合成吡啶碱催化剂失活和再生行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吡啶类化合物有着十分广泛的用途,其来源主要有两种:一种是提炼法,另一种是化学合成法。自二十世纪50年代工业化以来,化学合成法已成为吡啶类化合物的主要生产方法。近年来我国化工行业以及饲料行业的迅速发展,国内对吡啶类化合物的需求量日益增长,但国内尚未有成熟的、有自主知识产权的合成技术及工业生产装置。因此,进行合成吡啶类化合物的国产化技术开发已十分必要和迫切。鉴于此,针对以甲醛、乙醛和氨气为原料合成吡啶类化合物的技术路线,本课题组于1999年开始开展催化剂及其工艺条件的实验研究,并取得了初步的研究成果。在此研究基础上,本文主要针对此类反应的催化剂容易失活,再生后催化剂又能重复使用的特点,着重考察了催化剂的失活和再生行为及其影响因素,为催化剂的进一步改进提供了技术依据。
     由催化剂的失活实验研究中得出,原料气中氨气的比例越大,越有利于吡啶的生成,但不利于3-甲基吡啶的生成,同时催化剂也越容易失活;原料气中的水蒸气的存在使催化剂表面保持清洁,并能延缓催化剂的失活。实验还发现,催化剂失活的主要形式是催化剂表面的积炭,在本实验的操作条件下,催化剂上的积炭量Cc(g/g.cat)随反应时间t(hour)变化的关系式为:
     Cc=0.01684t~(0.62644)
     通过催化剂再生的实验研究,发现此类失活催化剂的再生较佳温度在770K~800K之间。再生反应空速对催化剂再生有显著影响,并存在一最佳值,在本实验的操作条件下,再生的最佳空速为3000h~(-1)左右。研究结果还表明:再生除去了初始碳含量的99%以上,催化剂的活性能基本恢复,达到工业再生的要求。最后,还获得了此类失活催化剂在再生温度为725K~800K之间、再生反应空速为2500h~(-1)下的再生动力学方程为:
     考虑到环保问题及反应过程的集成,再生过程中尽量多的生成CO,少生成CO_2。因此,我们采用了升高再生反应温度、降低再生反应空速的措施。
    
     浙江大学硕士学位论文
     在综合文献调研的基础上,本文另外还开展了催化剂改性的实验研究。用
    Z广和 Vy元素分别对ZSM6型催化剂进行改性后,毗院和 3.甲基0比陡的得率
    显著提高,其中V外元素改性的催化剂更有利于3.甲基毗陡的生成;用钻或钒金
    属离子对催化剂进行改性后,反应目的产物的总得率比催化剂改性前增长了
    15%~20%。研究结果还表明:钒型催化剂具有较高的活性,铅型催化剂则具有
    较好的稳定性。
Pyridine bases are widely used in Chemical industry since the industrialization of their synthetic technology in the 1950's. There are two main sources about pyridine bases: One is distilling from coal tar, the other is chemical synthesis. With the rapid development of chemical industry and feedstuff industry in our country, the demand of pyridine bases is expanded increasingly. As far as the independent property for synthetic technology and the manufacture equipment in our country are concerned, it's a blank in this area. Then it is exigent and necessary to exploit our own technology to produce pyridine bases. Further research has been experimented on catalysts and the technical conditions of synthesis, which used formaldehyde . acetaldehyde and ammonia as raw material since 1999 to improve the activity of catalysts. Based on the easily deactivation and the rapidly regeneration of this kind of catalyst which can be used times, more attentions were paid on the factors in order to provide theoretical and practical guidance for catalysts' further improvement.
    The experiments on catalyst's deactivation showed that the more ratio of the ammonia in the gas of raw material, the more yield of pyridine and the less that of 3-picoline. The catalyst was prone to deactivation when the proportion of ammonia in the raw materials was large. The content of water in the raw materials can restrains the catalyst's deactivation because of keeping the catalyst cleanly. At the same time, the results of experiments indicated that the catalyst's deactivation was made up of two parts: one was caused by ammonia called poisoning-deactivation, the other was caused by formaldehyde . acetaldehyde ,called coking. But the latter was the main reason for catalyst's deactivation. The connected equation of accumulated carbon with the deactivated time was: Cc=0.01684 t062644.
    After a series of experiments on the behavior of catalyst's regeneration, the optimum conditions were obtained: the optimum temperature of regeneration was between 770 K and 800 K; the optimized space-velocity of regeneration was about 3000 h-1, and the influence of the regeneration space-velocity was significant. On these conditions, more than 99 percent of the original accumulated carbon could be burnt out, the activity of catalyst could be restored mostly, and it could be satisfied to the need of industry. Finally, when the temperature of regeneration was between 725K and 800K, the regeneration equation for this deactivated catalyst was shown as following:
    
