小型平面天线宽带化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据工作机制,天线大致上可以划分为谐振型与非谐振型两大类。一般而言,谐振型天线的电尺寸较小但工作带宽不宽,而非谐振型天线的工作带宽较宽但电尺寸较大。在传统的谐振型天线设计中,基于天线小型化以及方便设计的考虑,一般只利用谐振器(辐射器)的第一个谐振模式。这种单谐振的工作方式导致了该类型天线的工作带宽不可能太宽。为了解决天线的小型化与宽带化之间的矛盾,本文以传统的平面谐振型天线(贴片天线、缝隙天线和振子天线)为研究对象,在不增加辐射器数目的前提下,进行了拓展其工作带宽的相关研究。本文的主要工作由两部分组成,分别以阻抗匹配和多模谐振为出发点,对平面谐振型天线工作带宽的改进进行了深入研究。在第一部分中,针对天线阻抗匹配网络的小型化进行了相关研究,提出了一种采用多级谐振单元来实现阻抗匹配从而达到改善天线工作带宽的技术,并成功地将其用于微带贴片天线和缝隙天线,使其带宽获得了成倍的增加;在第二部分中,创新性的提出了利用规则谐振器的多模谐振特性来展宽天线的工作带宽的设计思路,并以窄缝隙天线和印刷振子天线为具体研究对象,成功的实现了几种驻波带宽(电压驻波比<2.0)大于3:1的平面天线。
     阻抗匹配是一种传统的电路设计技术。当天线工作于某个谐振模式时,对其进行等效电参数提取之后,就可以利用经典的阻抗匹配技术设计所需的阻抗匹配网络。该技术不破坏谐振器本身的辐射结构,因此在添加了额外的匹配网络之后,不会使天线的辐射方向图产生明显的变化。由于阻抗匹配电路需要一定的空间,因此会增加天线的总体尺寸,这是阻抗匹配方法的一个主要缺陷。为了通过简化电路结构来减小阻抗匹配电路的尺寸,本文分别以微带贴片天线和微带缝隙天线为具体研究对象,针对性的提出了两种小型化的阻抗匹配电路结构。在增加了设计好的阻抗匹配电路之后,天线的工作带宽可以成倍的被拓宽,同时天线的总体尺寸并没有显著的增加,利用该设计可以提高阻抗匹配技术的实用性。
     多模谐振是微波频段的分布式谐振器(辐射器)的基本特性。传统的谐振型天线往往只利用了辐射器的一个谐振模式,因此其工作带宽很难有实质性的改善。已有的多模宽带天线往往结构复杂且辐射机制不明晰,在设计上也没有明确的准则作为参考。本文以基本的磁振子(微带窄缝隙天线)和电振子(微带印刷振子)为对象,利用多模技术对其工作带宽进行了改进。仿真和实验结果表明,通过合理设计馈电结构和参考端口阻抗,可以通过同时激励起一个谐振器的前若干个谐振模式,从而将传统的窄缝隙天线和印刷振子天线的阻抗带宽拓宽到3:1以上。由于并没有引入额外的谐振器和阻抗匹配结构,因此天线的尺寸没有增大。这些设计实例表明,多模技术可以在保持天线小型化的同时,大幅度地提高天线的工作带宽。
Antennas may be generally classified into two types:resonant type or non-resonant type according to their operating mechanism. Resonant type antennas are usually compact in size but their bandwidth is always narrow. Non-resonant type antennas have a wide operating bandwidth whereas is large in size. In the traditional resonant antenna designs, only the first resonant mode is utilized in the purpose of size miniaturization and design simplification. However, this single resonance nature leads directly to the narrow operating bandwidth. The main objective of this thesis is to develop new bandwidth enhancement techniques for traditional resonant antennas with a single radiator, especially for those with planar configurations, e. g., patch antennas, narrow slot antennas and planar dipoles. In this study, the bandwidth enhancement of the planar resonant antennas is realized by using two different approaches, e. g., impedance matching and multiple-mode-resonance concept. In the first part, the author developed a miniaturization technique of the impedance matching circuit for planar resonant antennas. In the second part, the author successfully developed several planar antennas (narrow slot antennas and printed dipole antennas) with 3:1 or larger bandwidth (VSWR<2.0), using the multiple-resonance concept.
