高性能基片集成波导微波滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信技术的发展,人们对高速无线移动通信的需求变得越来越强烈,使得频谱资源变得越来越紧张,同时用来实现频带划分、频带隔离的关键器件滤波器的参数要求也变得越来越严格,为了满足高传输速率,滤波器的工作频率也相应的变得越来越高,带宽也越来越宽。基片集成波导(SIW)滤波器因具有重量轻、体积小、成本低、可工作于高频率、便于与平面电路集成以及可方便的利用标准的PCB技术和LTCC技术加工等独特的优点,成为在无线高速移动通信中的首选。但是,基片集成波导也具有一些限制其应用的缺点:由于基片集成波导采用金属线阵来实现波导壁,存在一定的间隙,容易引起能量的泄漏,导致滤波器的带外抑制性能变差,在宽带情况下更为严重;基片集成波导多为矩形波导,其输入输出的位置相对固定,不能满足移动设备中复杂的安装环境;基片集成波导实质上是介质填充的波导,介质具有一定的损耗,导致谐振器Q值降低,频率越高滤波器带内衰减将越大;同时在基片上采用PCB和LTCC技术,公差的绝大部分都是在过孔的电镀过程产生的,而基片集成波导采用金属过孔来实现滤波器的波导壁和耦合结构,加工的精度对器件的性能将直接产生影响。这些缺点极大地限制了基片集成波导的应用与推广。
     为了推进基片集成波导滤波器在无线通信中的使用,弥补基片集成波导的缺点,论文就如何提高基片集成波导微波滤波器性能进行了研究。主要研究工作包括:
     1、对基片集成波导衰减特性、三种常用的输入输出馈电方式:微带、渐变线、开槽耦合以及其对应的尺寸敏感度进行了分析,得到了其相应的传输特性和尺寸容差特性。同时,对采用耦合谐振腔综合宽带滤波器理论进行研究,为设计宽带高性能滤波器打下基础。
     2、为了满足如卫星通信、移动设备等通信系统和设备对系统集成结构上的需求,论文对圆柱基片集成波导的特有电磁特性进行分析,利用圆柱基片集成波导中圆对称分布的TM01模,设计实现了高安装性能的宽带滤波器,具有非常灵活的输入输出设置性能;对基片集成圆柱波导中特有的双模工作模式进行了分析,就如何选用级间耦合结构来实现双模非对称响应滤波器进行了研究,得到了这类滤波器实现级间耦合的方法。
     3、论文对如何改善基片集成波导滤波器的带外抑制性能进行了研究,提出了采用旁路耦合圆柱谐振腔在滤波器带外产生传输零点的方式来提高滤波器带外抑制性能的方法:当基片集成旁路耦合圆柱谐振腔高和半径之比满足:h/R <2.04时,圆柱谐振腔内TM01成为唯一的工作模式,谐振腔谐振频率只与半径和高度相关,当高度固定则可以用半径来唯一控制谐振频率,引入该旁路耦合圆柱谐振腔进入滤波器的倒相器也具有频率独立特性,因此,利用旁路耦合圆柱谐振腔在基片集成波导滤波器中任意位置便可设置传输零点。另外,论文还对基片集成半模波导结构进行了分析,利用大尺寸半模基片集成波导中双模旁路交叉耦合来产生传输零点,设计了一种具有带外传输零点的双模大尺寸半模结构滤波器,改善了该滤波器的上边带性能。
     4、论文还对基片集成椭圆波导的电磁特性进行了分析,利用基片集成椭圆波导的独有特性:椭圆腔中不会因为横截面的轻微不连续和开口而产生模式分裂和极化旋转,提出了一种采用椭圆波导来设计实现低加工尺寸灵敏度的滤波器的方法,设计实现了一个具有高的加工工艺尺寸容差椭圆基片集成半模滤波器,结果验证了该方法的正确性。
     通过对上述内容的研究,得到了一些设计高性能的基片集成波导微波滤波器的有效方法。
With the development of the communication technology, demand of the high speedwireless mobile communication becomes more and more intense, and the spectrumresource is shortage increasingly. The filter, as the key device of band allocation andchannel isolation, is supposed to with stringent selectivity, low insertion, and potentialintegration into the circuit for high frequency and wide band application. Substrateintegrated waveguide (SIW) filter provides a low-cost, low-weight, easy for highfrequency and wide band application, simple fabrication with the PCB<CC andpossible integration scheme while maintaining high performance, which is satisfied withthe needs perfectly. But the discontinuities in the post wall of the SIW lead to poorstopband attenuation of SIW filter; the filter’s I/O setting is limited by the rectangularwaveguide; substrate dissipation causes a loss in the SIW resonator Q value, higher thefrequency, lower the Q value, the Q descending make the filter selectivity to deteriorate;moreover, the position tolerance of plated via-holes is usually several times thetolerance of trace sizes in PCB or LTCC, the fabrication tolerance directly influencefilter designing, optimizing and final performance. These disadvantages limit theapplication of substrate integrated waveguide greatly.
