuable in the fields of cavitation erosion, collateral damage in laser surgery, and cavitation-mediated enhancement of pulsed laser ablation of tissue; what is better, these results provide the theoretical and experimental reference to rational use of laser-induced plasma shock wave and cavitation, laser processing, laser lithotripsy, laser ophthalmology, and corresponding hydromechanics, etc.
引文
1.Nigmatulin R I,Taleyarkhan R P,Lahey R T.Evidence for nuclear emission during acoustic cavitation revisited.Proc.Instn Mech.Engrs,Part A:J.Power and Energy.2004,218(5):345-364
    2.Gregor(?)i(?) P,Petkov(?)ek R,Mo(?)ina J,Mo(?)nik G.Measurements of cavitation bubble dynamics based on a beam-deflection probe.Appl.Phys.A 2008,93:901-905
    3.Vogel A,Busch S,Parlitz U.Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water.J.Acoust.Soc.Am.1996,100(1):148-165
    4.Shima A.Studies on bubble dynamics.Shock Waves 1997,7:33-42
    5.Tomita Y,Shima A.Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse.J.Fluid.Mech.1986,169:535-564
    6.Dijkink R,Ohl C D.Measurement of cavitation induced wall shear stress.Appl.Phys.Lett.2008,93:254107
    7.钱祖文.非线性声学.第1版.北京:科学出版社,1992
    8.Gregor(?)i(?) P,Petkov(?)ek R,Mo(?)ina J.Investigation of a cavitation bubble between a rigid boundary and a free surface.J.Appl.Phys.2007,102:094904
    9.Petkov(?)ek R,Gregor(?)i(?) P.A laser probe measurement of cavitation bubble dynamics improved by shock wave detection and compared to shadow photography.J.Appl.Phys.2007,102:044909.
    10.Rayleigh L.On the pressure developed in liquid during the collapse of a spherical cavity.Philos.Mag.1917,34:94-98
    11.Plesset M S.The dynamics of cavitation bubbles.J.Appl.Mech.,1949,16:227-290
    12.Herring C.Theory of the pulsation of the gas bubble produced by an underwater explosion.Columbia University.NDRC,C-4-sr10-010,1941
    13.Leon Trilling.The collapse and rebound of a gas bubble.J.Appl.Phys.1952,23:14-17
    14.Gilmore F R.The growth and collapse of a spherical bubble in a viscous compression liquid.Hydro Lab Calif Inet Tech Report.1952:26-41
    15.Mellen R H.An experimental study of the collapse of a spherical cavity in water.USL Res.Rep.279,U.S.Naval Underwater Sound Lab.New London.1956
    16.Flynn H G.Collapse of a transient cavity in a compressible liquid partl,an approximate solution.Harvard Acoustic Res.Lab.TM-38.1957
    17.Benjamin T B.Pressure waves from collapsing cavities.Proc.Second Syrup.On Naval Hydrodyn,Washington D.C.ONR/ACR-38.1958
    18.Noltingk B K,Neppiras E A.Cavitation produced by ultrasonics.Proc.Phys.Soc.London.1950,63 B:674-685
    19.Hicklign R,Plesset M S.Collapse and rebound of a spherical bubble in water.Phys.Fluids 1964,7:7-14
    20.Prosperetti A,Lezzi A.Bubble dynamics in a compressible liquid,Part 1,First-order theory.J.Fluid Mech.1986,168:457-478