     Impedance matching is a traditional technique in circuit design. An impedance matching network could be easily designed by using the matching theory after extracting the electrical parameters of a single-mode antenna. The radiating structure needs not to be altered by using this technique, thus the radiation pattern will remain stable after adding the matching network. The main shortcoming is the enlargement in antenna size because of the impedance matching circuit. To solve this, two compact implementations are proposed in this research. One is suitable for patch antennas; the other one is for slot antennas. After adding the proposed matching circuit, the antenna bandwidth can be multiplied with no significant size enlargement.
     Multiple-mode-resonance is a unique feature of the distributed resonators (radiators). Only one resonant mode is used in traditional resonant antennas, thus the antenna bandwidth is hard to be improved. The reported wideband antennas using the multiple-resonance concept are complicated in structure. The design procedure depends on cut-and-try method without clear rules or formulas due to the unclear radiation mechanism. In this study, the multiple-resonance technique is applied to two basic radiators (magnetic and electric dipoles) to broaden their operating bandwidths. As validated by the numerical prediction and experiment, the bandwidths of the traditional narrow slot antenna (magnetic dipole) and printed dipole can be extended to be 3:1 or even wider with proper feeding schemes and referenced port impedance. Those successful designs indicate that the multiple-resonance technique makes great improvement on the bandwidth of the resonant antennas whereas antenna miniaturization is retained.
引文
[1]Http://en.wikipedia.org/wiki/Antenna_(radio)
    [2]J. D. Kraus and R. J. Marhefka, Antennas:For All Applications Third Edition.2002. McGraw-Hill
    [3]D.G.. Berry. R.G.. Malech and W.A. Kennedy. "The reflectarray antenna", IEEE Trans. Antennas Propagation, Vol.11, pp.645-651, Nov,1963
    [4]P. J. Gibson, "The vivaldi aerial," Proceedings of the 9th European Microwave Conference,1979, pp. 103-105.
    [5]A. Sabban, "A new broadband stacked two-layer microstrip antenna," IEEE AP-S Int. Symp. Digest, June 1983, pp.63-66.
    [6]Federal Communications Commission, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems," Tech. Rep., ET-Docket, FCC02-48, Apr.2002. pp.98-153
    [7]P. C. Sharma and K. C. Gupta, "Analysis and Optimized Design of Single Feed Circularly Polarized Microstrip Antennas," IEEE Trans. Antennas Propagation,Vol. AP-31, No.6,1983, pp.949-955.
    [8]G. A.Deschamps, "Microstrip Microwave Antennas," Proc.3rd USAF Symposium on Antennas,1953.
    [9]C. K. Aanandan, P. Mohanan and K. G. Nair, "Broad-band gap coupled microstrip antenna," IEEE Trans. Antennas Propagation, Vol.38, No.10,1990, pp.1581-1586.
    [10]A. Sabban, "A new broadband stacked two-layer microstrip antenna," IEEE AP-S Int. Symp. Digest, June 1983, pp.63-66.
    [11]D. H. Schaubert, and F. G. Farrar, "Some Conformal, Printed Circuit Antenna Design," Proc. Workshop Print. Circuit Antenna Tech., New Mexico State University, Las Cruces, NM, October 1979, pp. 5.1-5.21.
    [12]C. K. Anandan and K. G. Nair, "Compact Broadband Microstrip Antennas," Electronics Letters, Vol. 22, No.20,1986, pp.1064-1065.
    [13]G. Mayhew-Ridgers, J. W. Odendaal and J. Joubert, "Single-layer capacitive feed for wideband probe-fed microstrip antenna elements," IEEE Trans. Antennas Propagation. Vol.51, No.6,2003. pp. 1405-1407.
    [14]Y. X. Guo, K. M. Luk, K. F. Lee and Y. L. Chow. "Double U-slot rectangular microstrip antenna." Electronics Letters, Vol.34, No.19.1998, pp.1805-1806.
    [15]K. M. Luk, X. Guo, K. F. Lee and Y. L. Chow., "L-probe proximity fed U-slot patch antenna," Electronics Letters, Vol.34, No.19,1998. pp.1806-1807.
    [16]H. G. Pues and A. R. Van De Capelle. "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas Propagation, Vol.37. No.11.1989, pp.1345-1354.
