体面结合积分方程及快速算法在复杂电磁问题中的分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂电磁目标的快速、有效分析始终是计算电磁学领域的研究热点与发展目标。本文首先建立了用以求解金属介质混合问题的体面结合积分方程,然后研究了用以快速求解体面结合积分方程的数值算法,包括预修正快速傅立叶变换(P-FFT)算法、特征基函数方法(CBFM)、CBFM/P-FFT以及P-CBFM/P-FFT等算法,并将这些算法用于复杂电磁目标的散射和辐射分析中。
     首先,本文从等效原理和边界条件出发,推导了用于求解金属介质混合目标的体面结合积分方程(VSIE),并根据金属介质交界面处不同的边界条件处理方法将VSIE区分为普通体面结合积分方程(NCVSIE)和体面耦合积分方程(CVSIE),然后首次从散射、辐射以及电路分析等几个应用领域分析并对比了两类积分方程的数值结果,由结果发现,在分析辐射问题和电路问题时,CVSIE的性能要优于NCVSIE,可较好的解决天线或电路计算中遇到的谐振频率偏移问题。
     为加速矩量法(MoM)迭代求解过程,研究了P-FFT算法的基本流程,并分别结合面积分方程(SIE)、体积分方程(VIE)和体面结合积分方程(VSIE)分析了典型电磁目标的散射和辐射问题,验证了P-FFT算法的准确性和有效性。
     为有效减少矩量法分析中所用到的未知量个数,并优化矩阵方程的条件数,研究了CBFM求解积分方程的基本过程。首次将CBFM应用于VSIE积分方程的求解中,并对比了两种特征基函数(CBF)提取方法的计算精度。然后,利用CBFM算法分析了金属、介质、金属-介质混合目标的散射或辐射特性,说明了算法的准确性与普适性。
     为加快CBFM迭代求解速度,本文引入了P-FFT算法,并提出了用于求解非周期结构的CBFM/P-FFT混合算法,然后通过算例验证算法的准确性。尽管由于本文所举算例规模较小,难以体现混合算法的高效性,但是从计算资源对比结果可以说明CBFM/P-FFT算法较P-FFT和CBFM方法所需内存更少,迭代求解速度较P-FFT更快。
     针对有限周期结构如光子晶体或相控阵列的准确有效计算,引入了近区单元场值修正模型,研究并改进了用于求解周期金属-介质混合结构的CBFM/P-FFT算法,称之为P-CBFM/P-FFT算法,改进后的算法能够准确考虑邻近单元间的互耦。在此基础上,本文提出了一种可高效分析连续介质周期阵列的算法,并通过算例验证了其准确性。
     最后,利用本文快速算法、基函数方法和VSIE积分方程分析了一系列复杂电磁问题,包括任意馈电方式激励的天线或电路互耦分析、基于P-FFT算法的多层微带天线辐射分析及共形微带阵列辐射分析、基于P-CBFM/P-FFT算法的宽带天线阵列辐射特性分析、基于CBFM算法的直升机搭载微带天线辐射分析、基于P-CBFM/P-FFT算法的光子晶体的散射和传输特性分析。同时,通过与理论结果、测试结果或者其它算法计算结果相对比,说明本文算法的准确性、高效性和适用性,为复杂电磁问题的快速、准确数值分析提供了一种有效解决途径。
To analyze complicated electromagnetic objects efficiently and accurately is always one of the challenging problems in computational electromagnetics. Firstly, the volume-surface integral equation (VSIE) is established to solve composite conducting and dielectric problems, then, in order to the solve the VSIE efficiently, numerical methods including the precorrected-fast Fourier transform (P-FFT) method, characteristic basis function method (CBFM), combined CBFM/P-FFT algorithm and P-CBFM/P-FFT algorithm are studied, and applied to solve electromagnetic scattering and radiation problems of complicated bodies.
     At first, the VSIE formulation is deduced based on equivalence theorem and boundary condition. Besides, by using different boundary condition at the interface of the conductor and dielectric, two approaches of the VSIE including the non-coupled VSIE (NCVSIE) and the coupled VSIE (CVSIE) are discussed and analyzed. Then, from the compared results using the two approaches to analyze scattering, radiation and circuit problems respectively, it can be concluded that, the performance of the CVSIE is much better than that of NCVSIE for radiation and circuit problems, additionally, the offset problem of resonant frequency can be settled appropriately to an acceptable extent using the CVSIE formulation.
     Then, in order to accelerate the iterative procedure for solution, the P-FFT algorithm is presented, and combined with surface integral equation (SIE), volume integral equation (VIE) and VSIE respectively, to analyze typical scattering and radiation problems, which indicates the accuracy and efficiency of the algorithm.
     Besides, in order to reduce the number of unknowns availably, CBFM method is introduced to solve the VSIE. Two methods used to retrieve the characteristic basis function (CBF) are discussed and compared. Then, the CBFM is utilized to analyze the scattering and radiation characteristics of conducting, dielectric and mixed conducting-dielectric objects, which shows the accuracy and generality of CBFM.
     Additionally, the P-FFT process is introduced to combine with the CBFM algorithm, so as to speed up the iterative procedure. Then the combined CBFM/P-FFT is applied to analyze non-periodic objects, and the accuracy of the combined algorithm has been validated by examples. For the scale of problem analyzed is not large enough, it is difficult to demonstrate the efficiency of CBFM/P-FFT, however, from the calculated results, it can be observed that less memory is required for CBFM/P-FFT than P-FFT and CBFM, and less iterative time is needed for CBFM/P-FFT than P-FFT.
     To calculate finite periodic structures efficiently, a combined CBFM and P-FFT algorithm which is called P-CBFM/P-FFT, is presented to solve VSIE. A near correction model is introduced to consider the mutual coupling between nearby units. Some large-scale examples about scattering of mixed metallic-dielectric periodic arrays, are illustrated to demonstrate the efficiency and accuracy of the algorithm, based on which, a novel efficient algorithm is provided to analyze periodic structures with dielectric connected between units, the accuracy of the algorithm has been demonstrated by some examples.
     After the studies above, the fast solvers and basis function methods developed in the paper are applied to analyze complicated electromagnetic problems including: mutual coupling between antennas and circuits, radiation of multi-layer microstrip antenna and conformal antenna arrays by P-FFT algorithm, large antenna array with wide bandwidth by P-CBFM/P-FFT algorithm, radiation of microstrip antenna mounted on helicopter by CBFM method, scattering and transmission characteristics of photonic crystals by P-CBFM/P-FFT algorithm. By comparing the calculated results to analytical solution, measurement or results from references, the accuracy, efficiency and universality of the algorithms are demonstrated. It can be concluded that, an efficient and accurate scheme has been provided in the thesis for the solution of complicated electromagnetic problems.
引文
[1]聂在平,方大纲.目标与环境电磁散射特性建模——理论、方法与实现[M].北京:国防工业出版社,2009.
    [2] Chew W C, Jin J M, Michielssen E, Song J M. Fast and efficient algorithm in computational electromagnetic[M], Artech House, INC, 2001.
    [3]盛新庆.计算电磁学要论[M].科学出版社,2004.