     With the purpose of promoting SIW filters application in the wirelesscommunication, many improve SIW filter performance technology are studied in thisthesis. The main research works include as follows:
     1. Three popular I/O modes for SIW filter include microstrip, taper, slot couplingand their size sensitivity, and the dispersion characteristics of SIW are analyzed. Thetransmission characteristic of SIW and the size sensitivity features of the three I/Omodes are got. Furthermore, the broadband coupling resonant cavity filter synthesizetechnology is studied. The results can be used to facilitate the synthesizing of highperformance broadband coupling resonant cavity filter.
     2. The electromagnetic characteristics of substrate integrated circular waveguide(SICW) are presented in this thesis. In order to meet the needs of the system installationand integration, such as satellite communications and mobile equipment, based on the circular symmetry TM01mode in SICW, a high performance wideband filter the withflexibility I/O structure is designed. Additionally, the coupling structure of the dualmode in the SICW filter are researched also, and asymmetric responding filters withimprovement upper stopband performance are obtained.
     3. A method to improve filter upper stopband performance using bypass couplingsubstrate integrated circular cavity resonator (BC-SICCR) is presented. Using SICCR asthe bypass coupling resonator, its resonant frequency can be entirely controlled by theSICCR radius (when height is fixed) owing to theTM01mode is selected as only theoperating mode while the SICCR height h and the radius R meet with h/R <2.04. Dueto the operating mode is exclusivity in SICCR, this structure of the inverter with SICCRbrings the bypass coupling of the SICCR in the SIW is independent of frequency,transmission zeros can be set up at arbitrary place in filter stopband through theBC-SICCR. Besides, a technique of bypass cross coupling through higher/lower orderdual mode in one SIW to produce a transmission zero is presented, and it is verified bya oversized dual mode folded half mode SIW filter with bypass cross couplingtransmission zeros.
     4. The electromagnetic character of the elliptic substrate integrated waveguide isstudied. A novel half mode elliptic substrate integrated waveguide (HMESIW) filterwith a good performance in tolerance sensitivity is proposed and fabricated by usingstandard PCB technology. Due to the advantage of elliptical waveguide cavity, no modesplitting or rotation of the polarization plane at the condition of slight deformations incross section, the tolerance sensitivity of the filter sizes is reduced. The measured resultsdemonstrate the HMESIW filter has a superior performance in tolerance sensitivity.
     Through the above-mentioned researchs, the results can be boosted the design ofhigh performance SIW microwave filter.
引文
[1] IEEE802.11.http://en.wikipedia.org/wiki/IEEE_802.11#Channels_and_international_Compatibility
    [2] Richard J. Cameron. General coupling matrix synthesis methods for chebyshev filteringfunctions. IEEE Trans. Microw. Theory Tech.,1999,47(4):433-442
    [3] Chuck Y Pon. Hybrid-ring directional couplers for arbitrary power division. IRE Trans. Microw.Theory Tech.,1961,9:529-535
    [4]杨帮朝,付现明等.低温共烧陶瓷技术进展.电子元件与材料.2008.6(27):1-5
    [5] H. Uchimura, T. Takenoshita, M. Fujii. Development of a laminated waveguide. IEEE Trans.Microw. Theory Tech.,1998,46(12):2438-2443
