浅变质碎裂围岩蠕变特性研究及其在隧道洞口工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道洞口围岩稳定性是整条隧道建设的重中之重,隧道洞口大多具有浅埋和偏压的特征,洞口围岩易于风化,围岩性质极差,且易受到降雨的影响。由于隧道洞口围岩软弱,为了保证稳定性,需考虑其在开挖过程中所具有的蠕变特性,同时由于极易受到降雨的影响,还要考虑不同含水状态下洞口围岩的蠕变特性,目前此方面的研究还很有限,而对于浅变质碎裂围岩不同含水状态下的蠕变研究更为少见。本文结合贵州省科技厅重大专项《厦蓉线水都高速公路建设关键技术研究》之子课题四《厦蓉线水都高速公路隧道洞口段设计与施工关键技术研究》,以厦蓉高速公路贵州境内水都线的典型隧道洞口为依托工程,在充分利用已有研究的基础上,采用试验研究、数值模拟、现场监测和理论分析相结合的研究方法,对隧道洞口浅变质碎裂围岩的蠕变特性及其在隧道洞口工程中的应用等进行了较为系统和深入的研究。论文的主要研究工作包括:
     ①工区碎裂浅变质板岩基本力学特性及不同含水状态下压缩蠕变特性试验研究。通过常规单轴及三轴试验,得到自然风干及饱和状态下碎裂浅变质岩各项基本力学特性参数;通过泡水试验,得到碎裂浅变质岩饱和度与泡水时间的关系;基于不同含水状态下碎裂浅变质岩压缩蠕变试验,获得不同含水状态下的应变-时间曲线,分析得到不同应力及不同含水状态下碎裂浅变质岩的蠕变变化规律。
     ②考虑含水损伤的碎裂浅变质板岩蠕变本构模型开发及验证。根据试验结果进行模型辨识,引入岩石含水损伤概念并定义含水损伤因子,通过试验结果等到含水损伤变量演化方程;然后建立考虑含水损伤的碎裂浅变质岩蠕变方程,并进行了三维应力状态下的推广;随后基于有限差分理论,推导得到其有限差分格式,利用FLAC3D进行本构模型二次开发,并通过实例进行验证。
     ③工区浅埋偏压隧道洞口开挖围岩力学行为及施工工序优化研究。建立大型三维仿真地质模型,利用开发的本构模型通过数值分析对工区隧道洞口采用的较为繁杂的环形导坑预留核心土法以及CRD法的合理开挖工序进行优化研究,得到了基本原则。通过对施工全过程中围岩的力学行为研究,得到了分部开挖过程中考虑施工期蠕变特性的围岩受力变形特征,得出的结论可为合理施工提供参考。
     ④浅埋偏压隧道稳定性与地形因素间关系。由于目前已有研究只是针对具体工程展开,不够系统全面。故综合考虑对浅埋偏压隧道围岩稳定性有直接影响的地形因素,包括侧覆土厚,横坡坡度、最大埋深等,通过正交试验法进行数值模拟试验方案的设计,经计算得到各影响因素与浅埋偏压隧道稳定性的关系。
     ⑤浅埋偏压隧道洞口段预加固技术研究。在获知地形因素对浅埋偏压隧道影响规律的基础上,针对不同类型的洞口段,采用FLAC3D软件对采取各种预加固措施后的隧道洞口进行了模拟计算分析,通过与未进行预加固和进行不同的预加固时隧道应力、变形特征的对比,得到了与隧道类型相适应的预加固措施的选取原则,并在此基础上提出碎裂浅变质岩地区不同类型隧道洞口段的预加固技术要点。
     ⑥碎裂围岩浅埋偏压隧道衬砌荷载算方法研究。目前,围岩压力计算理论较多,而针对浅埋偏压隧道围岩压力的计算方法极少。公路隧道规范分别给出了浅埋和偏压隧道的计算方法,对于偏压隧道的计算方法,计算思路直接来源于浅埋隧道的计算理论,其假设与实际情况有较大出入。针对此种情况,根据现场实测资料及数值分析结果确定碎裂围岩浅埋偏压隧道的破坏模式,然后利用极限平衡分析法推导得到了支护荷载的计算公式。
Stability of surrounding rock around tunnel portal is very important to the entire tunnel construction. Tunnel portals are shallow and unsymmetrical loading in most cases, and the surrounding rock likely in poor performance, easily weathered and affected by rainfall. In order to ensure the stability of the excavation process, rheological properties and creep under different water content should be considered. At present, research in this area is still very limited,especially creep of cataclastic low-grade metamorphic rock fragments under different water status.