    [4] Itoh T. Analysis of microstrip resonators[J]. IEEE Trans Microwave Theory. 1974, 22(11): 946~952.
    [5] Deshpande M D, Bailey M C. Input impedance of microstrip antennas[J]. IEEE Trans Antennas Propagat. 1982, 30(4): 645~650.
    [6] Pozar D M, Schaubert D H. Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds[J]. IEEE Trans Antennas Propagat. 1984, 32(10): 1101~1107.
    [7] Luk K M, Lee K F, Dahele J S. Analysis of the cylindrical rectangular microstrip patch antenna[J]. IEEE Trans Antennas Propagat. 1989, 37(2): 143~147.
    [8] Luk K M, Lee K F. Characteristics of the cylindrical-circular patch antennas[J]. IEEE Trans Antennas Propagat. 1990, 38(7): 1119~1123.
    [9]方大纲.电磁理论中的谱域方法[M].合肥:安徽教育出版社, 1995.
    [10] Chew W C. Waves and fields in inhomogeneous media[M]. New York: IEEE Press, 1995.
    [11] Gupta K C, Itoh T, Oliner A A. Microwave and RF education-past, present, and future[J]. IEEE Trans. Microwave Theory Tech. 2002, 50(3): 1006~1014.
    [12] Lee S W, Balanf J, Ling H, et al. Twelve versions of physical optics: How do they compare? [J]. IEEE Aps Symp Dig. 1988, 3: 408~411.
    [13] Ufimtsev P Y. Elementary edge waves and the physical theory of diffraction[J]. Electromagnetics. 1991, 11: 125~160.
    [14] Levey B R, Keller J B. Diffraction by a smooth object[J]. Commun. Pure Appl. Math. 1959, 12: 159~209.
    [15] Kouyoumjian R G, Pathak P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J]. Proceedings of the IEEE. 1974, 62(11): 1448~1461.
    [16] Polemi A, et al. Incremental theory of diffraction for complex source illumination[C]. First European Conf Ant Propag. 2006, 1~5.
    [17] Kipp R A, Miller M C. Shooting-and-bouncing ray method for 3D indoor wireless propagation in WLAN applications[C]. Proc IEEE Int Symp Ant Propag. 2004, 2: 1639~1642.
    [18] Ghione G, et al. Complex ray analysis of radiation from large apertures with tapered illumination[J]. IEEE Trans Antennas propagat. 1984, 32(7): 684~693.
    [19] Jin J M, Volakis J L. A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity[J]. IEEE Trans on Antennas and Propagation. 1991, 39: 1598~1604.
    [20] Volakis J L, Chatterjee A, Kempel L C. Finite Element Method for Electro- magnetics: Antennas, Microwave Circuits and Scattering Applications[M]. New York: IEEE Press, 1998.
    [21]金建铭.电磁场有限元方法[M].西安电子科技大学出版社,1998.
    [22] Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation. 1966, 14(3): 302~307.
    [23]高本庆.时域有限差分法FDTD Method[M].国防工业出版社,1995.
    [24]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.
    [25] Liu Q H. The pseudospectral time-domain (PSTD) method: a new algorithm for solution of maxwell equations[C]. IEEE Antennas and Propagation symposium. 1997.
    [26]姜永金.多区域时域伪谱算法关键问题研究及其应用[D].长沙:国防科学技术大学研究生院, 2006.
    [27] Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Trans Antennas Propagat. 1982, 30(3): 409~418.
    [28] Poggio A J, Miller E K. Integral equation solutions of three dimensional scattering problems[M]. Computer Techniques for Electromagnetics. Elmsford, NY: Permagon, 1973.
    [29] Chang Y, Harrington R F. A surface formulation for characteristic modes of material bodies[J]. IEEE Trans Antennas Propag. 1977, 25(6): 789~795.
    [30] Richmond J H. Scattering by a dielectric cylinder of arbitrary cross section shape[J]. IEEE Trans Antennas Propagat. 1965, 13: 334~341.
    [31] Richmond J H. TE-wave scattering by a dielectric cylinder of arbitrary cross-section shape[J]. IEEE Trans Antennas Propagat. 1966, 14(4): 460~464.
    [32] Newman E H, Tulyathan P. Wire antennas in the presence of a dielectric/ ferrite inhomogeneity[J]. IEEE Trans Antennas Propagat. 1978, 26(4): 587~593.
    [33] Newman E H, Tulyathan P. Analysis of microstrip antennas using moment methods[J]. IEEE Trans Antennas Propagat. 1981, 29(1): 47~53.
    [34] Schaubert D H, Wilton D R, Glisson A W. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies[J]. IEEE Trans Antennas Propagat. 1984, 32(1): 77~85.
    [35] Sarkar T K, Arvas E. An integral equation approach to the analysis of finite microstrip antennas volume-surface formulation[J]. IEEE Trans Antennas and Propagat. 1990, 38(3): 305~312.
    [36] Sarkar T K, Rao S M, Djordjevic A R. Electromagnetic scattering and radiation from finite microstrip structures[J]. IEEE Trans Microwave Theory Tech. 1990, 38(11): 1568~1575.
    [37] Wust P, Nadobny J, Seebass M, Dohlus J M. Walter John and Roland Felix, 3-D computation of E fields by the volume-surface integral equation (VSIE) method in comparison with the finite-integration theory (FIT) method[J]. IEEE Trans Biomedical engineering. 1993, 40: 745~759.
    [38] Lu C C, Chew W C. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets[J]. IEEE Trans Antennas Propagat. 2000, 48(12): 1866~1868.
    [39] Lee J F, Mittra R. A note on the application of edge-elements for modeling three-dimensional inhomogeneously-filled cavities[J]. IEEE Trans Microwave Theory Tech. 1992, 40(9): 1767~1773.
    [40] Davidson D B. Comments on and extensions of "A note on the application of edge-elements for modeling three-dimensional inhomogeneously-filled cavities"[J]. IEEE Trans Microwave Theory Tech. 1998, 46(9): 1344~1346.
    [41] Kolundzija B M, Petrovic V V. Comparison of MoM/SIE, MoM/VIE and FEM based on topological analysis of two canonical problems[C]. Digest IEEE AP-S int Symp. 1998, 1: 274~277.
    [42] Kolundzija B M, Djordjevic A R. Electromagnetic modeling of composite metallic and dielectric structures[M]. Norwood, MA: USA: Artech House, 2002.
    [43] Harrington R F. Time-harmonic electromagnetic fields[M]. New York: McGraw-Hill, 1961.
    [44] Li K. Electromagnetic fields in stratified media[M].浙江大学出版社,2009.
    [45] Thiele G A, Newhouse T H. A hybrid technique for combining moment methods with the geometrical theory of diffraction[J]. IEEE Trans Antennas Propagat. 1975, 23(1): 62~69.
    [46] Jakobus U, Landstorfer F M. Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape[J]. IEEE Trans Antennas Propagat. 1995, 43(2): 162~169.