    21.Prosperetti A,Lezzi A.Bubble dynamics in a compressible liquid,Part 1,Second-order theory.J.Fluid Mech.1987,185:289-321
    22.Hunter C.On the collapse of an empty cavity in water.J.Fluid Mech.1960,8:241-245
    23.Tomita Y,Shima A.On the behavior of a spherical bubble and the impulse pressure in a viscous compressive liquid.Bulletin of the JSME.1977,20:1453-1460
    24.Lastwan G J,Wentzell R A.Equations of radial motion of a cavitating spherical bubble in an inviscid compressive liquid with variable speed of sound.Acustica.1981,49:120-123
    25.Poritsky H.The collapse or growth a spherical bubble or cavity in a viscous fluid.Proc,First Nat.Cong.in Appl.Mech.1952:813-821
    26.黄继汤,田立言.液体粘性对空泡收缩及膨胀的影响.水利学报.1988,12:15-18
    27.黄继汤.液体粘性对空泡生存过程的影响.北京建筑工程学院学报.1994,10(2):124-131
    28.陆力.液流中边壁附近的空泡溃灭研究.水利学报.1992,3:65-69
    29.陆力.空泡在边壁附近溃灭的实验研究.水利学报.1990,2:11-17
    30.Chang H C,Chen L H.Growth of a gas bubble in a viscous fluid.Phys.Fluids 1986,29:3530-3536
    31.Aganin A A,Il'gamov M A,Toporkov Y D.Effect of fluid viscosity on the decay of small distortions of a gas bubble from a spherical shape.J.Appl.Mech.Tech.Phys 2006,47(2):175-182
    32.Hao Y,Prosperetti A.The effect of viscosity on the spherical stability of oscillating gas bubbles.Phys.Fluids 1999,11(6):1309-1317
    33.Khismatullin D B.Resonance frequency of microbubbles:Effect of viscosity.J.Acoust.Soc.Am.2004,116:1463-1473
    34.Hua J S,Lou J.Numerical simulation of bubble rising in viscous liquid.J.Comput.Phys.2007,222:769-795
    35.Toegel R,Luther S,Lohse D.Viscosity destabilizes sonoluminescing bubbles.Phys.Rev.Lett.2006,96:114301
    36.Popinet S,Zaleski S.Bubble collapse near a solid boundary:A numerical study of the influence of viscosity.J.Fluid Mech.2002,464:137-163
    37.梁柱.水涡轮机械中的多相流动理论研究.华中理工大学.博士论文.1977年.
    38.Borkent B M,Arora M,Ohl C D.Reproducible cavitation activity in water-particle suspensions.J.Acoust.Soc.Am.2007,121(3):1406-1412
    39.Ivany T D,Hammit F G.Cavitation bubble collapse in viscous,compressible liquids-numerical analysis.Trans.ASME,87,Ser.D,Jr.Basic Engineering.1965:977-985
    40.Nowotny H.Destruction of Materials by Cavitation.VDI Verlag.1942
    41.黄继汤,陈嘉范,丁彤,田立言.表面张力对单空泡运动特性的影响.水利学报.1996,12:1-7
    42.黄继汤,陈嘉范,丁彤,田立言.表面张力对铝材料空蚀的影响.水利学报.1997,5:23-27
    43.Iwai Y,Okada T,Nishimoto T,Morishita T.Cavitation erosion in high water base fluids.J.JSLE Int.Ed.1989,10:45-50
    44.Iwai Y,Sheng C L.Cavitation erosion in waters having different surface tensions.Wear 2003,254:1-9
    45.王起棣.表面张力对固壁近旁空化气泡溃灭特性的影响.复旦学报(自然科学版).2003,42:201-207
    46.张振宇.空泡的数值研究和矩阵特征灵敏度分析.复旦大学博士后论文,2005
    47.Plesset M S,Prosperetti A.Bubble dynamics and cavitation.Ann.Rev.Fluid Mech.1977,9:145-185