    On considering the environment and the integration of process, more carbon monoxide is expected in the waste gas during catalyst's regeneration, but carbon dioxide is on the contrary. For this destination, elevating the reaction temperature and reducing the space-velocity were adopted.
    in
    
    
    
    Based on summarizing the literature, this thesis has researched the alteration of catalyst also. The results showed that catalyst dipped with vanadium or zirconium could improve the total yields of pyridine bases remarkably. At the same time, the catalyst dipped with vanadium element was more propitious to the manufacture of 3-picoline. The total yields of pyridine and 3-picoline was improved by from 15 percent to 20 percent through the alteration of catalysts with zirconium or vanadium element. Moreover, the results of experiments exhibited that the catalyst dipped with vanadium has much higher activity, while the catalyst mended with zirconium exhibited long-term stabilities.
引文
(1)卫双绍.四川化工 1996,3:40~43
    (2)杨仲春.四川化工 1991,4:57~58
    (3)赫益龄,李素霞.石家庄化工 1993,2:15~19
    (4)EP0131887
    (5)刘长令,汪灿明等.农药 1999,38(6):1~3
    (6)肖国民,钱杰生.化工时刊 1997,11(2)3~5
    (7)李东风,张吉瑞,杜迎春.石油化工 1995,24(7):460~464
    (8)徐择辉,李剑英,王缨等.金山油化纤 1994,13(4):1~5
    (9)周裕之,聂春慧,柴茂荣.化学反应工程与工艺 1993,9(3):239~244
    (10)EP0382543A2
    (11)李东风,张吉瑞,石油化工 1997,26(11):764~769
    (12)王晓光,刘智凌,阳文等.湖南化工 1997,27(2):23~26
    (13)彭峰,冯景贤.工业催化 1997,4:47~51
    (14)刘伟,李志林.石油学报(石油加工) 1995,11(3):36~41
    (15)袁兴东,金英杰,沈健等.燃料化学学报 2000,28(3):253~256
    (16)刘中民,陈国权,王清遐等.催化学报 1994,15(4):301~303
    (17)施力,李路汀,李承烈.燃料化学学报 1995,23(2):168~173
    (18)张存旺,李成岳.天然气化工 1993,18(5):15~19
    (19)韩明汉,李素珍,林世雄等.石油炼制与化工 1997,28(12):60~63
    (20)王学勤,王祥生.石油学报(石油加工) 1994,10(2):38~48
    (21)徐佩若,薛立峨,薛为岚等.华东理工大学学报 1995,21(6):659~663
    (22)朱开宏,程迎生,范鸣歧等.化学反应工程与工艺 1994,10(3):254~259 1993,9(4):372~376
    (23)魏述俊.炼油设计 2000,30(11):26~29
    (24)陈标华,林世雄,张吉瑞.石油学报(石油加工) 1999,15(3):77~82
    (25)周广林,周红军,付元胜.大化肥 2000,23(2):119~121
    (26)刘谦,果学义.吉化科技 1994,2:32~36
    (27)赵琰,张喜文.抚顺烃加工技术 2000,4:1~10
    (28)高劲松,卢春喜,吕瑾等.炼油设计 1999,29(11):41~45
    (29)谭永放,张新堂,毛鹏生等.齐鲁石油化工 1998,26(4):246~249
    (30)陈标华,林世雄,张吉瑞等.石油学报(石油加工) 1998,14(3):10~16
    (31)任杰.石油化工 1995,24(6):367~370
    (32)谈之敏,顾其威.化学反应工程与工艺 1988,4(1):11~15
    (33)Jose L. Sotelo, Maria etc.Applied Catalysis A: General 114(1994) 273~285
    (34)De Chen,A.Gronvold.Applied Catalysis A: General 137(1996) L1~L8
    (35)G.F. F_ROMENT, J.D_E M_EYER.Journal of Catalysis 124 (1990) 391~400
    (36)P.D.Hopkins, J.T. Miller, etc.Applied Catalysis A: General 136(1996) 29~48
    (37)尹元根编著.《多相催化剂的研究方法》化学工业出版社,1988
    (38)李承烈编著.《催化剂失活》化学工业出版社,1989
    (39)李蕴玲译.石油炼制 1979,1(6):25~29
    