    [17]S. B. Cohn, "Slot line on a dielectric substrate," IEEE Trans. Microwave Theory and Techniques, Vol.17, no.10, Oct.1969. pp.768-778.
    [18]Y. Yoshimura, "A microstripline slot antenna," IEEE Trans. Microwave Theory and Techniques, Vol.20, no.11,Nov.1972, pp.760-762.
    [19]L. Zhu, R. Fu, and K. L. Wu, "A novel broadband microstrip-fed wide slot antenna with double rejection zeros," IEEE Antenna and Wireless Propagation Letters. Vol.2,2003, pp.194-196.
    [20]N. Behdad and K. Sarabandi, "A wide-band antenna design employing a fictitious short circuit concept," IEEE Antenna and Wireless Propagation Letters. Vol.53 (Ⅱ), no.1, Jan.2005, pp.475-482.
    [21]N. Behdad and K. Sarabandi, "A multiresonant single-element wideband slot antenna," IEEE Antenna and Wireless Propagation Letters, vol.3,2004, pp.5-8.
    [22]A. P. Zhao and J. Rahola, "Quarter-wavelength wideband slot antenna for 3-5 GHz mobile applications," IEEE Antenna and Wireless Propagation Letters, Vol.4,2005, pp.421-424.
    [23]S. K. Sharma, L. Shafai, and N. Jacob, "Investigation of wide-band microstrip slot antenna," IEEE Trans, Antennas Propagation, Vol.52, no.3, Mar.2004, pp.865-872.
    [24]S. I. Latif, L. Shafai, and S. K. Sharma, "Bandwidth enhancement and size reduction of microstrip slot antennas," IEEE Trans. Antennas Propagation, Vol.53, no.3, Mar.2005, pp.994-1003.
    [25]H. Kanno, "Compact ultra-wideband antenna based on broadband radiating ground slit fed by microstrip line," Proceedings of IEEE Antennas and Propagation Society International Symposium, 2007, pp.4645-4648.
    [26]P. Lindberg, E. Ojefors, A. Rydberg, "Wideband slot antenna for low-profile hand-held terminal applications," Proceedings of the 9th European Conference on Wireless Technology,2006, pp.403-406.
    [27]M. Gopikrishna, D. D. Krishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Design of a microstrip fed step slot antenna for UWB communication," Microwave and Optical Technology Letters, vol.51, no 4, Apr.2009, pp.1126-1129.
    [28]Y. W. Jang, "Broadband cross-shaped microstrip-fed slot antenna." Electronics Letters 36(2000). pp. 2056-2057
    [29]Y. F. Liu, K. L. Lau, Q. Xue, and C. H. Chan, "Experimental studies of printed wide slot antenna for wide-band applications," IEEE Antenna and Wireless Propagation Letters. Vol.3,2004, pp.273-275.
    [30]J. Y. Sze and K. L. Wong. "Bandwidth enhancement of a microstripline-fed printed wide-slot antenna," IEEE Trans. Antennas Propagation. Vol.49, no.7. Jul.2001. pp.1020-1024.
    [31]W. J. Lui, C. H. Cheng, H. B. Zhu, "Compact balanced antipodal slot antenna for ultra-wideband applications," Microwave and Optical Technology Letters, Vol.48, no.10, Oct.2006, pp.1943-1945
    [32]M. Himdi, J. P. Daniel, "Analysis of printed linear slot antenna using lossy transmission line model," Electronics Letters, Vol.28, no.6, Mar.1992, pp.598-601.
    [33]L. Zhu and K. Wu, "Complete circuit model of microstrip-fed slot radiator:Theory and experiments." IEEE Microwave and Guided-Wave Letters, Vol.9, no.8, Aug.1999. pp.305-307.
    [34]X. H. Wu and Z. N. Chen. "Comparison of planar dipoles in UWB applications," IEEE Trans. Antennas Propagation. Vol.53, no.6, Jun.2005. pp.1973-1983.
    [35]K. Kiminami, A. Hirata and T. Shiozawa. "Double-sided printed bow-tie antenna for UWB communications," IEEE Antenna and Wireless Propagation Letters. Vol.3,2004, pp.152-153.