    [6] M. Bozzi, A. Georgiadis,K. Wu. Review of substrate-integrated waveguide circuits andantennas. IET Microw. Antennas Propag.,2011,5(8):909–920
    [7] Bozzi M., Pasian M., Perregrini L., Wu K. On the losses in substrate integrated waveguides andcavities. Int. J. Microw. Wirel. Tech.,2009,1(5):395–401
    [8] Bozzi M., Perregrini L., Wu, K. Modeling of conductor dielectric and radiation losses insubstrate integrated waveguide by the boundary integral-resonant mode expansion method.IEEE Trans. Microw. Theory Tech.,2008,56(12):3153-3161
    [9] Ke Wu. Integration and interconnect techniques of planar and non-planar structures formicrowave and millimeter-wave circuits: current status and future trend.2001Asia-PacificMicrowave Conference Proceedings (APMC2001),2001:411-416
    [10] D. Deslandes, K Wu. Integrated transition of coplanar to rectangular waveguide.2001IEEEMTT-S Digest.2001:619-622
    [11] Xu Feng, Wu, Ke. Guided-wave and leakage characteristics of substrate integrated waveguide.IEEE Trans. Microw. Theory Tech.,2005,53(1):66–73
    [12] Wei Hong, Bing Liu, Luo G.Q., et al.. Integrated Microwave and Millimeter Wave AntennasBased on SIW and HMSIW Technology. International Workshop on Antenna Technology:Small and Smart Antennas Metamaterials and Applications,2007:69-72
    [13] Yujian Cheng, Wei Hong, Ke Wu. Investigation on Tolerances of Substrate IntegratedWaveguide (SIW). Proceedings of Asia-Pacific Microwave Conference2007:1-4
    [14] Cassiv Y., Perregrini L., Arcion P., et al. Dispersion characteristics of substrate integratedrectangular waveguide. IEEE Microw. Wirel. Compon. Lett.,2002,12(9):333–335
    [15] Che W., Deng K., Wang D., et al. Analytical equivalence between substrate integratedwaveguide and rectangular waveguide. IET Microw. Antennas Propag.,2008,2(1):35–41
    [16] Deslandes D., Wu Ke. Accurate modeling wave mechanisms and design considerations of asubstrate integrated waveguide. IEEE Trans. Microw. Theory Tech.,2006,54(6):2516–2526
    [17]钟催林.基于基片集成波导的微波电路研究:[博士学位论文],成都:电子科技大学,2008
    [18] Xu Feng, Zhang Yulin., Hong Wei, et al. Finite-difference frequency-domain algorithm formodeling guided-wave properties of substrate integrated waveguide. IEEE Trans. Microw.Theory Tech.,2003,51(11):2221–2227
    [19] Yan L., Hong Wei, Wu Ke, Cui TieJun. Investigations on the propagation characteristics of thesubstrate integrated waveguide based on the method of lines. Proc. IEE Microw. AntennasPropag.,2005,35–42
    [20] Wei Hong et al. Half Mode Substrate Integrated Waveguide: A New Guided Wave Structure forMicrowave and Millimeter Wave Application. Infrared Millimeter Waves and14th InternationalConference on Teraherz Electronics,2006:219
    [21] Tang H.J., Hong Wei, Hao Z.C., et al. Optimal design of compact m illimetre-wave SIWcircular cavity filters. Electron. Lett.,2005,41(19):1068–1069
    [22] B. Potelon, J. Favennec, C. Quendo. Design of a substrate integrated waveguide (SIW) filterusing a novel topology of coupling. IEEE Microw. Wireless Compon. Lett.,2009,18(9):596-598.
    [23] Jian Gu, Yong Fan, Yonghong Zhang. A low-loss SICC filter using LTCC technology for X-Band application. IEEE Conf. On Applied Superconductivity and Electromagnetic Devices2009, pp:152-154
    [24] Cassivi Y., Wu K. Low cost microwave oscillator using substrate integrated waveguide cavity.IEEE Microw. Wirel. Compon. Lett.,2003,13(2):48–50
    [25] Zhong Cuilin., Xu Jun, Yu Zhiyuan, et al. Ka-band substrate integrated waveguide Gunnoscillator. IEEE Microw. Wirel. Compon. Lett.,2008,18(7):461–463