     In view of this, based on the support projects of typical tunnel entrances of Xiamen-Chengdu expressway in Guizhou province, combined with the existing research, more systematic and in-depth study on creep of low-grade metamorphic rock fragments around tunnel portal and application in the tunnel entrance engineering were conducted. The main contents of this paper as following:
     ①Study on the basic mechanical properties and compression creep of low-grade metamorphic slate from project region. Several basic mechanical parameters under natural air-dry and saturation were determined by conventional uniaxial tests and triaxial tests. The relationship between saturation and soaking time were obtained by water immersion tests. Strain-time curves under different moisture content were gained by creep tests, and the creep law of low-grade metamorphic slate under different stress and moisture content were analyzed.
     ②Development and verification of creep constitutive model of low-grade metamorphic slate considering water damage. Identifying the model by test results, introducing concept of water damage of rock and defining the factors, and the damage evolution equation is derived from the test results. Creep equation of low-grade metamorphic slate considering water damage was established, and extended to three-dimensional stress state. Then the derivation of finite difference equations was played in the basis of finite difference theory, and combined with the environment of FLAC3D to complete model of the secondary development, which is verified by examples.
     ③Research on the mechanical behaviors of dynamic construction and excavation process optimization of the shallow tunnel under unsymmetrical loadings. Large-scale three-dimensional simulation geological model were built to study the optimization of excavation process comparing the annular pilot heading conservation core soil method and CRD method using developed model, and some basic laws obtained. The analysis results of stress characteristics of surrounding rock and supporting structures can provide technical guidance for the design and construction of tunnel which has the similar topographical and geologic conditions.
     ④The relations between stability of the shallow and unsymmetrical loadings tunnel and topographic factors. Most of the existing research focuses on practical engineering, lacking of general applicability. So, topographic factors such as thickness of side covering soil, transversal gradient, maximum burial depth and so on were considered to design orthogonal tests to study the relationship of factors affecting the stability of the shallow and unsymmetrical loading tunnel.
     ⑤Research on the pre-reinforcement technology of portal section of shallow tunnel with unsymmetrical loadings. For different types of portal section, calculation and analysis were performed using FLAC3D software to comparing the stress and deformation characteristics of tunnel under different pre-reinforcement technologies. Principles of selecting compatible pre-reinforcement technology for different types of portal section were obtained. On this basis, several pre-reinforcement technical points were proposed.
     ⑥Research on the calculation method of lining loads of shallow tunnel with unsymmetrical loadings. There are many theoretical calculations of rock pressure, while few for shallow tunnel with unsymmetrical loadings. The highway tunnel specification gives the calculation method of shallow tunnel and unsymmetrical loaded tunnel respectively. The calculation theory of unsymmetrical loaded tunnel is similar with the shallow tunnel, and the assumptions are different from the actual situation. Therefore, a series of corresponding formulas are deduced based on limit equilibrium theory for calculation lining loads of shallow tunnel under unsymmetrical loadings through engineering case analysis and the three-dimensional numerical analysis results of the tunnel
引文
[1]刘小兵,彭立敏,王薇.隧道洞口边仰坡的平衡稳定分析[J]。中国公路学报,2001,14(4):80-84.
    [2]刘新荣,郭子红,谢应坤等.不良地质下偏压隧道支护结构开裂与治理分析[J].工程勘察,2010,5:1-5.
    [3]叶小兵,罗翔,高海东.高速公路隧道洞口仰坡滑坡监测与治理[J].铁道工程学报,2002,(3):48–50.
    [4]张民庆,黄鸿健,苗德海,等.宜万线隧道洞口滑坍分析与治理[J].铁道工程学报,2008,(2):54–60.
    [5]何伟奇.新鲤鱼溪二号隧道洞口高仰坡滑坡体的防护论证[J].现代隧道技术,2003,40(2):13-17.
    [6]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23 (19):3381-3388.
    [7]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定性安全系数[J].岩土工程学报,2002,24 (3):343-346.
    [8]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性[J].岩土工程学报,2001,23 (4):406-411.
    [9]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23 (3):1-8.
    [10]王国欣,谢雄耀,黄宏伟.公路隧道洞口滑坡的机制分析及监控预报[J].岩石力学与工程学报,2006,25(2):268-274.