    
    (40) PIERRE DEJAIFE,ALINE AUROUX. J.catal.1981,70,123~136
    (41) 李裕民,郑华松,李德经.石油化工 1983,12(4):213~214
    (42) Paolo Beltrame, Pier Luigi, Paolo Carniti.Zeolites 1985, 5(6):400~405
    (43) Anderson J.R.J.catal.1979,58,114~130
    (44) Dumez F.J.Ind.Eng.Chem. Process Design & Develop 1976,15,291~294
    (45) Bilbao Javier.Chem.Eng.Sci.1983, 38(8):1356~1360
    (46) USP4,866,179
    (47) 卓润生,谭长瑜,程昌瑞.石油化工 1992,21(9):585~591
    (48) Maria A.Uguina. Jose L.Sotelo, David P. Serrano, Jose L.Valverde.Ind.Eng.Chem.Res.1994, 33(1):26~31
    (49) 刘昭铁,周敬来,张碧江.天然气化工 1993,18(6):30~37
    (50) 刘中民,陈国权,王清遐.催化学报 1994,15(4):301~303
    (51) 袁兴东,周敬来.燃料化学学报 2000,28(3):253~256
    (52) Cuong Pham-Huu, Andrew P.E.York, Mohamed Benaissa, Pascal Del.Gallo,and Mare J.Ledoux Ind.Eng.Chem.Res.1995,34(4):1107~1113
    (53) 高勇,朱晓蒙,朱中南,袁渭康.催化学报 1995,16(1):44~48
    (54) H.Sato,S.Shimizu, N.Abe and K. Hirose.Chemistry.Letters 1994, 59~62
    (55) Shinkichi Shimizu,Nobuyuki Abe and Hiroshi Sato.Catalysis Surveys from Japan 2(1998), 71~76
    (56) 郑连义 石家庄化工 1998,(3):23~25
    (57) Rutgerwerk Germany Patent No 2,203,384(1972)
    (58) Mobil Oil USA. Patent No 4,220,783 (1980)
    (59) Nepra USA. Patent No 512,834(1983)
    (60) Mobil Oil USA. Patent No 5,395,940
    (61) Rao.R.Ramachandra Zeolites 1996,16(4):254~257
    (62) Kulkarni S.J. Appl. Catal.A.1994,113(1):1~7
    (63) Hughes. R, Santamaria.J,Monzon A.Catal.Today.1997,37(3):126~131
    (64) Baumgarten.E.React.Kinet.Catal.Lett.1997,61(1):3~12
    (65) 支玉珍,张国泰.石油化工 1985,14(11):665~673
    (66) 卓润生,程昌瑞,谭长瑜.燃料化学学报 1995,23(2):180~185
    (67) 朱泽霖,刘灵丽,李承烈.催化学报 1996,17(1):40~44
    (68) 尉东光,周敬来,张碧江.煤炭转化 1996,19(2):59~65
    (69) Fuentes.Gustavo.A.Appl.Catal.1985,15(1):33~40
    (70) 尉东光,周敬来,张碧江.天然气化工 1995,20(2):47~52
    (71) KENBJI HASHIMOTO,KOUJI TAKATANI,HIROSHI IWROSHI IWASA TAKAO MASUDA Chem.Eng.J.(Lausanne) 1983,27(3):177~186
    (72) Murphy James.R USA.Patent No 4,615,992
    (73) Azkoiti,Josune Afinidad(span) 1987,44(407):49~51
    (74) Gultekin, Selahattin Arabian.J.Sci.Eng.1987,12(1):59~72
    (75) Bibao Javier.Chem.Eng.J (Lausanne) 1987,35(2):115~122
    (76) Bibao Javier.Afinidad.1987,44(409):195~199
    (77) Corella Jose.An. Quim. Ser.A.1988, 84(2):205~220
    (78) Ramiro Jesus.Santamaria.Ing. Quim 1988,20(228):159~165
    