    [47] Jin J M, Ling F, Carolan S T, et al. A hybrid SBR/MoM technique for analysis of scattering from small protrusions on a large conducting body[J]. IEEE Trans Antennas Propagat. 1998, 46(9): 1349~1357.
    [48] Gedney S D. High-order method of moment solution of the scattering by three-dimensional PEC bodies using quadrature based point matching[J]. MicrowaveOpt Technol Lett. 2001, 9: 303~309.
    [49] Gedney S D, Lu C C. High-order solution for the electromagnetic scattering by inhomogeneous dielectric bodies[J]. Radio Sci. 2003, 38(4): 1015.
    [50] Matekovits L, Vecchi G, Dassano G, Orefice M. Synthetic function analysis of large printed structures: The solution space sampling approach[C]. Boston, MA: Proc. IEEE AP-S Int Symp. 2001: 568~571.
    [51] Lu W B, Cui T J, Qian Z G, Yin X X, Hong W. Accurate analysis of large-scale periodic structures using an effcient sub-entire-domain basis function method[J]. IEEE Trans Antennas Propagat. 2004, 52(11): 3078~3085.
    [52] Prakash V V S, Mittra R. Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations[J]. Microwave and Opt Tech Lett. 2003, 36(2): 95~100.
    [53] Kwon S J, Du K, Mittra R. Characteristic basis function method: A numerically efficient technique for analyzing microwave and RF circuits[J]. Microwave and Opt Tech Lett. 2003, 38(6): 444~448.
    [54] Yeo J, Prakash V V S, Mittra R. Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM)[J]. Microwave and Opt Tech Lett. 2003, 39(6): 456~464.
    [55] Mittra R. A look at some challenging problems in computational electromagnetics[J]. IEEE Antennas and Propagat Magazine. 2004, 46(5): 18~32.
    [56] Wan J X, Liang C H, Lei J. A fast analysis of scattering from microstrip antennas over a wide band[J]. Progress in Electromagnetics Research. 2005, 50: 187~208.
    [57] Que X F, Nie Z P. Analysis of electromagnetic radiation and scattering using characteristic basis function method with higher order method[C]. Asia-Pacific Conference Proceedings, 2005.
    [58] Tiberi G, Monorchio A, Manara G, Mittra R. A spectral domain integral equation method utilizing analytically derived characteristic basis functions for the scattering from large faceted objects[J]. IEEE Trans Antennas Propagat. 2006, 54: 2508~2514.
    [59] Lucente E, Monorchio A, Mittra R. An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems[J]. IEEE Trans Antennas Propagat. 2008, 56: 999~1007.
    [60] Delgado C, Cátedra M F, Mittra R. Efficient multilevel approach for the generation of characteristic basis functions for large scatters[J]. IEEE Trans Antennas Propagat. 2008, 56(7): 2134~2137.
    [61] Delgado C, García E, Cátedra F, Mittra R. Generation of Characteristic Basis Functions Defined Over Large Surfaces by Using a Multilevel Approach[J]. IEEE TransAntennas Propagat. 2009, 57(4): 1299~1301.
    [62] Hu L, Li L W, Mittra R. Electromagnetic Scattering by Finite Periodic Arrays Using the Characteristic Basis Function and Adaptive Integral Methods[J]. IEEE Trans Antennas Propagat. 2010, 58(9): 3086~3090.
    [63] Suter E, Mosig J. A subdomain multilevel approach for the MoM analysis of large planar antennas[J]. Microwave Opt Technol Lett. 2000, 26(4): 270~277.
    [64] Saad Y. Iterative methods for sparsA. J. Hesford and W. C. Chewe linear systems[M]. Boston: PWS Publishing Company, 2nd, 2000.
    [65] Saad Y. A dual threshold incomplete LU preconditioner[J]. Numerical and Linear Algebra and its Applications. 1994, 1(4): 387~402.
    [66] Hesford A J, Chew W C. On preconditioning and the eigensystems of electromagnetic radiation problems[J]. IEEE Trans Antennas Propagat. 2008, 56: 2413~2420.
    [67] Adams R J. Physical and analytical properties of a stabilized electric field integral equation[J]. IEEE Trans Antennas and Propagat. 2004, 52(2): 362~372.
    [68] F. P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative calderon preconditioner for the electric field integral equation[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2398~2412.
    [69] Yan S, Jin J M, Nie Z P. EFIE analysis of low-frequency problems with loop-star decompositon and calderon multiplicative preconditioner[J]. IEEE Trans Antennas and Propagat. 2010, 58(3): 857~867.
    [70] Michielssen E, Jin J M. Guest editorial for the special issue on large and multiscale computational electromagnetics[J]. IEEE Trans Antennas Propagat. 2008, 56(8): 2146~2149.
    [71] Zhao J S, Chew W C. Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies[J]. IEEE Trans Antennas Propagat. 2000, 48: 1635~1645.
    [72] Barka A, Caudrillier P. Domain Decomposition Method Based on Generalized Scattering Matrix for Installed Performance of Antennas on Aircraft[J]. IEEE Trans Antennas And Propagat Magazine. 2007, 55: 1833~1842.
    [73] Li M K, Chew W C. Wave-Field Interaction With Complex Structures Using Equivalence Principle Algorithm[J]. IEEE Trans Antennas Propagat. 2007, 55: 130~138.
    [74] Rius J M, Parrón J, Heldring A, et al. Fast iterative solution of integral equations with method of moments and matrix decomposition algorithm– singular value decomposition[J]. IEEE Trans Antennas Propagat. 2008, 56(8): 2314~2324.
    [75] Heldring A, Rius J M, Tamayo J M, et al. Fast direct solution of method of moments linear system[J]. IEEE Trans Antennas Propagat. 2007, 55(11): 3220~3228.
    [76] Heldring A, Rius J M, Tamayo J M, et al. Multiscale compressed block decomposition for fast direct solution of method of moments linear system[J]. IEEE Trans Antennas Propagat. 2011, 59(2): 526~536.
    [77]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D].长沙:国防科学技术大学,2005.
    [78]赵勋旺.复杂电磁环境中快速多极子方法的研究与应用[D].西安:西安电子科技大学,2008.
    [79] Arvas E, Harrington R F, Mautz J R. Radiation and scattering from electrically small conducting bodies of arbitrary shape[J]. IEEE Trans Antennas Propagat. 1986, 34(1): 66~77.
    [80] Mei K K, Bladel J V. Scattering by perfectly conducting rectangular cylinders[J]. IEEE Transactions on Antennas and Propagation. 1963, 11(2): 185~192.
    [81] Andreasen M G. Scattering from bodies of revolution[J]. IEEE Trans on Antennas and Propagat. 1965, 13(2): 303~310.
    [82] Mei K K. On the integral equations of thin wire antennas[J]. IEEE Trans on Antennas and Propagat. 1965, 13(3): 374~378.
    [83] Harrington R F. Field Computation by Moment Methods[M]. New York: Macmillan, 1968.
    [84] Strattion J A. Electromagnetic theory[M]. McGRAW-HILL INC. 1941.
    [85] Balanis C A. Advanced engineering electromagnetics[M]. New York: John Wiley & Sons, Inc. 1989.