    [26] Zhong Cuilin, Xu Jun, Yu Zhiyuan. Parallel type substrate integrated waveguide Gunn oscillator.Microw. Opt. Technol. Lett.,2008,50(10):2525–2527
    [27] Abdolhamidi M., Shahabadi M. X-band substrate integrated waveguide amplifier. IEEE Microw.Wirel. Compon. Lett.,2008,18(12):815–817
    [28] He FanFan, Wu Ke, Hong Wei, et al. Suppression of second and third harmonics using l/4low-impedance substrate integrated waveguide bias line in power amplifier. IEEE Microw.Wirel. Compon. Lett.,2008,18(7):479–481
    [29] Jin HaiYan, Wen GuangJun, Jing XiaoRong, et al. A novel spatial power combiner amplifierbased on SIW and HMSIW. IEICE Trans. Electron.,2009, E92-C(8):1098–1101
    [30] Luo GuoQin, Hu ZhiFang, Dong LinXi, et al. Planar slot antenna backed by substrate integratedwaveguide cavity. IEEE Antennas Wirel. Propag. Lett.,2008,7:236–239
    [31] Bohorquez J.C., Pedraza H.A.F., Pinzon, I.C.H., et al. Planar substrate integrated waveguidecavity-backed antenna. IEEE Antennas Wirel. Propag. Lett.,2009,8:1139–1142
    [32] Giuppi F., Georgiadis A., Collado A., et al. An X band compact active cavity backed patchoscillator antenna using a substrate integrated waveguide (SIW) resonator. IEEE Antennas andPropagation Society International Symposium, Toronto,2010:1-4
    [33] A. J. Piloto, K.A. Leahy, B.A. Flanick, et al. Waveguide filters having a layered dielectricstructure. US Patent5382931,1995-01-17
    [34] Deslandes D., Wu K. Single-substrate integration technique of planar circuits and waveguidefilters. IEEE Trans. Microw. Theory Tech.,2003,51(2):593–596
    [35] Sung Tae Choi, Ki Seok Yang, Tokuda, K., et al. A V-band planar narrow bandpass filter using anew type integrated waveguide transition. IEEE Microw. Wirel. Compon. Lett.,2004,14(12):545–547
    [36] Chen XiaoPing, Wu Ke. Substrate integrated waveguide cross-coupled filter with negativecoupling structure. IEEE Trans. Microw. Theory Tech.,2008,56(1):142–149
    [37] Xiaoping Chen, Daniel Drole, Ke Wu. Substrate Integrated Waveguide Filters for Airborne andSatellite System Applications. Conference on Electrical and Computer Engineering,2007:659-662
    [38] Deslandes, D., Wu, K. Millimeter-wave substrate integrated waveguide filters. IEEEConference on Electrical and Computer Engineering,2003,3:1917-1920
    [39] F. Mira, A.A. San Blasy, S. Cogollosz, et al. Computer-Aided Design of Substrate IntegratedWaveguide Filters for Microwave and Millimeter wave Applications. Proceedings of the39thEuropean Microwave Conference2009:425-428
    [40] Yuan Dan Dong, Wei Hong, Hong Jun Tang. A Novel Millimeter Wave Substrate IntegratedWaveguide Filter Using TE301Mode Cavities. Global Symposium on Millimeter Waves,2008:91-93
    [41] Romo G., Scogna A.C. Substrate integrated wavegude (SIW) filter: design methodology andperformance study. IEEE MTT-S International Microwave Workshop Series on Signal Integrityand High-Speed.2009:23-26
    [42] Y. Cassivi, L. Perregrini, K. Wu, et al. Low-Cost and High-Q Millimeter-Wave Resonator UsingSubstrate Integrated Waveguide Technique.32nd European Microwave Conference,2002:1-4
    [43] Wei Shen, Lin-Sheng Wu, Xiao-Wei Sun, et al. Novel Substrate Integrated Waveguide FiltersWith Mixed Cross Coupling (MCC). IEEE Microw. Wirel. Compon. Lett.,200919(11):701-703
    [44] LinSheng Wu, Liang Zhou, XiLang Zhou, et al. Bandpass Filter Using Substrate IntegratedWaveguide Cavity Loaded With Dielectric Rod. IEEE Microw. Wirel. Compon. Lett.,2009,19(8):491-493