    [11]张伟,焦玉勇,郭小红.隧道洞口滑坡稳定性分析与防治措施[J].岩土力学,2008,29(增):311-314.
    [12]李杰,郭海燕,刘凌云等.丈八口隧道围岩稳定性分析[J].岩土力学,2004,25(增),536-540.
    [13]朱合华,李新星,蔡永昌等.隧道施工中洞口边仰坡稳定性三维有限元分析[J].公路交通科技,2005,22(6):119-122.
    [14]潘洪科,杨林德,黄慷.公路隧道偏压效应与衬砌裂缝的研究[J].岩石力学与工程学报,2005,24(18):3311-3315.
    [15]王书刚,李术才,王刚等.浅埋偏压隧道洞口施工技术及稳定性分析研究[J].岩土力学,2006,27(增):364-368.
    [16]柳雁玲,佴磊,刘永平.和龙沿江公路傍山隧道偏压特征分析[J].吉林大学学报(地球科学版),2006,36(2):240-244.
    [17]李志勇,晏莉,阳军生.浅埋偏压连拱隧道中导洞坍方数值分析与处治[J].岩土力学,2007,28(1):102-106.
    [18]谢红强,何川,林刚.开挖工况对偏压连拱隧道结构及上覆山体稳定性的影响[J].现代隧道技术,2007,44(1):32-36.
    [19]安鹏程,陈剑平,邱道宏.偏压连拱隧道围岩稳定性分析与现场监控量测[J].吉林大学学报(地球科学版),2008,38(2):285-289.
    [20]陈伟,阮怀宁,张辉.降雨入渗对浅埋偏压隧道及其支护系统的影响[J].现代隧道技术,2008,45(1):33-38.
    [21]张敏,黄润秋,巨能攀.浅埋偏压隧道出口变形机理及稳定性分析[J].工程地质学报,2008,16(4):482-488.
    [22]钟新樵.土质偏压隧道衬砌模型试验分析[J].西南交通大学学报,1996,31(6):602-606.
    [23]王兵,谢锦昌.偏压隧道模型试验及可靠度分析[J].工程力学,1998,15(1):85-93.
    [24]刘涛,沈明荣,袁勇.偏压连拱隧道围岩稳定性模型试验与数值分析[J].同济大学学报(自然科学版),2008,36(4):460-465.
    [25]段海澎,徐干成,刘保国.富溪偏压连拱隧道围岩与支护结构变形和受力特征分析[J].岩石力学与工程学报,2006,25(增2):3763-3768.
    [26]杨小礼,李亮,刘宝琛.偏压隧道结构稳定性评价的信息优化分析[J].岩石力学与工程学报,2002,21(4):484-488.
    [27]陈秋南,张永兴,陈建功等.偏压双连拱公路隧道围岩稳定性动态预测分析[J].重庆建筑大学学报,2005,27(1):62-66.
    [28]范厚斌,樊志华,陆耀忠.基于层叠模型的岩土材料流变本构关系识别[J].岩石力学与工程学报,2005,24(5):768-773.
    [29] Griggs,D.T. Creep of rocks[J]. Journal of Geology.1939,47:225-251.
    [30] Robertson E.C. Viscoelasticity of rock, in State of Stress in the Earth’s Crust(W.R.Judd Ed.).New Ybrk: Elsevier, 1964.
    [31] Lama R.D.&Vulukuri V.S. Handbook on Mechanical Properties of Rocks.Vol.Ⅲ, TRANS TECH PUBLICATIONS, 1978.
    [32] Ito H, Sasajima S. Aten year creep experiment on small rock specimens[J]. Int. Rock Mech. Mine. Sci. and Geomech.Abst.r.,1987,24(2).
    [33]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(I):试验结果[J].岩土力学,2005,26(4):531-537.
    [34]熊良宵,杨林德,张尧.绿片岩的单轴压缩各向异性蠕变试验研究[J].同济大学学报(自然科学版),2010,38(11):1568-1573.
    [35] Fukui.Katsunori, Okubo.Seisuke et al. Creep behavior of rock under uniaxial compression [J]. Shigen to sozai,1995,37(7): 521-526.
    [36] Yang Gengshe, Zhang Guangqi. Rock mass damage and monitoring[M]. Xi’an: Shan xi science and Technology Press.1998(in Chinese).