    [86] Knepp D L, Goldhirsh J. Numerical analysis of electromagnetic radiation properties of smooth conducting bodies of arbitrary shape[J]. IEEE Trans Antennas Propagat. 1972, 20(3): 383~388.
    [87] Mautz J R, Harrington R F. Electromagnetic scattering from a homogeneous material body of revolution[J]. Arch Elektr Ubertragung. 1979, 33: 71~80.
    [87] Mautz J R, Harrington R F. Electromagnetic scattering from a homogeneous material body of revolution[J]. Arch Elek Ubertragung. 1979, 33(4): 71~80.
    [88] Umashankar K, Taflove A, Rao S M. Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects[J]. IEEE Trans Antennas Propagat. 1986, 34(6): 758~766.
    [89] Putnam J M, Medgyesi-Mitschang L N. Combined field integral equation for inhomogeneous two- and three-dimensional bodies: The junction problem[J]. IEEE Trans Antennas and Propagat. 1991, 39(5): 667~672.
    [90] Liu Y, Safavi-Naeini S, Chaudhuri S K, Sabry R. On the determination of resonant modes of dielectric objects using surface integral equations[J]. IEEE Trans Antennas Propagat. 2004, 52(4): 1062~1069.
    [91] Sun J. Development of Green’s functions and its application for cylindricallystratified media[D]. Singapore: National University of Singapore, 2004.
    [92] Rumsey V H. Reaction concept in electromagnetic theory[J]. Phys Rev. 1954, 94: 1483~1491.
    [93] Medgyesi-Mitschang L N, Putnam J M. Electromagnetic scattering from axially inhomogeneous bodies of revolution[J]. IEEE Trans on Antennas and Propagat. 1984, 32(8): 797–806.
    [94] Govind S, Wilton D R, Glisson A W. Scattering from inhomogeneous penetrable bodies of revolution[J]. IEEE Trans on Antennas and Propagat. 1984, 32(11): 1163~1173.
    [95] Goggans P M, Kishk A A, Glisson A W. Electromagnetic scattering from objects composed of multiple homogeneous regions using a region-by-region solution[J]. IEEE Trans Antennas and Propagat. 1994, 42(6): 865~871.
    [96] Rao S M, Cha C C, Cravey R L, Wilkes D. Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness[J]. 1991, IEEE Trans on Antennas and Propagat. 39(5): 627~631.
    [97] Shin J, Glisson A W, Kishk A A. Analysis of combined conducting and dielectric structures of arbitrary shapes using an E-PMCHW integral equation formulation[C]. 2000, IEEE AP-S Symp. 4: 2282~2285.
    [98] Chew W C, Jin J M, Michielssen E, Song J. Fast and Efficient Algorithms in Computational Electromagnetics[M]. Boston: Artech House, 2001.
    [99] Carr M, Topsakal E, Volakis J L. A procedure for modeling material junctions in 3-D surface integral equation approaches[C]. 2004, IEEE Trans on Antennas and Propagat. 52(5): 1374~1379.
    [100] Yla-oijala P, Taskinen M, Sarvas J. Surface integral equation method for general composite metallic and dielectric structures with junctions[J]. Progress In Electromagnetics Research. 2005, 52: 81~108.
    [101] Lloyd T W, Song J M, Yang M. Numerical study of surface Integral formulations for low-contrast objects[J]. IEEE Antennas Wirel Propagat Lett. 2005, 4: 482~485.
    [102] Cohen M H. Application of the reaction concept to scattering problems[J]. IER Trans Antennas Propagat. 1955, 3: 193~199.
    [103] Stickler D C. Electromagnetic diffraction by dielectric strips[J]. IER Trans Antennas Propagat. 1958, 6: 148~151.
    [104] Bladel J V. Some remarks on green's dyadic for infinite space[J]. IER Trans Antennas Propagat. 1961, 9: 563~566.
    [105] Harrington R F, Mautz J R, Chang Y. Characteristic modes for dielectric and magnetic bodies[J]. IEEE Trans Antennas Propagat. 1972, 20(2): 194~198.
    [106] Chang Y, Harrington R F. A surface formulation for characteristic modes of material bodies[J]. IEEE Trans Antennas Propagat. 1977, 25(6): 789~795.
    [107] Livesay D E, Chen K M. Electromagnetic Fields Induced Inside Arbitrarily Shaped Biological Bodies[J]. IEEE Trans Microwave Theory Tech. 1974, 22(12): 1273~1280.
    [108] Mendes L S, Carvalho S A. Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions[J]. Microwave Opt Technol Lett. 1996, 12: 327~331.
    [109] Kulkarni S, et al. Comparison of two sets of low-order basis functions for tetrahedral VIE modeling[J]. IEEE Trans on Antennas and Propagat. 2004, 52(10): 2789~2794.
    [110] Chen Q L, McKinzie W E, Alexopoulos N G. Stripline-fed arbitrarily shaped printed aperture antennas[J]. IEEE Trans Antennas and Propagat. 1997, 45(7): 1186~1198.
    [111] Guo J L, Li J Y, Liu Q Z. Electromagnetic analysis of coupled conducting and dielectric targets using MoM with a pre-conditioner[M]. J of Electromagn Waves and Appl. 2005, 19(9): 1223~1236.
    [112] Guo J L, Li J Y, Liu Q Z. Analysis of antenna array with arbitrarily shaped radomes using fast algorithm based on VSIE[J]. Progress in Electromagnetics Research. 2006, 20(10): 1399~1410.
    [113] Chiang I T, Chew W C. Thin dielectric sheet simulation by surface integral equation using modified RWG and pulse bases[J]. IEEE Trans Antennas and Propagat. 2006, 54(7): 1927~1934.
    [114] Harrington R F, Mautz J R. An impedance sheet approximation for thin dielectric shells[J]. IEEE Trans Antennas Propag. 1975, 23: 531~534.
    [115] Chiang I T, Chew W C. A coupled PEC-TDS surface integral equation approach for electromagnetic scattering and radiation from composite metallic and thin dielectric objects[J]. IEEE Trans Antennas Propagat. 2006, 54(11): 3511~3516.
    [116] Hu J, Lei L, Nie Z P, He S Q. Fast solution of electromagnetic scattering from thin dielectric coated PEC by MLFMA and successive overrelaxation iterative technique[J]. IEEE Microwave and Wireless Component Lett. 2009, 19(12): 762~764.
    [117] Yuan N, Nie X C, Gan Y B. Accurate analysis of conformal antenna arrays with finite and curved frequency selective surfaces[J]. J of Electromagn Waves and Appl. 2007, 21(13): 1745~1760.
    [118] He M, Chen Q, Yuan Q, et al. A simple strip model in the volume-surface integral equation for analysis of arbitrary probe-fed conformal microstrip antennas[J]. IEEE Antennas and Wireless Propagat Lett. 2009, 8: 530~533.
    [119] Makarov S N, Kulkarni S D, Marut A G, Kempel L C. Method of moments solution for a printed patch/slot antenna on a thin finite dielectric substrate using the volume integral equation[J]. IEEE Trans Antennas Propagat. 2006, 54(4): 1174~1183.