    [45] Fermín Mira, Jordi Mateu, Santiago Cogollos, et al. Design of Ultra-Wideband SubstrateIntegrated Waveguide (SIW) Filters in Zigzag Topology. IEEE Microw. Wirel. Compon. Lett.,2009,19(5):281-283
    [46] YuanDan Dong, TaoYang, Tatsuo Itoh. Substrate Integrated Waveguide Loaded byComplementary Split-Ring Resonators and Its Applications to Miniaturized Waveguide Filters.IEEE Trans. Microw. Theory Tech.,2009,57(9):2211-2223
    [47] ZhangCheng Hao, Wei Hong, Ji Xin Chen, et al. Compact Super-Wide Band-Pass SubstrateIntegrated Waveguide (SIW) Filters. IEEE Trans. Microw. Theory. Tech.2005,53(9):2968-2977
    [48] XiaoPing Chen, Wei Hong et al. Planar Asymmetric Dual-Mode Filters Based on SubstrateIntegrated waveguide (SIW). IEEE MITT-S International Microwave Symposium Digest,2005:949-952
    [49] ZhangCheng Hao, Wei Hong, Hao Li, et al. A Broadband Substrate Integrated Waveguide (SIW)Filter. IEEE International Symposium on Antennas and Propagation,2005,1B:598-601
    [50] HongJun Tang, Wei Hong, ZhangCheng Hao, et al. Optimal design of compact millimetre-waveSIW circular cavity filters. Electron. Lett.,2005,41(19):1068-1069
    [51] Benjamin Potelon, Cedric Quendo, Jean-Fran ois Favennec, et al. Design of Bandpass FilterBased on Hybrid Planar Waveguide Resonator. IEEE Trans. Microw. Theor. Tech.,2010,58(3):635-644
    [52] ChiaCheng Chuang, HungHsuan Lin, ChinLi Wang. Design of Dual-Mode SIW Cavity Filters.IEEE Region10Conference2007:1-4
    [53] R.Q. Li, X.H. Tang, F. Xiao. Substrate integrated waveguide dual-mode filter using slot linesperturbation. Electron. Lett.2010,46(12):845-846
    [54] Deslandes D., Ke Wu. Substrate Integrated Waveguide Dual-Mode Filters for Broadband.Proceedings of Radio and Wireless Conference,2003:385-388
    [55] Wei Shen, Xiao-Wei Sun, Wen-Yan Yin, et al. A Novel Single-Cavity Dual Mode SubstrateIntegrated Waveguide Filter with Non-Resonating Node. IEEE Microw. Wirel. Compon. Lett.,2009,19(6):368-370
    [56] Hizan H.M., Hunter I.C., Abunjaileh, A.I. Integrated Dual-Band Radiating Bandpass FilterUsing Dual-Mode Circular Cavities. IEEE Microw. Wirel. Compon. Lett.,2011,21(5):246-248
    [57] Hong Jun Tang, Wei Hong, Ji-Xin Chen, et al. Development of Millimeter-Wave PlanarDiplexers Based on Complementary Characters of Dual-Mode Substrate Integrated WaveguideFilters With Circular and Elliptic Cavities. IEEE Trans. Microw. Theor. Tech.,2007,55(4):776-782
    [58] Fei Yang, Hongxi Yu. Two novel substrate integrated waveguide (SIW) filters based on LTCCtechnology. International Conference on Microwave and Millimeter Wave Technology(ICMMT),2010:229-232
    [59] Hung-Yi Chien, Tze-Min Shen, Ting-Yi Huang, et al. Miniaturized Bandpass Filters WithDouble-Folded Substrate Integrated Waveguide Resonators in LTCC. IEEE Trans. Microw.Theor. Tech.,2009,57(7):1174-1782
    [60] Lin-Sheng Wu, Xi-Lang Zhou, Wen-Yan Yin. A Novel Multilayer Partial H-Plane FilterImplemented With Folded Substrate Integrated Waveguide (FSIW). IEEE Microw. Wirel.Compon. Lett.,2009,19(8):494-496
    [61] Bo-Jiun Chen, Tze-Min Shen, Ruey-Beei Wu. Dual-Band Vertically Stacked LaminatedWaveguide Filter Design in LTCC Technology. IEEE Trans. Microw. Theor. Tech.,2009,57(6):1554-1562
    [62] ShengZhang Zhang, ZhiYuan Yu, and Can Li. Elliptic Function Filters Designed in LTCC.Asia-Pacific Microwave Conference Proceedings,2005
    [63] Lin-Sheng Wu, Xi-Lang Zhou, Wen-Yan Yin, et al. A New Type of Periodically LoadedHalf-Mode Substrate Integrated Waveguide and Its Applications. IEEE Trans. Microw. Theor.Tech.,2010,58(4):882-893