    
    (79) Sohn. H.Y Chem. Eng. Sci 1989, 44(2):442~444
    (80) Chang. Yu li. AIChE J.1989, 35(3): 385~392
    (81) Santamaria.J.Chem.Eng.Sci.1991, 46(1):11~21
    (82) Brito Alayon.A.An Quim (span) 1990,86(6):619~624
    (83) Honchi, Akio.JP0394841
    (84) Martin, Andreas.Ger (East) DD 293,967
    (85) Ngomo.H.M.Afr J.Sci.Techol,Ser A 1991,9(1):20~27
    (86) Bozga. Grigore.Rev.Chim.(Bucharest) 1992,43(7):386~389
    (87) Moljord.K.Appl.catal. A 1995,121(2):245~259
    (88) Guisnet,M.Stud.Surf.Sci.Catal.1994,88,53~68
    (89) Masalska. Aleksandra.Stud.Surf.Sci.Catal.1994,88, 561~566
    (90) Solovetskii.Yu.I.React.Kinet.Catal.Lett.1995,55(2):463~478
    (91) Neuber.Marita.Ger offen.DE 4,434,981
    (92) Guth. Engene.D.WO 9620044
    (93) Markusse. A. P, Kuster. B. F.M, Schouten.J.C Stud.Surf.Sci.Catal.1999,126, 273~280
    (94) 吴平.工业催化 1999,7(4)49~54
    (95) Delmon. B, Froment. G.F Stud.Surf.Sci.Catal.1999,126,496~503
    (96) Read.J.F, Bewick. S.A, Dunfield. L.G, Wetmore.S.D Int.J.Chem.Kinet.2000, 32(1):7~16
    (97) Kumbilieva.Krasimira.E,Petrov.Lachezar.A,Kiperman.Savelii.L Bulg.Chem.Commun.1998, 30(1-4):23~26
    (98) Baldev Singh,Sisir Kr,Roy.J.Chem.Technol.Biotechnol.1998,74:246~252
    (99) Seitz. M, Klemn. E, Emig.G Stud.Surf.Sci.Catal.1999,126, 221~228
    (100) Bulushev. D.A, Kiwi-Minsker.L, Renken.A.Catal.Today.2000, 57(3-4):231~239
    (101) Lie.Bernt,Himmelblau, David M.Ind.Eng.Chem.Res 2000,39(5):1242~1248
    (102) 杨德明,林西平.石油炼制与化工 1999,30(11):53~55
    (103) Pedraza. F, Fuentes. S, Vrinat. M, Lacroix M.Catal.Lett.1999,62(2-4):121~126
    (104) Aguayo.Andres,Gayubo.Ana. G,Olaza.Martin,Ortega.Jose.M,Moran. Angel.L Chem.Eng.Common.1999,176,43~63
    (105) Worstell.Jonathan. H, Doll. Michael.J, Worstell.John.H.Chem.Eng.Prog.2000,96(9):59~64
    (106) Kim. Soo.Y,James.G.Jr,Hammache.Sonia J. Catal.2001, 201(1):1~12
    (107) 李顺芬,罗世中,杨详贵.石油与天然气化工 2000,29(4):160~162
    (108) 徐聪,韩明汉.石油炼制与化工 2002,33(3):47~50
    (109) 李云阁,陈标华.石油化工 2002,31(4):266~270
    (110) 王艳辉,吴迪镛.化学工业 2001,14(6):5-8,44~47
    (111) 张卓绝,王振新.聚酯工业 2001,14(6):5-8,44~47
    (112) 燕青芝,程振民,余丰东.石油学报(石油加工) 2001,17(2):38~4
    
    
    (113)解新安,华贲,陈清林.炼油设计 2001,31(5):37~41
    (114)徐春明,罗雄麟,林世雄.炼油设计 1996,26(6):54~57
    (115)USP5780635
    (116)屈亚平.合成吡啶碱催化剂及其工艺条件的实验研究[D].浙江大学2001,3
    (117)曾昭槐编著.《择形催化》 中国石化出版社
    (118)陈甘棠编著.《化学反应工程》 化学工业出版社2001,1
    (119)陈为通著.《气相色谱手册》 科学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700