    [120]李磊.多层媒质中的电磁快速算法研究[D].西安:西安电子科技大学,2007.
    [121]张民,李乐伟,李良超,吴振森.平面多层介质中空域Green函数的高效算法与应用[J].中国科学,2008, 38(2): 298~311.
    [122] Polimeridis A G, Yioultsis T V, Tsiboukis T D. A robust method for the computation of Green’s functions in stratified media[J]. IEEE Trans Antennas Propagat. 2007, 55(7): 1963~1969.
    [123] Tokg?z C, Dural G. Closed-form Green's functions for cylindrically stratified media[J]. IEEE Trans on Microwave Theroy Tech. 2000, 48(1): 40~49.
    [124]何芒.宽频带圆柱共形微带天线的频域和时域全波分析与设计[D].北京:北京理工大学,2003.
    [125] Acar R C. Numerically efficient analysis and design of conformal printed structures in cylindrically layered media[D]. Turkey: Middle East Technical University, 2007.
    [126]王元源.圆柱共形微带结构的快速算法研究[D].西安:西安电子科技大学,2009.
    [127]胡梦中.圆柱共形微带天线的理论分析及其优化设计研究[D].合肥:解放军电子工程学院,2010.
    [128] Lu C C, Luo C. Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects[J]. Radio Science. 2003, 38(2): RS1028.
    [129] Golub G H, Loan C F V. Matrix Computations[M]. Baltimore, Maryland: The Johns Hopkins University Press, 3ed. 1996.
    [130] Lu C C, Chew W C. A fast algorithm for solving hybrid integral equations[J]. IEE Proceedings-H. 1993, 140(6): 455~460.
    [131] Lu C C, Chew W C. A multilevel algorithm for solving boundary integral equations[J]. Microwave Opt Technol Lett. 1994, 7(10): 466~470.
    [132] Cui T J, Chew W C, Chen G, Song J M. Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures[J]. IEEE Trans Antennas Propagat. 2004, 52(3): 759~770.
    [133] Sarkar T K, Arvas E, Rao S M. Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies[J]. IEEE Trans Antennas Propagat. 1986, 34(5): 635~640.
    [134] Gan H, Chew W C. A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems[J]. Journal of Electromagnetic Waves and Applications. 1995, 9: 1339~1357.
    [135] Bleszynski E, Blezynski M, Jaroszewicz T. A fast integral equation solverfor electromagnetic scattering problems[C]. IEEE Antennas and Propagat Symp. 1994, 1: 416~419.
    [136] Ewe W B. Fast solution to electromagnetic scattering by large-scale complicated structures using adaptive integral method[D]. Singapore: National University of Singapore, 2004.
    [137] Ioannidi C C, Anastassiu H T. Circulant adaptive integral method (CAIM) for electromagnetic scattering from large targets of arbitrary shape[J]. IEEE Trans Magnetics. 2009, 45(3): 1308~1311.
    [138]马兴义.基于积分方程的目标电磁散射特性数值方法研究[D].长沙:国防科学技术大学,2009.
    [139] Nie X C, Li L W, Yuan N, Yeo T S. Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method[J]. Microwave and Opt Tech Lett. 2002, 34(6): 438~442.
    [140] Nie X C, Li L W, Yuan N. Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering[J]. Journal of Electromagnetic Waves and Applications. 2002, 16(8): 1171~1187.
    [141] Ling F, Wang C F, Jin J M. An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex-image method[J]. IEEE Trans Microwave Theory Tech. 2000, 48(5): 832~839.
    [142] Guo J L, Li J Y, Liu Q Z. Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation[J]. IEEE Trans Antennas Propagat. 2006, 54(7): 1910~1916.
    [143] Kim O S, Meincke P. Adaptive integral method for higher order method of moments[J]. IEEE Trans Antennas Propagat. 2008, 56(8): 2298~2305.
    [144] Anastassiu H T. Electromagnetic scattering from jet engine inlets using analytical and fast integral equation methods[D]. America: University of Michigan, 1997.
    [145]郭景丽.全向宽带天线及天线罩电磁特性研究[D].西安:西安电子科技大学,2005.
    [146]李颖.时域积分方程快速算法研究[D].长沙:国防科学技术大学,2009.
    [147] Li H. Applications of adaptive integral method in electromagnetic scattering by large-scale composite media and finite arrays[D]. Singapore: National University of Singapore, 2010.
    [148] White J K, Phillips J R, Korsmeyer T. Comparing precorrected-FFT method and fast multipole algorithms for solving three-dimensional potential integral equations[C]. Colorado: Proceedings of the Colorado Conference on Iterative Methods, 1994.
    [149] Phillips J R, White J K. A precorrected-FFT method for electrostatic analysisof complicated 3-D structures[J]. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems. 1997, 16(10): 1059~1072.
    [150] Phillips J R. Rapid solution of potential integral equations in complicated 3-dimensional geometries[D]. America: Massachusetts Institute of Technology, 1997.
    [151] Nie X C, Li L W, Yuan N, Yeo T S, Gan Y B. A fast analysis of electromagnetic scattering by arbitrarily shaped homogeneous dielectric objects[J]. Microwave and Opt Tech Lett. 2003, 38(1): 30~35.
    [152] Yuan N, Yeo T S, Nie X C, et al. Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithms[J]. J of Electromagn Waves and Appl. 2003, 17(3): p. 499~515.
    [153] Yuan N, Yeo T S, Nie X C, et al. A fast analysis of scattering and radiation of large microstrip antenna arrays[J]. IEEE Trans Antennas Propagat. 2003, 51(9): 2218~2226.
    [154] Wang Y J, Nie X C, Li L W, Li E P. A parallel analysis of the scattering from inhomogeneous dielectric bodies by the volume integral equation and the precorrected-FFT[J]. Microwave and Opt Tech Lett. 2004, 42(1): 77~79.
    [155] Nie X C, Li L W, Yuan N, Yeo T S, Gan Y B. Precorrected-FFT solution of the volume integral equation for 3-D inhomogeneous dielectric objects[J]. IEEE Trans Antennas Propagat. 2005, 53(1): 313~320.
    [156] Yuan N, Yeo T S, Nie X C, et al. Efficient analysis of electromagnetic scattering and radiation from patches on finite, arbitrarily-curved grounded substrates[J]. Radio Science. 2004, 39: RS3003.
    [157] Nie X C, Yuan N, Li L W, et al. A Fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects[J]. IEEE Trans Antennas Propagat. 2005, 53(2): 818~824.
    [158] Zhang L, Yuan N, Zhang M, et al. RCS computation for a large array of waveguide slots with finite wall thickness using the MoM accelerated by P-FFT algorithm[J]. IEEE Trans Antennas Propagat. 2005, 53(9): 3101~3105.
    [159] Zhang M, Li L W, Ma A Y. Analysis of scattering by a large array of waveguide-fed wide-slot millimeter wave antennas using precorrected-FFT algorithm[J]. IEEE Microw Wirel Comp Lett. 2005, 15(11): 772~774.