    [64] Yuanqing Wang, Wei Hong, Yuandan Dong, et al. Half Mode Substrate Integrated Waveguide(HMSIW) Bandpass Filter. IEEE Microw. Wirel. Compon. Lett,2007,17(4):265-267
    [65] Vikram Sekar, Kamran Entesari. Miniaturized Half-Mode Substrate Integrated WaveguideBandpass Filters Using Cross-Shaped Fractals. IEEE12th Annual Wireless and MicrowaveTechnology Conference,2011:1-5
    [66] Wei Liu, Falin Liu. A Highly Selective Super-Wide Bandpass Filter by Cascading HMSIW withAsymmetric Defected Ground Structure. International Conference on Microwave andMillimeter Wave Technology,2010:77-80
    [67] Yujian Cheng, Wei Hong, Ke Wu. Half Mode Substrate Integrated Waveguide (HMSIW)Directional Filter. IEEE Microw. Wirel. Compon. Lett,2007,17(7):504-506
    [68] Cuilin Zhong, Jun Xu, Zhiyuan Yu, et al. Half Mode Substrate Integrated WaveguideBroadband Bandpass Filter Using Photonic Band Gap Structures. International Conference onMicrowave and Millimeter Wave Technology,2008:22-24
    [69] Guo Hua Zhai, Wei Hong, Ke Wu, et al. Folded Half Mode Substrate Integrated Waveguide3dB Coupler. IEEE Microw. Wirel. Compon. Lett.,2008,18(8):512-514
    [70] Z. G. Wang, X. Q. Li, S. P. Zhou, et al. Half mode substrate integrated folded waveguide andpartial H-plane bandpass filter. Progress In Electromagnetics Research,2010,101:203-216
    [71] Qinghua Lai, Christophe Fumeaux, Wei Hong, et al. Characterization of the PropagationProperties of the Half-Mode Substrate Integrated Waveguide. IEEE Trans. Microw. Theor.Tech.,2009,57(8):1196-2004
    [72](美) C.C.Temes, S.K.Mitra编,王志洁译.现代滤波器理论与设计.北京:人民邮电出版社.1984
    [73] Jia-Sheng Hong, M. J. Lancaster. Microstrip Filters for RF/Microwave Applications. JohnWiley&Sons, Inc.,2001
    [74] W. Menzel, M. S. R. Tito, L. Zhu. Low-loss ultrawide band (UWB) filters using suspendedstripline. Asia-Pacific Microwave Conference Proceedings,2005,4:675-678,
    [75] R. Gomez-Garcia, J. I. Alonso. Systematic method for the exact synthesis of ultra-widebandfiltering responses using high-pass and low-pass sections. IEEE Trans. Microw. Theory Tech.,2006,54(10):3751–3764
    [76] Da-Chiang Chang, Ching-Wen Hsue. Wide-band equal-ripple filters in nonuniform transmissionlines. IEEE Trans. Microw. Theory Tech.,2002,50(4):1114-1119
    [77] Wei-Ting Wong, Yo-Shen Lin, Chi-Hsueh Wang, et al. Highly selective microstrip bandpassfilters for ultra wide band(UWB) applications, Asia-Pacific Microwave Conference,2005,5:2850–2853
    [78] Sheng Sun, Rui Li, Lei Zhu, et al. Studies on Synthesis Design of Ultra-WidebandParallel-Coupled Line Bandpass Filters with Chebyshev Responses. Asia-Pacific MicrowaveConference,2009:155-158
    [79] L. Zhu, S. Sun, W. Menzel. Ultra-wideband (UWB) bandpass filters using multiple-moderesonator. IEEE Microw. Wireless Compon. Lett.,2005,15(11):796-798
    [80] L. Zhu, H. Wang. Ultra-wideband bandpass filter on aperture-backed microstrip line.Electronics Letters,2005,41(18):1015-1016
    [81] Rui Li, Sheng Sun, Lei Zhu. Synthesis Design of Ultra-Wideband Bandpass Filters WithComposite Series and Shunt Stubs. IEEE Trans. Microw. Theory Tech.,2009,57(3):684-692
    [82] C.-P. Chen, Z. Ma, T. Anada1. Synthesis of ultra-wideband bandpass filter employingparallel-coupled stepped-impedance resonators. IET Microw. Antennas Propag.,2008,2(8):766–772
    [83] Qingfeng Zhang, Yilong L. Dimensional Synthesis of Symmetric Wideband WaveguideCross-Coupled Filters Without Global Full-Wave Optimization. IEEE Trans. Microw. TheoryTech.,2010,58(12):3742-3748