    [36]S. H. Choi, J. K. Park, S. K. Kim and J. Y. Park, "A new ultra-wideband antenna for UWB applications," Microwave and Optical Technology Letters, Vol.40, no.4, May.2004, pp.399-411.
    [37]J. Huang and A.C. Densmore, "Microstrip Yagi array antenna for mobile satellite vehicle applications," IEEE Trans, Antennas Propagation, Vol:39, July,1991, pp.1024-1030.
    [38]Y. Qian, W. R. Deal, N. Kaneda and T. Itoh, "Microstrip-fed quasi-Yagi antenna with broadband characteristics," Electronics Letters, Vol.34, Nov.1998, pp.2194-2196.
    [39]R. Pantoja, A. Sapienza and F. M. Filho, "A microwave printed planar log-periodic dipole array antenna", IEEE Trans, Antennas Propagation, Vol.35, Oct.1987, pp.1176-1178
    [1]G. A.Deschamps, "Microstrip Microwave Antennas," Proc.3rd USAF Symposium on Antennas,1953.
    [2]Y. T. Lo, D. Solomon, and W. F. Richards, "Theory and experiment on microstrip antennas," IEEE Trans. Antennas Propagation, Vol.27, March 1979, pp.137-145.
    [3]J. D. Kraus and R. J. Marhefka, Antennas:For All Applications Third Edition,2002, McGraw-Hill
    [4]G. Kumar and K. Ray, Broad-band Microstrip Antennas Norwood, MA:Artech House,2003.
    [5]Y. Yoshimura, "A microstripline slot antenna," IEEE Trans. Microwave Theory and Techniques, Vol.20, no.11, Nov.1972,pp.760-762.
    [6]M. Kahrizi, T. K. Sarkar, and Z. A. Maricevic, "Analysis of a wide radiating slot in the ground plane of a microstrip line," IEEE Transaction on Microwave Theory and Techniques, vol.41, no.1, Jan.1993, pp.29-37.
    [7]N. Behdad and K. Sarabandi, "A novel approach for bandwidth enhancement of slot antennas," Proceedings of the 2003 Antenna Applications Symposium, Illinois Sept 2003
    [8]H.-C. Liu, T.-S. Homg and N. G. Alexopolous, "Radiation from Aperture Antennas with A Coplanar Waveguide Feed," IEEE AP-S Int. Symp. Dig.,1993, pp.1820-1823.
    [9]Y. Liu,; Z. Shen and C. L. Law, "A Compact Dual-Band Cavity-Backed Slot Antenna," IEEE Antenna and Wireless Propagation Letters, Vol..5,2006, pp.4-6
    [10]L. Yan. W, Hong, G. Hua. J. X. Chen, K. Wu and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microwave and Wireless Components Letters,Vol.14, No.9.2004, pp.446-448
    [11]J. R. James and P. S. Hall. "Microstrip antennas and arrays. Part 2:New array-design technique," IEE Journal on Microwaves, Optics and Acoustics, Vol.1. May,1977, pp.175-181
    [12]P. J. Gibson, "The vivaldi aerial," Proceedings of the 9th European Microwave Conference,1979. pp. 103-105.
    [13]J. Donnellan. "A spiral-doublet scanning array." IRE Trans.Antennas Propagation. Vol.9. Mar.1961. pp.276-279.
    [14]K. Kiminami. A. Hirata and T. Shiozawa. "Double-sided printed bow-tie antenna for UWB communications," IEEE Antenna and Wireless Propagation Letters. Vol.3.2004. pp.152-153.
    [15]R. Pantoja, A. Sapienza and F. M. Filho,"A microwave printed planar log-periodic dipole array antenna", IEEE Trans. Antennas Propagation. Vol.35, Oct.1987. pp.1176-1178.
    [16]C. H. Liu, Y. G. Lu, C. L. Du, J. B. Cui and X. M Shen, "The Broadband Spiral Antenna Design Based on Hybrid Backed-Cavity," IEEE Trans. Antennas Propagation. Vol.58. June,2010, pp.1876-1882.
    [17]X. H. Wu and Z. N. Chen. "Comparison of planar dipoles in UWB applications," IEEE Trans. Antennas Propagation, Vol.53, no.6, Jun.2005, pp.1973-1983.