    48.Boguslavskii Y Y,Loffe A I,Naugol'nykh K A.Sound radiation by a cavitation zone.Sov.Phy.Acoustics 1970,16:17-20
    49.Yasui K.Effects Thermal Conduction on Bubble Dynamic near the Somolumince Threshold.J.Acoust.Soc.Am.1995,98:2772-2782
    50.Plesset M S,Temperature effects in cavitation damage,Trans.ASME J.Basic Eng.1972,94:559-566
    51.Hammitt F G,Cavitation and Multiphase Flow Phenomena,MCGRAWHILL International Book Company,1980:250-251
    52.Hattori S,Tanaka Y.Influence of air content and vapor pressure of liquids on cavitation erosion,Trans.JSME 2002,68B:130-136
    53.Zhang Y,Sam A,Finch J A.Temperature effect on single bubble velocity profile in water and surfactant solution.Colloids and Surfaces A:Physicochem.Eng.Aspects 2003,223:45-54.
    54.Barbaglia M O,Bonetto J F.Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence.J.Appl.Phys.2004,95(4):1756-1759.
    55.Okawa T,Tanaka T,Kataoka I,Mori M.Temperature effect on single bubble rise characteristics in stagnant distilled water.International Journal of Heat and Mass Transfer 2003,46:903-913.
    56.Akhatov I,Lindau O,Topolnikov A,Mettin R,Vakhitova N,Lauterborn W.Collapse and rebound of a laser-induced cavitation bubble.Phys.Fluids 2001,13:2805-2819
    57.赵健,汪鸿振,朱物华.可压缩性流体中球形泡壁运动的研究.上海交通大学学报.1989.23:91-94
    58.胡影影,朱克勤,席葆树.空泡在固壁附近溃灭的数值模拟.水动力学研究与进展,2004,19(3):310-315
    59.Fitzpatrick H M,Strasberg M.Hydrodynamic Sources of Sound.Proc.First ONR Symp.on Naval Hydrodynamics.1956:241-280
    60.Mellen R H.Ultrasonic spectrum of cavitation noise in water.J.A.S.A.1954,26:356-360
    61.Hinsch K,Brinkmeyer E.Investigation of very short cavitation shock waves by coherent optical methods.SPIE,1976,97:166-171.
    62.Ebeling,K I.Zum verhalten Kugelformiger,Laserezeuger,Kavitation Sblasen in Wasser.Acustica 1978:511-517.
    63.Vogel A,Lauterbom W.Time-Resolved particle image velocimetry used in the investigation of cavitation bubble dynamics.Appl.Opt.1988,27(9):1869-1876.
    64.Nishiyama T,Akaizawa M.Pressure waves produced by the collapse of a spherical bubble.Technol.Rep.Tohoku Univ.1979,44:579-602.
    65.Fujikawa S,Akamatsu T.Effects of the Non-Equilibrium condensation of vapor on the pressure wave produced by the collapse of a bubble in a liquid.J.Fluid.Mech.1980,97:481-512.
    66.戚定满.空泡溃灭及空化噪声研究.博士论文.1999
    67.Wijngaarden V L.On the collective collapse of large number of gas bubbles in water.Proceedings of 11~(th) international congress of applied mechanics.Germany.1964:854-861
    68.Shima A.The nature frequencies of two spherical bubble oscillating in water.Trans.ASME.J.Basic Eng.1971,93:426-432
    69. Morch K A. On the collapse of cavity clusters in flow cavitation. Cavitation and Inhomogeneities in Underwater Acoustics, edited by W. Lanterborn, Springer, New York,1980,4:95-100
    