    [37] Ge Xiurun,Ren Jianxi et al. A real-in-time CT triaxial testing study of meso-damage evolution law of coal Chinese Journal of Rock [J]. Mechanics and Engineering.1999, 18(5):497-502(in Chinese).
    [38] Sun Jun, Hu Y Y. Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China[J]. Int. J. Rock Mech. Mine Sci.,1997,34:381-381.
    [39] D.M.Cruden. A technique for estimating the complete creep curve of asub-bituminous coal under uniaxial compression [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1987,24(4):265-269.
    [40] Sulem J,Panet M,Guenot A,An Analytical Solution for time-dependent Displacement in A Circular Tunnel,Int.J.Rock Mcch.Sci. &Geomech.Abstr.1987,24(3):155-164.
    [41] Yoshida H,Horii H.A. Micromechanics-based model for creep behavior of rock[J]. Appl.Mech. Rev., 1992,45(8):294-303.
    [42] Cristescu N D.A general constitutive equation for transient and stationary creep of rock salt. Int.J.Rock Mech.Min.Sci.Geomech[J].1993,30(2):125-140.
    [43]周德培,毛坚强.隧道流变特性的模型试验与分析计算[A].计算机方法在岩石力学及工程的应用国际学术讨论会论文集[C],西安:1993,541-549.
    [44] Drozdov A D,Kolmanovskii V B. Stability in viscoelasticity North-Holland Series in Applied Mathematics and Mechanics[J]. North-Holland,1994.
    [45]朱素平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报,1994,23(3):329-333.
    [46] Boukharov G N,Chanda M W,Boukharov N G.The three processes of brittle crystalline rock creep[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1995,32(4):325-335.
    [47] Zhang xiaochun,Yang Tingqing,A time-dependent study for rockburst in coal mines[C],In: The 1st International Conference on Advance Structural Engineering&Mechanics , Seoul, Korea August,1999,l0-13.
    [48]张晓春,杨挺青.岩石板梁结构时间相关变形的稳定性分析[J],武汉交通大学学报,1999,32(2):158-160.
    [49]刘刚,靖洪文.深井软岩巷道变形和加固对策[J].矿冶工程,2005,25(3):5-7.
    [50]谢锋,蒋树屏,李建军.蠕变围岩隧道二次衬砌支护时间的研究[J].地下空间与工程学报,2006,2(5):805-808.
    [51]陈卫忠,王者超,伍国军等.盐岩非线性蠕变损伤本构模型及其工程应用[J].岩石力学与工程学报,2007,26(3):467-472.
    [52]王永刚,任伟中.软弱围岩的蠕变损伤特性及最佳支护时间[J].中国铁道科学,2007,28(1):50-55.
    [53]蓝航,姚建国,张华兴等.基于FLAC~(3D)的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [54]戴永浩,陈卫忠,伍国军等. .非饱和岩体弹塑性损伤模型研究与应用[J].岩石力学与工程学报, 2008,27(4):728-735.
    [55]蒋呈州,徐卫亚,王瑞红等.水电站大型地下洞室长期稳定性数值分析[J].岩土力学, 2008,29(增):52-58.
    [56]姜永东,鲜学福,杨春和.巷道岩体蠕变断裂失稳区预测研究[J].岩土工程学报,2008,30(6):906-910.
    [57]黄湖星,徐林生.隧道损伤围岩的蠕变特性研究[J].公路隧道, 2008,61(1):4-6.
    [58]朱杰兵.高应力下岩石卸荷及其流变特性研究[D].中国科学院研究生院(武汉岩土力学研究所)博士论文,2009.
    [59]郭小红,梁巍,于洪丹等.跨海峡海底隧道风化槽围岩力学特性研究[J].岩土力学,2010,31(12):3778-3783.
    [60]王俊光,梁冰.油页岩地下开采巷道围岩的流变特性及工程应用[J].防灾减灾工程学报,2010,30(6):685-690.
    [61]王中文,方建勤,夏才初等.考虑围岩蠕变特性的隧道二衬合理支护时机确定方法[J].岩石力学与工程学报,2010,29(增1):3241-3246.
    [62]王波,高延法,王军.流变扰动效应引起围岩应力场演变规律分析[J].煤炭学报,2010,35(9):1446-1450.
    [63]任松,姜德义,杨春和等.共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J].岩土力学,2010,31(2):416-422.
    [64]伍国军,陈卫忠,曹俊杰,谭贤君.工程岩体非线性蠕变损伤力学模型及其应用[J].岩石力学与工程学报,2010,29(6):1184-1191.