    [160] Nie X C, Gan Y B, Yuan N, et al. An efficient hybrid method for analysis of slot array enclosed by a large radome[J]. J of Electromagn Waves and Appl. 2006, 20(2): 249~264.
    [161] Yuan N, Yeo T S, Nie X C, et al. Analysis of probe-fed conformal microstrip antennas on finite ground plane and substrate[J]. IEEE Trans Antennas Propagat. 2006, 54(2): 554~563.
    [162]陈忠宽.预修正快速傅立叶变换方法的研究及应用[D].长沙:国防科学技术大学,2009.
    [163]陈忠宽,姜永金,柴舜连,毛钧杰.金属-介质混合目标电磁散射的P_FFT快速求解[J].微波学报, 2008, 25(6): 23~26.
    [164]陈忠宽,王生水,柴舜连,毛钧杰.利用基于浮动模板的预修正快速傅里叶变换方法快速求解三维介质体积分方程[J].电子与信息学报, 2008, 30(11): 2763~2766.
    [165]陈忠宽,柴舜连,杨虎,毛钧杰.复杂目标电磁散射问题的预修正快速傅里叶变换方法[J].科学通报, 2009, 54(6): 827~833.
    [166] Zhu A, Gedney S D. A quadrature-sampled precorrected FFT method for the electromagnetic scattering from inhomogeneous objects[J]. IEEE Microw Wirel Comp Lett. 2003, 2: 50~53.
    [167] Valdés F, Andriulli F P, Cools K, Michielssen E. High-order Div- and Quasi Curl-Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE[J]. IEEE Trans Antennas Propagat. 2011, 59(4): 1321~1337.
    [168] Du P, Wang B Z, Li H. An extended sub-entire domain basis function method for finite periodic structures[J]. IEEE Antenna and Wireless Propagat Lett. 2008, 7: 404~407.
    [169] Hu L, Li L W. CBFM-based P-FFT method: A new algorithm for solving large-scale finite periodic arrays scattering problems[C]. Asia Pacific Microwave Conference, 2009: 200988-914.
    [170]肖科,赵菲,柴舜连,等.结合P-FFT算法和特征基函数分析大型阵列散射[J].微波学报,2011, 27(1): 6~10.
    [171] Xiao K, Zhao F, Chai S L, Mao J J. Scattering analysis of periodic arrays using combined CBF/P-FFT method[J]. Progress In Electromagnetics Research, 2011, 115: 131~146.
    [172]胡俊.复杂目标矢量电磁散射的高效方法—快速多极子方法及其应用[D].成都:电子科技大学,2000.
    [173] Seo S M. A fast IE-FFT algorithm for solving electromagmagnetic radiation and scattering problems[D]. America: Ohio State University, 2006.
    [174] Garg R, Bhartia P, Bahl I, Ittipiboon A. Microstrip Antenna Design Handbook[M]. Norwood: Artech House, 2001.
    [175] Munson R E. Conformal microstrip antennas and microstrip phased arrays[J]. IEEE Trans Antennas Propagat. 1974, 22(2): 74~78.
    [176] Wong K L. Design of Nonplanar Microstrip Antennas and Transmission Lines[M]. John Wiley & Sons, INC. 1999.
    [177] Vrancken M. Full wave integral equation based electromagnetic modeling of 3D metallic structures in planar stratified media[D]. Belgium: Katholieke UniversiteitLeuven, 2002.
    [178]李磊.多层媒质中的电磁快速算法研究[D].西安:西安电子科技大学,2007.
    [179] Mahachoklertwattana P. A fast full-wave solver for the analysis of large planar finite periodic antenna arrays in grounded multilayered media[D]. America: Ohio State University, 2007.
    [180] Newman E H, Pozar D M. Electromagnetic modeling of composite wire and surface geometries[J]. IEEE Trans Antennas Propagat. 1978, 26(6): 784~789.
    [181] Newman E H. Generation of wide-band data from the method of moments by interpolating the impedance matrix (EM problems)[J]. IEEE Trans Antennas Propagat. 1988, 36(12): 1820~1824.
    [182]欧阳骏.共形天线及阵列的分析和综合研究[D].成都:电子科技大学,2008.
    [183] Zhao W J, Li L W, Xiao K. Analysis of electromagnetic scattering and radiation from finite microstrip structures using an EFIE-PMCHWT formulation[J]. IEEE Trans Antennas Propagat. 2010, 58(7): 2468~2473.
    [184] Arvas E, Rahhal-Arabi A, Sadigh A, et al. Scattering from multiple conducting and dielectric bodies of arbitrary shape, IEEE Trans Antennas Propag. 1991, 33(2): 29~36.
    [185] Josefsson L, Persson P. Conformal Array Antenna Theory and Design[M]. IEEE, John Wiley & Sons, INC. 2006.
    [186] Koper E M, Wood W D. Aircraft antenna coupling minimization using genetic algorithms and approximations[J]. IEEE Trans Aerospace Electronic Systems. 2004, 40(2): 742~751.
    [187] Barka A, Caudrillier P. Domain decomposition method based on generalized scattering matrix for installed performance of antennas on aircraft[J]. IEEE Trans Antennas Propagat. 2007, 55(6): 1833~1842.
    [188] Zhao W J, Li L W, Hu L. Efficient current-based hybrid analysis of wire antennas mounted on a large realistic aircraft[J]. IEEE Trans Antennas Propagat. 2010, 58(8): 2666~2672.
    [189] Laviada J, Gutierrez-Meana J, Pino M R, et al. Analysis of partial modifications on electrically large bodies via characteristic basis functions[J]. IEEE Antennas and Wireless Propagat Lett. 2010, 9: 834~837.
    [190] Burkholder R J, Kim Y, Pathak P H, et al. Green's function approach for interfacing UTD with FEM for a conformal array antenna on a large platform[C]. European Conf Ant Propag. 2010.
    [191] Zhao X W, Zhang Y, Garcia-Donoro D, et al. Parallel higher order method of moments for accurate analysis of antenna-radome-platform system[C]. European ConfAnt Propag. 2011, 3932~3933.
    [192] Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered- cubic case[J]. Physical Rev Lett. 1989, 63(18): 1950~1953.
    [193] Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic crystals: molding the flow of light[M]. Princeton: Princeton University Press, 2008.
    [194] Sievenpiper D, Zhang L, Jimenez Broas R F, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Trans Microw Theory Tech. 1999, 47(11): 2059~2074.
    [195] Yang F, Rahmat-Samii Y. Microstrip antennas integrated with electromag- netic band-gap (EBG) structures: A low mutual coupling design for array applications[J]. IEEE Trans Antennas and Propagat. 2003, 51(10): 2936~2946.
    [196] Veselago V G. The electrodynamics of substances with simultaneously negative values ofεandμ[J]. Sov Phys -Usp. 1968, 10: 509~514.
    [197] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys Rev Lett. 2000, 84(18): 4184~4187.
    [198] Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett. 2000, 85(18): 3966~3969.
    [199] Kong J A. Electromagnetic wave theory[M], Cambridge, Massachusetts: EMW Publishing, 2005.