    70. Morch K A. Energy considerations in the collapse of cavity clusters. Applied Sci. Res. 1982,38:313-321
    
    71. Fujikawa S, Takahira H. Theoretical study on the interaction between two spherical bubbles and radiated pressure waves in a liquid. Acustica 1986, 61: 188-199
    
    72. Omta R. Oscillations of a cloud of bubbles of small and not so small amplitude. J. A. S. A. 1987,82:1018-1033
    
    73. d'Agostino L, Brennen C E. Linear dynamics of spherical bubble clouds. J. Fluid Mech. 1989, 199: 155-176
    
    74. Smereka P, Banerjee S. The dynamics of periodically driven bubble clouds. Phys. Fluids 1988, 31(12): 3519-3531
    
    75. Takahira H, Akmatsu T, Fujikama S. Dynamics of a cluster of bubbles in a liquid. JSME, Int. J. Series B 1994, 37: 297-305
    
    76. H Takahira. Thermal effects of internal gas on the oscillating of a cluster of bubbles. JSME, Int. J. Series B, 1977,40: 230-239
    
    77. Wang Y C, Brennen C E. Shock wave development on the collapse of a colud of bubbles.ASME Cavitation and Multiphase flow Forum, FED 1994, 194: 15-19
    
    78. Reisman G E, Wang Y C, Brennen C E. Observations of shock waves in cloud cavitatin. J. Fluid Mech. 1998, 355: 255-283
    
    79. Wang Y C, Brennen C E. Numerical computation of shock waves in a spherical cloud of cavitation bubbles. Trans. ASME J. Fluid Eng. 1999, 121: 872-880
    
    80. Karpiouk A B, Aglyamov S R. Quantitative ultrasound method to detect and monitor laser-induced cavitation bubbles. J. Biomed. Opt. 2008, 13(3): 034011
    
    81. Naude C F, Ellis A T. On the mechanisms of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. J. Basic Engng, Trans. ASMED. 1961, 83:648-656
    
    82. Plesset M S, Chapman R B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J. Fluid. Mech. 1971,47: 283-290
    
    83. Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Tran. A. 1966, 260: 221-240
    
    84. Shima A. The behaviour of a spherical bubble in the vicinity of a solid wall. J. Basic. Eng. 1968, 90:75-89
    85.Hsieh D Y.Variational methods and dynamics of nonspherical Bubbles and liquid drops,inFinite-Amplitude Wave Effects in Liquids.Ed.L.Bjorno,I.P.C.Sci.Technol.Press,Guilford,1974,220-226
    86.Mitchell T M,Hammitt F G.Asymmetric cavitation bubble collapse.J.Fluids Engng.Trans.ASME.1973,95:29-37
    87.Shima A,Sato Y.The collapse of a spherical bubble near a solid wall.J.de M(?)canique.1981,20:253-271
    88.Bevir M K,Fielding P J.1Numerical solution of incompressible bubble collapse with jetting in moving boundary problems in heat flow and diffusion(eds J.R.Ockendon and W.R.Hodgkins),1974,286-294.
    89.Fedelinski P,Aliabadi M H,Rooke D P.The time-domain DBEM for rapidly growing cracks.International Journal of Numerical Methods in Engineering,1997,40(9):1555-1572
    90.Zhen Ye.A note on nonlinear radiation from a gas bubble in liquids,J.Acoust.Soc.Am.1997,101:809-812
    91.Zhen Ye.Resonant scattering of acoustic waves by ellipsoid air bubbles in liquids,J.Acoust.Soc.Am.1997,101(2):681-685
    92.Zhen Ye.Sound scattering by an air bubble near a plane sea surface,J.Acoust.Soc.Am.1997,102(2):798-805
    93.李修乾,洪延姬,崔村燕,文明,何国强.激光与液体相互作用及其在激光推进中的应用.应用激光.2006,26(2):109-112
    94.Kornfeld M,Suvarov L.On the destructive action of cavitation.J.App.Phys.1944,15:495-506
    95.Rattray M.Perturbation effects on cavitation bubble dynamics.Ph.D.thesis,Cali.Inst.of Tech.Pesadena Calif.1951
    96.Gibson D C.Cavitation adjacent to plane boundaries.Proc.3rd Aust.Hyd.and Fluid Mech.Conf.Sydney.1968:210-214
    97.Nakajama K,Shima A.Analysis of the behavior of a bubble in a viscous incompressible liquid by finite element method.Archive of Applied Mechanics(Ingenieur Archiv).1977,46:21-34
    98.Kling C L,Hammitt F G.A photographic study of spark-induced cavitation bubble collapse.J.Basic Eng.1972,94:825-833
    99.Lauterborn W,Kavitation durch laserlicht.Acustica.1974a,31:51-78
    100.Lauterborn W.General and basic aspects of cavitation.In Proc 1973 Symp Finit-Amplitude Wave Effects in Fluids,Copenhagen(ed.L.Bjφmφ),1974b:195-202
    101. Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble in the neighborhood of a solid boundary, J. Fluid Mech. 1975, 72: 391-399
    
    102. Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 1989, 206: 299-338
    
    103. Ellis A T, Starrett J E. A Study of cavitation bubble dynamics and resultant- pressures on adjacent solid boundaries. Proc 2nd Int Conf on Cavitation, Edinburgh, 1983, 68: 1-6,IMechE Publications
    