    [65]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [66]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [67]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J]同济大学学报,1997,25(2):127-134.
    [68]周瑞光,成彬芳,高玉生等.断层泥蠕变特性与含水量的关系研究[J].工程地质学报,1998,6(3):217-222.
    [69]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [70]李铀,朱维申,白世伟等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):673-1677.
    [71]刘光廷,胡昱,陈凤歧等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [72]冒海军.板岩水理特性试验研究与理论分析[D]中国科学院博士学位论文2006.
    [73]杨彩弘,王永岩,魏佳.软岩蠕变过程中单相渗流固流耦合及数学模型.黑龙江科技学院学报,2004,14(5):297-299.
    [74]杨彩红,王永岩,李春林.含水率变化对深部工程岩体蠕变规律的影响[J].化工矿产地质,2007,29(1):55-60.
    [75]杨彩红,王永岩,李剑光等.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007,32(7):695-699.
    [76]黄小兰,杨春和,刘建军等.不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J].岩石力学与工程学报,2007,增(2):3477-3482.
    [77]李鹏,刘建,朱杰兵等.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学,2008,29(7):1865-1871.
    [78]韩琳琳,徐辉,李男.干燥与饱水状态下岩石剪切蠕变机理的研究[J].人民长江,2010,41(15),71-74.
    [79]黄明,张旭东.含水状态下T2b2泥质粉砂岩蠕变特性试验研究[J].工业建筑,2011,41(1):77-85.
    [80]王明年,郭军,罗禄森等.高速铁路大断面深埋黄土隧道围岩压力计算方法[J].中国铁道科学,2009,30(5):53-58.
    [81] Jiang Y,Yoneda H,Tanabashi Y.Theoretical estima-tion of loosing pressure on tunnels in soft rocks[J].Tunnelling and Underground Space Technology,2001, 16:99-105.
    [82] Brown E T, Bray J W, Ladanyi B, Hoek E . Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, 1983, 109:15-39.
    [83] Lee C J, Wu B R,Chen H T. Tunnel stability and arc-hing effects during tunneling in soft clayey soil[J].Tunnelling and Underground Space Technology, 2006(21):119-132.
    [84]王德荣,甄树新,汪新红等.深部坑道围岩压力与变形分析[J].岩土力学,2007,28(3):570-576.
    [85]邵生俊,邓国华.原状黄土的结构性强度特性及其在黄土隧道围岩压力分析中的应用[J].土木工程学报,2008,41(11):93-98.
    [86]重庆交通科研设计院.公路隧道设计规范[S].北京:人民交通出版社, 2004.
    [87] YANG Xiao-Li. Upper bound limit analysis of active earth pressure with different fracturesurface and nonlinear yield criterion[J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1):46-56.
    [88] Davis E H,Gunn M J,Mair R J. The stability of shallow tunnel and underground openings in cohesive material[J]. Geotechnique, 1980, 30(4):397-416.
    [89] Leca E, Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique, 1990, 40(4):581-606.
    [90]杨峰,阳军生.浅埋隧道围岩压力确定的极限分析方法[J].工程力学,2008,25(7):179-184.
    [91]杨小礼,王作伟.非线性破坏准则下浅埋隧道围岩压力的极限分析[J].中南大学学报(自然科学版),2010,41(3):1090-1095.
    [92]李亮,郭乃正,傅鹤林,等.破碎围岩中连拱隧道载荷计算理论解[J].中国铁道科学,2004,25(4):50-54.
    [93]朱正国,刘志春,孙明磊,等.偏压连拱隧道围岩压力及结构计算[J].辽宁工程技术大学学报(自然科学版),2010,29(1) :75-78.
    [94]杨小礼,黄波,王作伟.水平地震力作用下浅埋偏压隧道松动围岩压力的研究[J].中南大学学报(自然科学版),2010,41(3):1090-1095.
    [95]李志厚,吴华金,刘宏.软弱围岩隧道洞口段工程的设计与施工[J].现代隧道技术,2002,39(6):47-50.
    [96]王晋雄.双线铁路隧道洞口段施工方法[J].铁道建筑,1995,9:20-23.
    [97]熊创贤,洪亮.浅埋偏压隧道几种施工方法的比较与研究[J].路基工程,2007,(3):18-20.
    [98]张敏.复杂地形、地质情况下大跨度隧道洞口段设计[J].铁道工程学报,2007,(2):69-72.