    [18]T. K. Sarkar, "A century-bandwidth antenna reinvented and patented after eighteen years with only a decade bandwidth,", IEEE Mag. Antennas Propagation, Vol.48, Aug.2006, pp.131-132
    [19]S. Y. Suh, W. L. Stutzman and W. A. Davis, "A new ultrawideband printed monopole antenna:the planar inverted cone antenna (PICA)," IEEE Trans. Antennas Propagation, Vol.52, May,2004m pp.1361-1364.
    [20]Y. W. Jang, "Broadband cross-shaped microstrip-fed slot antenna," Electronics Letters 36(2000), pp. 2056-2057
    [21]Y. F. Liu, K. L. Lau, Q. Xue, and C. H. Chan, "Experimental studies of printed wide slot antenna for wide-band applications," IEEE Antenna and Wireless Propagation Letters. Vol.3,2004, pp.273-275.
    [22]J. Y. Sze and K. L. Wong, "Bandwidth enhancement of a microstripline-fed printed wide-slot antenna," IEEE Trans, Antennas Propagation, Vol.49, no.7, Jul.2001, pp.1020-1024.
    [23]W. J. Lui, C. H. Cheng, H. B. Zhu, "Compact balanced antipodal slot antenna for ultra-wideband applications," Microwave and Optical Technology Letters, Vol.48, no.10, Oct.2006, pp.1943-1945
    [24]A. P. Zhao and J. Rahola, "Quarter-wavelength wideband slot antenna for 3-5 GHz mobile applications," IEEE Antenna and Wireless Propagation Letters, Vol.4,2005, pp.421-424.
    [25]S. K. Sharma, L. Shafai, and N. Jacob, "Investigation of wide-band microstrip slot antenna," IEEE Trans, Antennas Propagation, Vol.52, no.3, Mar.2004, pp.865-872.
    [26]S. I. Latif, L. Shafai, and S. K. Sharma, "Bandwidth enhancement and size reduction of microstrip slot antennas," IEEE Trans. Antennas Propagation, Vol.53, no.3, Mar.2005, pp.994-1003.
    [27]H. Kanno, "Compact ultra-wideband antenna based on broadband radiating ground slit fed by microstrip line," Proceedings of IEEE Antennas and Propagation Society International Symposium. 2007, pp.4645-4648.
    [28]P. Lindberg, E. Ojefors, A. Rydberg, "Wideband slot antenna for low-profile hand-held terminal applications," Proceedings of the 9th European Conference on Wireless Technology,2006, pp.403-406.
    [29]M. Gopikrishna, D. D. Krishna. C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Design of a microstrip fed step slot antenna for UWB communication," Microwave and Optical Technology Letters, vol.51. No.4, Apr.2009, pp.1126-1129
    [30]C. K. Aanandan, P. Mohanan and K. G. Nair, "Broad-band gap coupled microstrip antenna," IEEE Trans. Antennas Propagation, Vol.38, No.10,1990, pp.1581-1586.
    [31]A. Sabban, "A new broadband stacked two-layer microstrip antenna," IEEE AP-S Int. Symp. Digest. June 1983, pp.63-66.
    [32]N. Behdad and K. Sarabandi, "A wide-band antenna design employing a fictitious short ciro(?)it concept," IEEE Antenna and Wireless Propagation Letters, Vol.53 (Ⅱ), no.1, Jan.2005, pp.475-482.
    [33]W. J. Lui, C. H. Cheng and Y. Cheng, "A novel broadband multislot antenna fed by microstrip line,' Microwave and Optical Technology Letters, Vol.45, APR.,2005, pp.55-57.
    [34]D. M. Pozar, "A reciprocity method of analysis for printed slot and slot coupled microstrip antennas," IEEE Transactions on Antennas and Propagation, vol.34, no.12, Dec.1986, pp.1439-1446.
    [35]K. M. Luk, X. Guo, K. F. Lee and Y. L. Chow., "L-probe proximity fed U-slot patch antenna,' Electronics Letters, Vol.34, No.19,1998, pp.1806-1807.
    [36]P. C. Sharma and K. C. Gupta, "Analysis and Optimized Design of Single Feed Circularly Polarized Microstrip Antennas," IEEE Trans. Antennas Propagation, Vol. AP-31, No.6,1983, pp.949-955.