    104. Dear J P, Field J E. A study of the collapse of arrays of cavities. J. Fluid Mech. 1988, 190:409-425
    
    105. Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 1988, 84: 719-731
    
    106. Kocera A, Blake J R. Computional modelling of cavitaion bubbles near boundaries in computational techniques and applications. CATC-83 Ced Noycc, J & Hetcher,North-Holland, 1988 C: 391-400
    
    107. Hammitt F G. Cavitation and Multiphase flow phenomena. McGraw-Hill International Book Company. 1980
    
    108. Harrison M. An experimental study of single bubble cavitation noise. J. Acoust. Soc. Am. 1952,24:776-782
    
    109. Best J P. The formation of toroidal bubbles upon the collapse of transient cavities. J. Fluid Mech. 1993,251:79-107
    
    110. Zhang S, Duncan J H, Chahine G L. The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 1993, 257: 147-181
    
    111. Blake J R, Hooton M C, Robinson P B, Tong R P. Collapsing cavities, toroidal bubbles and jet impact. Phil. Trans. R. Soc.Lond. A 1997, 355: 537-550
    
    112. Ward B, Emmony D C. Interferometric studies of the pressure developed in a liquid during infrared-laser-induced cavitation bubble oscillation. Infrared Phys. 1991, 32: 489-515
    
    113. Philipp A, Lauterborn W. Cavitation erosion by single-laser produced bubbles. J. Fluid Mech. 1998,361:75-116
    
    114. Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 2003,479: 327-348
    
    115. Kodama T, Tomita Y. Cavitation bubble behabior and bubble-shock wave near a gelatin surface as a study of in vivo bubble dynamics. Appl. phys.B 2000, 70: 139-149
    