    [99]彭伟,刘劲华.浅析隧道洞口不良地质段的施工技术[J].铁道工程学报,2007,(8):66-70.
    [100]蔚东绪.浅埋与偏压隧道洞口段施工技术[J].路基工程,2005,(5):71-73.
    [101]邓少军,阳军生,张学民.浅埋偏压连拱隧道施工数值模拟及方案比选[J].地下空间与工程学报,2005,1(6):940-943.
    [102]姚辉,刘青林.易风化软弱围岩隧道洞口段施工技术[J].工程力学,2002,增刊:227-229.
    [103]姜鹏,赵其华,禹云霞.沙尔-沙尔隧道洞口段施工方法数值模拟研究[J].路基工程,2007,(2):72-74.
    [104]文天平,杨黎明.不良地质隧道洞口段的施工技术[J].世界隧道,2000,(3):8-12.
    [105]孙玉国,何荣康,白继承.隧道洞口段预加固措施及施工方法[J].世界隧道,2000,(3):13-18.
    [106]周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报,2002,21(5):679–683.
    [107]刘元雪,蒋树屏,赵尚毅.浅埋黄土连拱隧道施工方案优化研[J].地下空间与工程学报,2005,1(6):944–947.
    [108]张志强,何川.偏压连拱隧道优化施工的研究[J].岩土力学,2007,28(4):723–727.
    [109]朱正国,乔春生,高保彬.浅埋偏压连拱隧道的施工优化及支护受力特征分析[J].岩土力学,2008,29(10):2747–2752.
    [110]王建宇.隧道施工监测技术和信息化设计[J].中国铁道科学,1987,8(2):50-57.
    [111]申玉生,高波.双连拱隧道施工偏压力学特性的监测与分析研究[J].岩土力学,2006,27(11):2061–2065.
    [112]汪益敏.隧道围岩变形监测及其有限元分析[J].煤田地质与勘探,2000,28(3):34-36.
    [113]刘招伟,何满潮,肖红渠.浅埋大跨连拱隧道施工中变形的监测与控制措施[J].岩土工程学报,2003,25(3):339-342.
    [114]雷军,张金柱,林传年.乌鞘岭特长隧道复杂地质条件下断层带应力及变形现场监测分析[J].岩土力学,2008,29(5):1367–1371.
    [115]王祥秋,杨林德,高文华高速公路偏压隧道施工动态监测与有限元仿真模拟[J].岩石力学与工程学报,2005,24(2):284–289.
    [116]夏才初,龚建伍,唐颖等.大断面小净距公路隧道现场监测分析研究[J].岩石力学与工程学报,2007,26(1):44–50.
    [117]陈耕野,刘斌,万明富等.韩家岭大跨度公路隧道应力监测分析[J].岩石力学与工程学报,2005,24(增2):5509–5515.
    [118]王军,夏才初,朱合华.不对称连拱隧道现场监测与分析研究[J].岩石力学与工程学报,2004,23(2):267–271.
    [119]彭立敏,周铁牛,韩玉华.浅埋隧道地表锚杆预加固效果研究[J].长沙铁道学院学报,1992,10.
    [120]彭立敏,施成华,韩玉华.浅埋隧道地表锚杆预加固的作用机理与分析方法[J].铁道学报,2000,2.
    [121]杨明举.浅埋偏压隧道地表预加固及施工影响分析[J].公路,2008,10.
    [122]路德福.水平高压旋喷注浆技术在城市浅埋隧道预支护中的应用探矿工程(岩土钻掘工程),2008,2.
    [123]张虎.地表注浆在隧道工程中的应用[J].公路,2006(3).
    [124]来弘鹏,谢永利,杨晓华.地表预注浆加固公路隧道浅埋偏压破碎围岩效果分析[J].岩石力学与工程学报,2008,27(11):2309–2314.
    [125]李松柏,方理刚,李宏泉.钢管预加固措施对隧洞围岩变形的影响分析[J].岩土力学,2006,27(2):327-331
    [126]蒋楚生.二郎山隧道洞口处滑坡的计算分析和整治[J].公路,2000,12:16-18.
    [127]李学森.东巨寺沟隧道洞口边坡、仰坡坍方处理[J].铁道建筑,2002,3:38-40.
    [128]赵乐之,刘晓峰,乔宁.偏压隧道设计的数值分析[J].建筑结构,2010(增).