    [84] Zhewang Ma, Chun-Ping Chen, Tetsuo Anada. New Progress in the Development of CompactHigh-Performance Microwave Ultra-Wideband (UWB) Filters. IEEE International Symposiumon Radio-Frequency Integration Technology,2009:355-360
    [85] Rui Li, Sheng Sun, Lei Zhu. Synthesis Design of Ultra-Wideband Bandpass Filters WithDesignable Transmission Poles. IEEE Microw. Wirel. Compon. Lett.,2009,19(5):284-286
    [86] Chun-Ping Chen, Zhewang Ma, Tetsuo Anadal, et al. Recent Progress in Synthesis Techniquesof Microwave Ultra-Wideband (UWB) Filters. China-Japan Joint Microwave Conference,2008:88-94
    [87] Q.F. Zhang, Y.L. Lu. Dimensional synthesis method for wide-band waveguide iris filters. IETMicrow. Antennas Propag.,2010,4(9):1256–1263
    [88] Qingfeng Zhang, Yilong Lu. Synthesis of Wide-band Bandpass Filters with Quarter-wavelengthResonators. Asia Pacific Microwave Conference,2009:2037-2040
    [89] Felice Maria Vanin, Dietmar Schmitt, Ralph Levy. Dimensional Synthesis for Wide-BandWaveguide Filters and Diplexers. IEEE Trans. Microw. Theory Tech.,2004,52(11):2488-2495
    [90] Wei Meng, Hong-Ming Lee, Kawthar A. Zaki, et al. Synthesis of Wideband MulticoupledResonators Filters. IEEE Trans. Microw. Theory Tech.,2011,59(3):593-603
    [91] Smain Amari, Fabien Seyfert, Maged Bekheit. Theory of Coupled Resonator MicrowaveBandpass Filters of Arbitrary Bandwidth. IEEE Trans. Microw. Theory Tech.,2010,58(8):2188-2203
    [92] Orchard H., Temes G.. Filter Design Using Transformed Variables. IEEE Trans. On Cirut.Theory,1968,15(4):385-408
    [93] Levy R. Theory of Direct-Coupled-Cavity Filters. IEEE Trans. Microw. Theory Tech.,1967,15(6):340-348
    [94] Richard J. Cameron. General Coupling Matrix Synthesis Methods for Chebyshev FilteringFunctions. IEEE Trans. Microw. Theory Tech.,1999,47(4):433-442
    [95] Yunchi Zhang, Kawthar A. Zaki, Jorge A. Ruiz-Cruz, and Ali E. Atia. Analytical Synthesis ofGeneralized Multi-band Microwave Filters. IEEE/MTT-S International Microwave Symposium,2007:1273-1276
    [96] Pablo Soto, Vicente E. Boria, Carlos Vicente. Accurate Synthesis and Design of Wideband andInhomogeneous Inductive Waveguide Filters. IEEE Trans. Microw. Theory Tech.,2010,58(8):2220-2230
    [97] Cohn S.B. Direct-Coupled-Resonator Filters. Proceedings of the IRE,1957,45(2):187-196
    [98] Vahid Miraftab, Ming Yu. Advanced Coupling Matrix and Admittance Function SynthesisTechniques for Dissipative Microwave Filters. IEEE Trans. Microw. Theory Tech.,2009,57(10):2429-2438
    [99] Richard J. Cameron. Advanced Coupling Matrix Synthesis Techniques for MicrowaveFilters. IEEE Trans. Microwave Theory Tech.,2003,51(1):1-10
    [100] Smain Amari, Uwe Rosenberg. Characteristics of Cross (Bypass) Coupling ThroughHigher/Lower Order Modes and Their Applications in Elliptic Filter Design. IEEE Trans.Microw.Theory Tech.,2005,53(10):3135-3141
    [101] Giuseppe Macchiarella, Stefano Tamiazzo. Design Techniques for Dual Passband Filters.IEEE Trans. Microwave Theory Tech.,2005,53(11):3265-3271
    [102] Marco Guglielmi, Fabrizio Montauti, Luca Pellegrini, et al. Implementing Transmission Zerosin Inductive-Window Bandpass Filters. IEEE Trans. Microwave Theory Tech.,1995,43(8):1911-1915
    [103] Smain Amari, Uwe Rosenberg. New Building Blocks for Modular Design of Elliptic andSelf-Equalized Filters. IEEE Trans. Microwave Theory Tech.,2004,52(2):721-736
    [104] Damir Zayn iyev, D. Budimir. Compact Microstrip Pseudo-Interdigital Stepped ImpedanceBandpass Filters with Improved Stopband Performance. IEEE10th Annua Wireless andMicrowave Technology Conference,2009:1-2