    116. Brujan E A, Nahen K, Schmidt P, Vogel A. Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 2001, 433: 283-314.
    117.Brujan E A,Nahen K,Peter S,Vogel A.Dynamics of laser-induced cavitaion bubbles near an elastic boundary.J.Fluid Mech.2001,433:251-281
    118.Emelianov S Y,Hamilton M F,Llinskii Y A,Zabolotskaya E A.Nonlinear dynamics of a gas bubble in an incompressible elastic medium.J.Acoust.Soc.Am.2004,115:581-588
    119.黄继汤.空化与空蚀的原理及应用.第一版.北京:清华大学出版社,1991
    120.张秀丽.空蚀损伤过程中电偶作用机制的设想及验证.北京科技大学博士论文,2000
    121.Knapp R T,Daily J W,Hammit F G.空化域空蚀.水利水电科学研究所译.北京:水利出版社,1981
    122.Sun Z,Kang X Q,Wang X H.Experimental system of cavitation erosion with water-jet.Materials and Design.2005,26:59-63
    123.Shima A,Takayama K,Tomita Y.Mechanisms of the Bubble collapse near a solid Wall and the induced Impact Pressure Generation.Rep.Inst,High Speed Mech.,Tohoku Univ.,48,1984
    124.张凤华.空化水射流的理论、实验及应用.重庆大学博士学位论文.1999
    125.王智勇.基于FLUENT软件的水力空化数值模拟.大连理工大学硕士学位论文.2006
    126.Cole R H.Underwater Explosions.Princeton U P,Prineceton.1948
    127.张兰知.热学.哈尔滨:哈尔滨工业大学出版社.2000
    128.闻德荪,魏亚东,李兆年,王世和.工程流体力学(水力学).第8版.高等教育出版社,2001
    129.韩翠芳.利用多次回归拟合水的饱和蒸汽压与温度的关系表达式.环境科学与管理.2005,30(5):43-45
    130.Vogel A,Hentschel W,Holzfuss J,Lauterborn W.Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed Neodymium:YAG lasers.Ophthalmology 1986,93(10):1259-1269
    131.Schoeffmann H.Time-resolved investigations of laser-induced shock waves in water by use of polyvinylidenefluoride hydrophone.J.Appl.Phys.1988;63:46-61
    132.卞保民等.激光等离子体空气冲击波波前参量的测定及研究.中国激光.2001,28(2):155-159
    133.Chen J P,Ni X W,Lu J et al.Laser-induced plasma shock wave and cavity on metal surface underwater.Microwave Opt.Tech.Letters.2000,25(5):307-311
    134.李志勇,朱文辉,周光泉.实验研究有机玻璃约束层对激光冲击波的影响.中国激光.1997,24(2):118-121
    135.Pirri A N,Schlier R.Momentum transfer and plasma formation above a surface with a high-power CO_2 laser.Appl.Phys.Lett.1972,21(3):79-81
    136.王春奎,傅裕寿,李惠宁.强激光作用于靶材时冲量的测量.激光.1982,9(9):48-50
    137.王秀风,胡世光.激光点热源作用下试件内部热传导的实验研究.光电子激光.2004,15(2):226-229
    138.Petkov(?)ek R,Mo(?)ina J.Optodynamic characterization of the shock waves after laser-induced breakdown in water.Opt.Express 2005,13(11):4107-4112
    139.Petkov(?)ek R,Gregorcic P,J Mozina.A beam-deflection probe as a method for optodynamic measurements of cavitation bubble oscillations.Meas.Sci.Technol.2007,18:2972-2978
    140.Petkov(?)ek R,Mozina J.Monitoring of the laser microdrilling of glass by the optodynamic method.J.Appl.Phys.2007,102:044905
    141.丁红胜.共焦法布里—珀罗干涉仪的共轭分析.北京科技大学学报.1998,20(6):590-593
    142.Davidson G P,Emmony D C.A schlieren probe method for the measurement of the refractive index profile of a shock wave in a fluid.J.Phys.E:Sci.Instrum.1980,13:92-97
    143.Vogel A.2001.Optical Breakdown in Water and Ocular Media,and Its Use for Intraocular Photodisruption(Aachen Verlag:Shaker)
    144.David N.Cavitation erosion behavior of ceramics in aqueous solutions.Wear 2007,263:295-300
    145.Xu R Q,Chen X,Shen Z H,Lu J,Ni X W.A fiber-optic diagnostic technique for mechanical detection of the laser-metal interaction underwater.Phys.Fluids 2004,16(3):832-835
    146.陈笑.高功率激光与水下物质相互作用过程与机理研究.南京理工大学博士论文.2004
    147.Maxworthy T,Gnann C,Kurten M,Durst F.Experiments on the rise of air bubbles in clean viscous liquids.J.Fluid Mech.1996,321:421-441
    148.梁国为,蔡武昌.流量测量技术及仪表.北京:机械工业出版社.2002
    149.Stebnovskii S V.Shear instability of the structure of media possessing viscous fluidity.J.Appl.Mech.Tech.Phys.2000,41(1):95-100