    [129]朱仲基,党瑞彩.苏沟口隧道滑坡综合治理技术[J].建筑与工程,2004,4.
    [130]陶志平,周德培.用抗滑桩整治滑坡地段隧道变形的模型试验研究[J].岩石力学与工程学报,2004,23(3):457-460.
    [131]王军,曹平,李江腾等.降雨入渗对流变介质隧道边坡稳定性的分析[J].岩土力学,2009,30(7),2158-2162.
    [132]贾金青,王海涛,宓荣三.隧道洞口滑坡稳定性分析及滑坡治理[J].辽宁工程技术大学学报(自然科学版),2009,28(5),735-738.
    [133] A suggested method for reporting landslide remedial measures international Union of Geological Sciences Working Group on Landslides, Commission on LandsideRemediation (Chairman:M.Popescu) 2000.6.
    [134] Weerasinghe P.B,Adams D.A technical review of rock anchorage practice 1976-1996.Ground anchorage and anchored structures.Thomas Telford,London,1997.
    [135] Stability analysis of the rock slope in the Zima pan Arch Dam Reservoir,Mexico ErastG.Gaziev Bull Eng Geol Env 2001.
    [136]封明君,鞠小华.预应力锚索加固隧道洞口蠕滑山体[J].铁道建筑,1999,7.
    [137]马中旭.联合锚固技术在隧洞洞口施工中的应用[J].广东水利水电职业技术学院学报,2003,2(1).
    [138]褚以惇.码头隧道进口滑坡体成因及防治措施[J].土工基础,2010,24(4):33-35.
    [139]罗富荣.地下工程的特殊技术—管拱技术[J].铁道工程学报,1995,(1):115-122.
    [140]高程雷,朱永全.两种超前预支打技术控制地层沉降效果对比研究[[J].铁道标准设计,2003,(7).
    [141] HISATAKE M,OHNO S. Effects of Pipe Roof Sup-ports and the Excavation Method on the Displacements Above a Tunnel Face[J]. Tunnelling and Underground Space Technology,2008,23(2):120-127.
    [142] SHIN J H,CHOI Y K,KWON O Y,et al.Model testing for pipe-reinforced tunnel heading in a granular soil[J].Tunnelling and Underground Space Technology,2008,23(3):241-250.
    [143] OCAK I.Control of Surface Settlements with Umbrella Arch Method in Second Stage Excavations of Istanbul Metro[J].Tunnelling and Underground Space Tech-nology, 2008,23(6):674-681.
    [144] KAMATA H,MASHIMO H.Centrifuge Model Test of Tunnel Face Reinforcement by Bolting[J].Tunnel-ling and Underground Space Technology,2003,18(2/3):205-212.
    [145] YOO C S.Finite-element analysis of tunnel face reinforced by longitudinal pipes[J].Computers and Geotechnics,2002,29(1):73-94.
    [146] PEILA D.A theoretical study of reinforcement influence on the stability of a tunnel face[J].Geotechnical and Geological Engineering,1994,12(2):145-168.
    [147]王海涛,贾金青等.隧道管棚预支护的力学行为及参数优化[J].中国公路学报, 2010,23(4):78-83.
    [148]董新平,彭中和.浅埋地下工程管棚法施工中合理管棚直径分析[J].岩土工程学报,2007,29(9):1355-1360.
    [149]高健,张义同.实施超前注浆管棚支护的隧道开挖面稳定分析[J].天津大学学报,2009,42(8):666-672.
    [150] Chambon P,Corte J F.Shallow tunnels in cohesive soil: Stability of tunnel face[J].Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165.
    [151] Leca E,Dormieux L.Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J].Geotechnique, 1990, 40(4):581-606.
    [152] Broere W.Face stability calculation for a slurry shield in heterogeneous soft soils[J].Tunnels and Metropolises, 1998:215-218.
    [153] Anagnostou G, Kovari K.Face stability conditions with earth-pressure-balanced shields[J].Tunnelling and Underground Space Technology, 1996, 11(2):165-173.
    [154] Lee I M, Nam S W, Ahn J H.Effect of seepage forces on tunnel face stability[J].Canadian Geotechnical Journal, 2004, 19:273-281.
    [155] LIU Wenbin,LIU Baoguo,WANG Weifeng. Pipe shield effect analysis of double-arched tunnel under unsymmetrical pressures[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(supp):3704-3710.