    [200] Antoniades M A, Eleftheriades G V. A broadband series power divider using zero-degree metamaterial phase-shifting lines[J]. IEEE Antennas Wireless Propagat Lett. 2005, 15(11): 808~810.
    [201] Gil M, Bonache J, García-García J, et al. Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design[J]. IEEE Trans Microwave Theory Tech. 2007, 55(6): 1296~1303.
    [202] Antoniades M A, Eleftheriades G V. Compact linear lead/lag metamaterial phase shifters for broadband applications[J]. IEEE Antennas Wireless Propagat Lett. 2003, 2: 103~106.
    [203] Grbic A, Eleftheriades G V. Experimental verification of backward-wave radiation from a negative refractive index metamaterial[J]. Journal of Applied Phys. 2002, 92(10): 5930~5935.
    [204] Liu L, Caloz C, Itoh T. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability[J]. Electronics Lett. 2002, 38(23): 1414~1416.
    [205] Lim S, Caloz C, Itoh T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth[J]. IEEE Trans Microwave Theory Tech. 2004, 52(12): 2678~2690.
    [206] Allen C A, Leong K M K H, Caloz C, Itoh T. A two-dimensional edgeexcited metamaterial-based leaky wave antenna[J]. IEEE Antennas and Propagat Society International Symp. 2005, 2B: 320~323.
    [207] Yasumoto K. Electromagnetic theory and applications for photonic crystals [M]. Boca Raton: CRC Press, 2006: 459.
    [208] Yang H Y D. Theory of Antenna Radiation from Photonic Band-Gap Materials[J]. Electromagnetics. 1999, 19(3): 255~276.
    [209] Jia H, Yasumoto K. S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with aribitrary cross section[J]. IEEE Antennas Wirel Propagat Lett. 2004, 3: 41~44.
    [210] Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves[J]. Phys Rev B. 1995, 51: 16635.
    [211] Koshiba M. Full-vector analysis of photonic crystal fibers using the finite element method[J]. IEICE Trans on Electron C. 2002, 85: 881.
    [212] Chew W C, Gürel L, Wang Y M, et al. A generalized recursive algorithm for wave-scattering solutions in two dimensions[J]. IEEE Trans Microwave Theory Tech. 1992, 40: 716~723.
    [213] Luo C, Johnson S G, Joannopoulos J D, Pendry J B. All-angle negative refraction without negative effective index[J]. Physical Review B. 2002, 65: 201104.
    [214] Witzens J, Loncar M, Scherer A. Self-collimation in planar photonic crystals[J]. IEEE J Quantum Electron. 2002, 8(6): 1246~1257.
    [215] Lia Y, Jin J M. A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems[J]. IEEE Trans Antennas Propagat. 2006, 54(10): 3000~3009.
    [216] Xiao K, Chai S L, Li L W. Comparisons of coupled VSIE and non-coupled VSIE formulations[J]. J Electromagn Waves Appl. 2011, 25(10): 1341~1351.
    [217] Xiao K, Li L W, Zhao W J, Chai S L, Mao J J. Efficient design of finite conformal antenna arrays using VSIE formulation and P-FFT method[C]. Barcelona: 4th European Conference on Antennas and Propagat. 2010, 1~4.
    [218] Oliner A A. Historical perspectives on microwave field theory[J]. IEEE Trans. Microwave Theory Tech. 1984, 32(9): 1022~1045.
    [219]谢处方,饶克谨.电磁场与电磁波[M].高等教育出版社,1979.
    [220]毛钧杰,刘荧,朱建清.电磁场与微波工程基础[M].电子工业出版社,2004.
    [221]梁昌洪,谢拥军,官伯然.简明微波[M].高等教育出版社,2006.
    [222] Collin R E. Field theory of guided waves[M]. Wiley-Interscience, 1991.
    [223] Love A E H. The integration of the equations of propagation of electric waves[J]. London: Phil Trans Roy Soc, Ser A. 1901, 197: 1~45.
    [224]刘克成,宋学诚.天线原理[M].国防科技大学出版社,1989.
    [225] Harrington R F. Time-harmonic electromagnetic fields[J]. New York: Wiley-Interscience, 2001.
    [226] Bladel J V. Some remarks on Green's dyadic for infinite space[J]. IRE Trans on Antennas and Propagat. 1961, 6: 563~566.
    [227] Ney M M. Method of moments as applied to electromagnetics problems[J]. IEEE Trans Microwave Theory Tech. 1985, 33(10): 972~980.
    [228] Wilton D R, Rao S M, Glisson A, et al. Potential integrals of uniform and linear source distributions on polygonal and poiyhedral domains[J]. IEEE Trans on Antennas and Propagat. 1984, 32(3): 276~281.
    [229] Duffy M G. Quqdrature over a pyramid or cube of integrands with a singularity at a vertex[J]. SIAM J Numer Anal. 1982, 19(6): 1260~1262.
    [230]吴翊,李超,罗建书,戴清平.应用数学基础[M].北京:高等教育出版社,2006.
    [231] Alex C W, Helen T G W, Michael J S, Michael L S. Benchmark radar targets for the validation of computational electromagnetics programs[J]. IEEE Antennas Propagat Mag. 35(1): 84~89.
    [232] Song J, Lu C C, Chew W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE Trans Antennas Propagat. 1997, 45(10): 1488~1493.
    [233] Chew W C, Jin J M, Lu C C, et al. Fast solution methods in electromagnetics [J]. IEEE Trans Antennas Propag. 1997, 45(3): 533~543.
    [234] Rao S M, Sarkar T K, Midya P, Djordevic A R. Electromagnetic radiation and scattering from finite conducting and dielectric structures: Surface/Surface formulation[J]. IEEE Trans Antennas Propag. 1991, 39: 1034~1037.
    [235] Weeks W L. Antenna Engineering[M]. New York: McGraw-Hill, 1968.
    [236] Storer J E. Variational solution to the problem of the symmetrical cylindrical antenna[R]. America: Harvard University, Cruft Laboratory Report No 101, 1950.
    [237] Elliot R S. Antenna Theory and Design[M]. Engelwood Cliffs, NJ: Prentice-Hall, 1981.
    [238] Williamson A G. Admittance correction factor for coaxially excited cylindrical antennas[J]. IEEE Trans Antennas Propagat. 2001, 49(4): 640~644.
    [239] Stutzman W L. Antenna theory and design[M]. John Wiley & Sons, INC. 1981.
    [240] Richmond J H. Monopole antenna on circular disk[J]. IEEE Trans Antennas Propag. 1984, 32(12): 1282~1287.
    [241] Chen N W. A magnetic frill source model for time-domain integral-equation based solvers[J]. IEEE Trans Antennas Propag. 2007, 55(11): 3093~3098.
    [242] Makarov S N. Antenna and EM modeling with matlab[M]. New York:Wiley-Interscience, 2002.
    [243] Chen Y, Yang S, He S, Nie Z P. Design and analysis of wideband planar monopole antennas using the multilevel fast multipole algorithm[J]. Progress In Electromagnetics Research B. 2009, 15: 95~112.