    150.Bhaga D,Weber M E.Bubbles in viscous liquids:shapes wake and velocities.J.Fluid Mech.1981,105:61-85
    151.Ryskin G,Leal L G.Numerical solution of free-boundary problems in fluid mechanics.J.Fluid.Mech.1984,148:19-36
    152.Blake J R,Gibson D C.Cavitation bubbles near boundaries.Ann.Rev.Fluid Mech.1987,19:99-124
    153.Godwin R P,Chapyak E J,Noack J,Vogel A.Aspherical bubble dynamics and.oscillation times.SPIE.1999,3601,225-237
    154.赵瑞,徐荣青,沈中华,陆建,倪晓武.粘性液体中激光空泡脉动特性的理论和实验研究.物理学报.2006,55(9):4783-4788
    155.Visuri S R,Celliers P,Dasilva L,Matthews D.Effect of viscosity on bubble and pressure evolution.SPIE.1997,2975:343-350
    156.J.A.迪安主编.兰氏化学手册.第13版.北京:科学出版社.1991:1734-1747
    157.Vogel A,Noack J,Nahen K,Theisen D,Busch S;,Parlitz U,Hammer D X,Noojin G.D,Rockwell B A,Birngruber R.Energy balance of optical breakdown in water at nanosecond to femtosecond time scales.Appl.Phys.B 1999,68(2):271-280.
    158.Brujan E A,Vogel A.Stress wave emission and cavitation bubble by nanosecond optical breakdown in a tissue phantom.J.Fluid.Mech.2006,558:281-308.
    159.Hattori S,Goto Y,Fukuyama T.Influence of temperature on erosion by a cavitating liquid jet.Wear 2006,260:1217-1223.
    160.安琦,Taylor C M.温度及压力对滑动轴承气蚀磨损影响的实验研究,机械科学与技术.2001,20(4):565-566.
    161.Hutson M S,Ma X Y.Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo.Phys.Rev.Lett.2007,99:158-104
    162.Steinert R F,Puliafito C A.The Nd:YAG laser in Ophthalmology.Saunders.1985
    163.Vogel A.Nonlinear absorption:intraocular microsurgery and laser lithotripsy.Phys.Med.Biol.1997,42:895-912
    164.Deckelbaum L I.Coronary laser angioplasty.Lasers Surg.Med.1994,14:101-110
    165.Gregory R R Laser Thrombolysis.Saunders.1994
    166.Klein M,Schulte H D,Gams E.TMLR Management of coronary artery diseases.Springer.1998.
    167.Brinkmann R,Theisen D,Brendel T,Birngruber R.Sing-pulse 30-J holmium laser for myocardial revascularization-A study on ablation dynamics in comparison to CO_2 laser-TMR.IEEE J.Selected Topics Quantum Electron.1999,5:1-12
    168.Smith C F.Lasers in orthopedic surgery.Orthopedics.1993,16:451-534.
    1.刘秀梅,赵瑞,贺杰,陆建,倪晓武.10~(-6)-10~(-4)m~2/s黏度液体中靶受力学作用的测试与分析.物理学报.2007,56(11):6508-6513(SCI收录号:000251093800058)
    2.Liu Xiu Mei,He Jie,Lu Jian and Ni Xiao Wu.Growth and Collapse of Laser-Induced Bubbles in Glycerol-Water Mixtures.Chinese Physics,2008,17(7):2574-2579(SCI 收录号:000257843000039)
    3.Xiu Mei Liu,Jie He,Jian Lu and Xiao Wu Ni.Effect of surface tension on a liquid-jet produced by the collapse of a laser-induced bubble against a rigid boundary.Optics &Laser Technology,2009,41:21-24.(SCI 收录号:000259731000005)
    4.Xiu Mei Liu,Jie He,Jian Lu and Xiao Wu Ni.Effect of Liquid Viscosity on a Liquid Jet Produced by the Collapse of a Laser-Induced Bubble near a Rigid Boundary.Japanese Journal of Applied Physics.2009,48:016504.(SCI 收录号:000264013500066)
    5.刘秀梅,贺杰,陆建,倪晓武.表面张力对固壁旁空泡运动特性影响的理论和实验研究.物理学报.2009,58(6):4020-4025.(SCI源刊)
    6.刘秀梅,贺杰,陆建,倪晓武.不同粘度液体中空泡脉动特性的实验研究.光电子激光.2008,19(7):985-988(EI收录号:083511493984)
    7.Xiu Mei Liu,Jie He,Jian Lu and Xiao Wu Ni.Nonlinear Dynamics of Laser-induced Bubble near Elastic Boundaries.SPIE.2007,6839:6839J(EI收录号:081411180323)
    8.Xiu Mei Liu,Jie He,Jian Lu and Xiao Wu Ni.Mechanical Effects during Pulsed Laser and Metals Interaction in Glycerol-Water Mixtures.SPIE.2007,6825:682513(EI收录号号:081211164609)
    9.贺杰,刘秀梅,陆建,倪晓武.表面张力对固壁近旁空泡生长和溃灭行为的影响.中国激光.2009,36(2):342-346(EI收录)
    10.贺杰,刘秀梅,陆建,倪晓武.表面张力对空泡脉动特性影响的实验研究.光电子激光.(EI源刊,待发表)
    11.贺杰,刘秀梅,陆建,倪晓武.固壁旁激光空泡生长和溃灭特性的实验研究.光电子.激光.(EI源刊,待发表)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700