    [1]H. G. Pues and A. R. Van De Capelle, "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas Propagation, Vol.37, No.11,1989, pp.1345-1354.
    [2]K. R. Carver and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propagation, Vol. 29, No.1,1981. pp.2-24.
    [3]R. M. Fano, "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Inst., vol.249, nos.1-2, pp.57-83 and 138-154, Jan.-Feb.1950
    [4]G. L. Matthaei, L. Young, and E. M.T.Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York:McGraw-Hill,1964,sec.4.09-4.10
    [5]J. I. Kim and Y. J. Yoon, "Design of wideband microstrip array antennas using the coupled lines," IEEE AP-S Int. Symp. Digest, July 2000, pp.1410-1413.
    [6]K. Yoshida, T. Takahashi, H. Kanaya, T. Uchiyama and Z. Wang, "Superconducting slot antenna with broadband impedance matching circuit," IEEE Trans. Applied Superconductivity, Vol.11, No.1, Part 1,2001 pp.103-106.
    [7]E. H. Lim and K. W. Leung "Use of the dielectric resonator antenna as a filter element," IEEE Trans. Antennas Propagation, Vol.56, No.1,2008, pp.5-10.
    [8]A. I. Abunjaileh, I. C. Hunter and A. H. Kemp, "A circuit-theoretic approach to the design of quadruple-mode broadband microstrip patch antennas," IEEE Trans. Microwave Theory and Techniques, Vol.56, No.4,2008, pp.896-900.
    [9]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications New York:Wiley, 2001.
    [10]K. R. Carver and J. W. Mink," Microstrip antenna technology," IEEE Trans. Antennas Propagation, Vol. 29. No.1,1981. pp.2-24.
    [11]R. M. Fano, "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Inst., vol.249, nos.1-2, pp.57-83 and 138-154, Jan.-Feb.1950
    [12]L. Zhu, R. Fu, and K. L. Wu, "A novel broadband microstrip-fed wide slot antenna with double rejection zeros," IEEE Antenna and Wireless Propagation Letters, vol.2.2003. pp.194-196.
    [13]N. Behdad and K. Sarabandi, "A wide-band antenna design employing a fictitious short circuit concept," IEEE Antenna and Wireless Propagation Letters, vol.53 (Ⅱ), no.1, Jan.2005, pp.475-482.
    [14]N. Behdad and K. Sarabandi, "A multiresonant single-element wideband slot antenna," IEEE Antenna and Wireless Propagation Letters, vol.3,2004, pp.5-8.
    [1]L. Zhu, S. Sun and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, vol.15, no.11, Nov.2005. pp.796-798.
    [2]P. C. Sharma and K. C. Gupta. "Analysis and Optimized Design of Single Feed Circularly Polarized Microstrip Antennas," IEEE Trans. Antennas Propagation,Vol. AP-31, No.6,1983, pp.949-955.
    [3]Federal Communications Commission, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems," Tech. Rep.. ET-Docket. FCC02-48, Apr.2002. pp.98-153
    [4]X. H. Wu and Z. N. Chen, "Comparison of planar dipoles in UWB applications," IEEE Transactions on Antennas and Propagation, vol.53, no.6. Jun.2005, pp.1973-1983.
    [5]K. Kiminami, A. Hirata and T. Shiozawa. "Double-sided printed bow-tie antenna for UWB communications," IEEE Antenna and Wireless Propagation Letters, vol.3,2004. pp.152-153.
    [6]S. H. Choi, J. K. Park, S. K. Kim and J. Y. Park, "A new ultra-wideband antenna for UWB applications," Microwave and Optical Technology Letters, vol.40, no.4. May.2004. pp.399-411.
    [7]Y. W. Jang, "Broadband cross-shaped microstrip-fed slot antenna," Electronics Letters 36(2000), 2056-2057
    [8]Y. F. Liu, K. L. Lau, Q. Xue, and C. H. Chan, "Experimental studies of printed wide slot antenna for wide-band applications," IEEE Antenna and Wireless Propagation Letters, vol.3,2004, pp.273-275.
    [9]J. Y. Sze and K. L. Wong, "Bandwidth enhancement of a microstripline-fed printed wide-slot antenna,' IEEE Transactions on Antennas and Propagation, vol.49, no.7, Jul.2001, pp.1020-1024.