    [244] Qian Z G, Cui T J, Lu W B, et al. An improved MoM model for line-fed patch antennas and printed circuits[J]. IEEE Trans Antennas Propag. 2005, 53(9): 2969~2976.
    [245] Balanis C A. Antenna Theory: Analysis and Design[M]. Hoboken, New Jersey: John Wiley & Sons, 2005.
    [246] Jin N -B, Rahmat-Samii Y. Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs[J]. IEEE Trans Antennas Propagat. 2005, 53(11): 3459~3468.
    [247] Tatsuya K, Teruo O, Ichiro F. Analysis of microstrip antennas on a curved surface using the conformal grids FD-TD Method[J]. IEEE Trans Antennas Propagat. 1994, 42(3): 423~427.
    [248] Yeung E K L, Beal J C, Antar Y M M. Multilayer microstrip structure analysis with matched load simulation[J]. IEEE Trans Microwave Theory Tech. 1995, 43(1): 143~149.
    [249] Maricevic Z A, Analysis and measurements of arbitrarily shaped open microstrip structures[D]. Italy: Syracuse University, 1994.
    [250] Wong K L, Hsieh G B. Curvature effects on the radiation patterns of cylindrical microstrip arrays[J]. Microwave Opt Technol lett. 1998, 18(3): 206~209.
    [251] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science. 2006, 314: 977~980.
    [252] Bladel J V. Electromagnetic fields[M]. Wiley-Interscience, 2ed. 2007.
    [253]柴舜连.毫米波介质共形顶相控阵研究[D].长沙:国防科学技术大学, 1998.
    [254]徐志.宽带宽角有源相控阵天线单元研究[D].西安:西安电子科技大学,2008.
    [255] Balanis C A. Modern antenna handbook[M]. John Wiley & Sons, 2008.
    [256]何庆强.共形辐射单元及共形阵列研究[D].成都:电子科技大学, 2008.
    [257] Lou Z, Jin J M. Finite-element analysis of phased-array antennas[J]. Microwave Opt Technol Lett. 2004, 40(6): 490~496.
    [258] Schaubert D H. Endfire tapered slot antenna characteristics[J]. IEEE Trans Antennas Propagat. 1987, 35(9): 1058~1065.
    [259] Holter H, Chio T H, Schaubert D H. Elimination of impedance anomalies in single- and dual-polarized endfire tapered slot phased arrays[J]. IEEE Trans Antennas Propagat. 2000, 48(1): 122~124.
    [260] Chang D C, Zheng J X. Electromagnetic modeling of passive circuit elements in MMIC[J]. IEEE Trans Microwave Theory Tech. 1992, 40(9): 1741~1747.
    [261] Hua Y, Sarkar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response[J]. IEEE Trans Antennas Propag. 1989, 37(2): 229~234.
    [262] Maricevic Z A, Sarkar T K. Analysis and measurements of arbitrarily shaped open microstrip structures[J]. Progress In Electromagnetics Research. 1997, 15: 253~301.
    [263] Hammerstad E O, Jensen O. Accurate models for microstrip computer-aided design[C]. IEEE MTT-S, 1980, 407~409.
    [264] Hong J S, Lancaster M J. Microstrip filters for RF/microwave applications [M]. New York: Wiley-Interscience, 2001: 187.
    [265] Kara M. Techniques for the computation of the mutual coupling between two rectangular microstrip antenna elements with thick substrates[J]. Microwave and Opt Tech. 1997, 16(3): 169~176.
    [266] Zhao X W, Dang X J, Zhang Y, Liang C H. The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms[J]. Progress In Electromagnetics Research. 2007, 69: 161~176.
    [267] Silver S. Microwave antenna theory and design[M]. McGraw-Hill, INC. 1949.
    [268] Zhao F, Xiao K, Feng W J, Chai S L, Mao J J. Design and Manufacture of the Wide-Band Aperture-Coupled Stacked Microstrip Antenna[J]. Progress In Electromagnetic Reach C. 2009, 7: 37~50.
    [269] Krowne C M. Cylindrical-rectangular microstrip antenna[J]. IEEE Trans Antennas Propagat. 1983, 31(1): 194~199.
    [270] Enrique A. Navarro, Avinash Luximon, Ian J. Craddock, Dominique L. Paul M D. Multilayer and conformal antennas using synthetic dielectric substrates[J]. IEEE Trans Antennas Propagat. 2003, 51(4): 905~908.
    [271] Bruce R. Piper N V S. The design of spherical conformal antennas using customized techniques based on NURBS[J]. IEEE Antennas and Propagat Magazine. 2009, 51(2): 48~60.
    [272] Li W, Liu S, Shi X, et al. Low-sidelobe pattern synthesis of spherical array using the hybrid genetic algorithm[J]. Microwave and Opt Tech Lett. 2009, 51(6): 1487~1491.
    [273] Li W, Hei Y, Shi X, et al. An extended particle swarm optimization algorithm for pattern synthesis of conformal phased arrays[J]. International Journal of RF and Microwave Computer-Aided Engineering. 2010, 20(2): 190~199.
    [274] Wiesbeck W, Younis M, Loffler D. Design and measurement of conformal antennas[C]. IEEE AP-S Int Symp. 2002, 1: 84~87.
    [275] Gibson P. The Vivaldi aerial[C]. Brighton: 9th European Microwave Conference, 1979, 101~105.
    [276] Yngvesson K S, et al, Endfire tapered slot antennas on dielectric substrates[J]. IEEE Trans Antennas Propagat. 1985, 33(12): 1392~1400.
    [277] Janaswamy R, Schaubert D H. Dispersion characterics for wide slotlines on low-permittivity substrates[J]. IEEE Trans Microw Theroy and Tech. 1989, 33(8): 723~726.
    [278] Chio T H, Schaubert D H. Parameter study and design of wide-band widescan dual-polarized tapered slot antenna arrays[J]. IEEE Trans Antennas Propagat. 2000, 48(6): 879~886.
    [279] Holter H, Steyskal H. Some experiences from FDTD analysis of infinite and finite multi-octave phased arrays[J]. IEEE Trans Antennas Propagat. 2002, 50(12): 1725~1731.
    [280] Whites K W, Mittra R. An equivalent boundary-condition model for lossy planar periodic structures at low-frequencies[J]. IEEE Trans Antenna Propagat. 1996, 44(12): 1617~1629.
    [281] Yasumoto K, Yoshitomi K. Efficient calculation of lattice sums for free- space periodic Green's function[J]. IEEE Trans Antennas Propagat. 1999, 47(6): 1050~1055.
    [282] Floquet G. Sur les quations diffrentielles linaires coefficients priodiques[J]. Annales de l’Ecole Normale Suprieur, 1883, 12: 47~89.
    [283]张辉.超常介质的电磁特性及其应用研究[D].长沙:国防科学技术大学,2009.
    [284] Shelby R A, Smith D R, Nemat-Nasser S C, Schultz S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial[J]. Applied Phys Lett. 2001, 78(4): 489~491.
    [285] McGrath D T, Pyati V P. Phased array antenna analysis with the hybrid finite element method[J]. IEEE Trans Antennas Propagat. 1994, 42(12): 1625~1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700