    [156]长江水利委员会长江科学院主编.水利水电工程岩石试验规程(JGJ SL264-2001)[S].北京:中国水利水电出版社,2001.
    [157]中国.水电顾问集团成都勘测设计研究院起草.水电水利工程岩石试验规程(DL/T 5368-2007)[S].北京:中国电力出版社,2007.
    [158]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [159]南京水利科学研究院.土工试验规程(SL237-1999)[S].北京:中国水利水电出版社,1999.
    [160]陈立宏,唐松涛,张洪涛.常规三轴试验数据处理的电子表格法[J].北京交通大学学报,2010,34(1):54-57.
    [161]周光泉,刘效敏编著.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [162]滕宏伟,任松,姜德义,等.共和隧道页岩饱水软化试验研究[J].岩石力学与工程学报,2010,29(增1):2657–2662.
    [163]耶格JC,库克NGW.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981:382-403.
    [164]杨挺青,罗文波,徐平,等.粘弹性理论与应用[M].北京:科学出版社,2004.
    [165]王永兴.水-岩相互作用机理及其对库岸边坡稳定性影响的研究[D].重庆:重庆大学,2006.
    [166]龚选平.泥质粉砂岩含水率对其蠕变特性影响的研究[D].西安:西安科技大学,2006
    [167]黄明.含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究[D].重庆:庆大学,2010.
    [168]王来贵,黄润秋,王永嘉等.岩石力学系统运动稳定性理论及其应用[M].北京:地质出版社,1998:104-109.
    [169]乔丽萍.砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [170]杨文东.坝基软弱岩体的非线性蠕变损伤本构模型及其工程应用[D].济南:山东大学,2008
    [171]陈育民,徐鼎平编著.FLAC/FLAC3D基础与工程实例.北京:中国水利水电出版社,2008
    [172]褚卫江,徐卫亚,杨圣奇等.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11):2005-2010.
    [173]钟祖良.Q2原状黄土本构模型及其在隧道工程中的应用研究[D].重庆:重庆大学,2008.
    [174]郭富利.堡镇软岩隧道大变形机理及控制技术研究[D].北京:北京交通大学,2009.
    [175]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [176] E.Hoek ,E.T.Brown. Underground excavations in rock[M]. Hertford,England:Austin& Sons Ltd,1980.
    [177] E.Hoek. Strength of jointed rockmasses,23rd. Rankine Lecture[J]. Gèotechnique,1983, 33 (3):187-223.
    [178] E.Hoek,E.T.Brown. TheHoek-Brown failure criterion[C]·//Curran JH·Proc. 15th Canadian RockMech. Symp. Toronto:CivilEngineeringDept.,University ofToronto,1988.
    [179] E.Hoek. Strength of rock and rock masses[J]·ISRM News Journal,1994,2(2):4-16.
    [180] E.Hoek,KaiserP K,BawdenW F. Support of underground excavations in hard rock[M]. Rotterdam:Balkema,1995.
    [181] E.Hoek,E.T.Brown. Practicalestimates or rockmass strength[J]. Intnl JRockMech,Mining Sci andGeomechanicsAbstracts,1997,34 (8):1165-1186.
    [182] E.Hoek,Marinos P,BenissiM. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses[J]. Bull.Engg,Geol.Env,1998,57(2):151-160.
    [183] E.Hoek,C Carranza–Torres,B Corkum. Hoek–Brown failure criterion-2002 edition[J]. In:Proceedings of the NARMS-TAC conference,Toronto,2002,(1):267-273.
    [184]王文星.岩体力学[M].长沙:中南大学出版社,2004.
    [185]罗一忠,叶粤文.大厂91号矿体岩石力学参数工程处理[J] .江西有色金属,1998,12(3):9–12.
    [186]王成虎,何满潮. Hoek-Brown岩体强度估算新方法及其工程应用[J].西安科技大学学报,2006,26(4):456-459.
    [187]刘亚群,李海波,李俊如等.基于Hoek-Brown准则的板岩强度特征研究[J].岩石力学与工程学报,2009,28(Supp.2):3452-3457.
    [188]孙金山,卢文波. Hoek-Brown经验强度准则的修正及应用[J].武汉大学学报(工学版),2008,41(1):63-66.
    [189]侯化国,王玉民著.正交试验法[M].长春:吉林人民出版社,1985.
    [190]杨德编著.试验设计与分析[M].北京:中国农业出版社,2002.
    [191]王成华.土力学原理[M].天津:天津大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700