    [10]W. J. Lui, C. H. Cheng, H. B. Zhu, "Compact balanced antipodal slot antenna for ultra-wideband applications," Microwave and Optical Technology Letters, vol.48, no.10, Oct.2006, pp.1943-1945.
    [11]A. P. Zhao and J. Rahola, "Quarter-wavelength wideband slot antenna for 3-5 GHz mobile applications," IEEE Antenna and Wireless Propagation Letters, vol.4,2005, pp.421-424.
    [12]S. K. Sharma, L. Shafai, and N. Jacob, "Investigation of wide-band microstrip slot antenna," IEEE Transactions on Antennas and Propagation, vol.52, no.3, Mar.2004, pp.865-872.
    [13]S. I. Latif, L. Shafai, and S. K. Sharma, "Bandwidth enhancement and size reduction of microstrip slot antennas," IEEE Transactions on Antennas and Propagation, vol.53, no.3, Mar.2005, pp.994-1003.
    [14]H. Kanno, "Compact ultra-wideband antenna based on broadband radiating ground slit fed by microstrip line," Proceedings of IEEE Antennas and Propagation Society International Symposium, 2007, pp.4645-4648.
    [15]P. Lindberg, E. Ojefors. A. Rydberg, "Wideband slot antenna for low-profile hand-held terminal applications," Proceedings of the 9th European Conference on Wireless Technology,2006, pp.403-406.
    [16]Y. Yoshimura, "A microstripline slot antenna," IEEE Transaction on Microwave Theory and Techniques, vol.20, no.11, Nov.1972. pp.760-762.
    [17]B. N, Das and K. K. Joshi, "Impedance of a radiating slot in the ground plane of a microstrip line,' IEEE Transactions on Antennas and Propagation. vol.30, no.5. May 1982, pp.922-926.
    [18]D. M. Pozar, "A reciprocity method of analysis for printed slot and slot coupled microstrip antennas IEEE Transactions on Antennas and Propagation, vol.34, no.12, Dec.1986,pp.1439-1446.
    [19]M. Kahrizi, T. K. Sarkar, and Z. A. Maricevic, "Analysis of a wide radiating slot in the ground plane of a microstrip line," IEEE Transaction on Microwave Theory and Techniques, vol.41, no.1. Jan.1993, pp.29-37.
    [20]M. Himdi, J. P. Daniel,"Analysis of printed linear slot antenna using lossy transmission line model," Electronics Letters, vol.28, no.6, Mar.1992, pp.598-601.
    [21]L. Zhu and K. Wu, "Complete circuit model of microstrip-fed slot radiator:Theory and experiments, IEEE Microwave and Guided-Wave Letters, vol.9, no.8, Aug.1999. pp.305-307.
    [22]J. P. Kim and W. S. Park, "Network modeling of an inclined and offcenter microstrip-fed slot antennas. IEEE Transactions on Antennas and Propagation, vol.46, no.8, Aug.1998, pp.1182-1188.
    [23]L. Zhu, R. Fu, and K. L. Wu, "A novel broadband microstrip-fed wide slot antenna with double rejection zeros," IEEE Antenna and Wireless Propagation Letters. vol.2,2003, pp.194-196.
    [24]N. Behdad and K. Sarabandi, "A wide-band antenna design employing a fictitious short circuit concept," IEEE Antenna and Wireless Propagation Letters, vol.53 (Ⅱ), no.1, Jan.2005, pp.475-482.
    [25]N. Behdad and K. Sarabandi, "A multiresonant single-element wideband slot antenna," IEEE Antenna and Wireless Propagation Letters, vol.3,2004, pp.5-8.
    [26]M. Makimoto, S. Yamashita,赵宏锦 译 无线通信中的微波谐振器与滤波器——理论、设计与应用, 国防工业出版社,2002
    [27]K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines Norwood, MA:Artech House, 1979.
    [28]J. D. Kraus and R. J. Marhefka, Antennas for All Applications New York:McGraw-Hill,2002.
    [29]J. L. McDonald, F. Lalezari and D. S. Filipovic, "Design of a broadband biconically offset fed thick dipole," IEEE AP-S 2005, pp.541-544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700