    [105] Binyan Yao, Yonggang Zhou, Qunsheng Cao, et al. Compact UWB Bandpass Filter withImproved Upper-Stopband Performance. IEEE Microw. Wirel. Compon. Lett.,2009,19(1):27-29
    [106] Jae-Kwan Lee, Young-Sik Kim. Ultra-Wideband Bandpass Filter with Improved UpperStopband Performance Using Defected Ground Structure. IEEE Microw. Wirel. Compon. Lett.,2010,20(6):316-318
    [107] M. Morelli, I. Hunter, R. Parry, et al. Stopband Performance Improvement of RectangularWaveguide Filters Using Stepped Impedance Resonators. IEEE Trans. Microw. Theory Tech.,2002,50(7):1657-1664
    [108] D. Budimir. Optimized E-plane Bandpass Filters with Improved Stopband Performance. IEEETrans. Microw. Theory Tech.,1997,45(2):212-220
    [109] Wing-Yan Leung, Kwok-Keung M. Cheng, Ke-Li Wu. Multilayer LTCC Bandpass FilterDesign With Enhanced Stopband Characteristics. IEEE Microw. Wirel. Compon. Lett.,2002,12(7):240-242
    [110] XiaoPing Chen, Ke Wu, and Zhao-Long Li. Dual-band and triple-band substrate integratedwaveguide filters with chebyshev and quasi-elliptic responses. IEEE Trans. Microw. TheoryTech.,2007,55(12):2569-2578
    [111] Q.F. Zhang, Y.L. Lu. Dimensional synthesis for wide-band pseudo-elliptic waveguide filtersusing cavity-backed inverters. IET Microw. Antennas Propag.2010,4(12):2212–2218
    [112] JiFuh Liang, XiaoPeng Liang, Zaki, K.A., et al. Dual-mode Dielectric or Air-filledRectangular Waveguide Filters. IEEE Trans. Microw. Theory Tech.,1994,42(7):1330-1336
    [113] Smain Amari. Sensitivity Analysis of Coupled Resonator Filters. IEEE Trans. on Circuit. andSys.—II: Analog and digital signal processing,2000,47(10):1017-1022
    [114] Ji-Fuh Liang, Hsin-Chin Chang, Kawthar A. Zaki. Design and Tolerance Analysis of ThickIris Waveguide Bandpass Filters. IEEE Trans. on Mag.1993,29(2):1065-1068
    [115] Torben Baras, Arne F. Jacob. Design and Manufacturing Reliability of Passive Componentsfor LTCC Millimeterwave Hybrid Circuits. Proceedings of the37th European MicrowaveConference,2007:660-663
    [116] Frank E. Grace. Tolerance Study of Printed-circuit process steps for a microwave application.IEEE Trans. on Materials and Packaging,1965,1(1):16-27
    [117] Bey-Ling Su. Ray Yueh-Ming Huang.5.8GHz Bandpass Filter Design Using Planar CoupleMicrostrip Lines. International Conference on Communications, Circuits and Systems,2004,2:1204-1207
    [118] Rmalmqvist, M.Danestig, S.Rudner, Csvensson. Theoretical analysis of sensitivity andQ-value for recursive active microwave integrated filters,IRE Proc.-Microw. antenar propag.,1999,146(4):247-252
    [119] Shuwei Yang, Yali Qin, Zhefu Wu, et al. Design of compact LTCC bandpass filter with highprocess tolerance using meander line coupled inductor. IEEE International Conference onUltra-Wideband2010,2:1-4
    [120] XiaoPing Chen, Wei Hong, TieJun Cui, et al. Substrate integrated waveguide (SIW) linearphase filter. IEEE Microw.Wireless Compon. Lett.,2005,15(11):787–789
    [121] Ke Gong, Wei Hong, Hongjun Tang, et al. C-band bandpass filter based on half modesubstrate Integrated Waveguide (HMSIW) Cavities. IEEE Asia Pacific Microwave Conference,2009:2591–2594,
    [122] DongWong Kim and JeongHae Lee. Partial H-plane filters with partially inserted H-planemetal vane. IEEE Microw. Wireless Compon. Lett.,2005,15(5):351–353
    [123] DongJin Kim and JeongHae Lee. Partial H-plane filters with multiple transmission zeros.IEEE Trans. Microw. Theory Tech.,2008,56(7):1693–1698
    [124] http://www.flexiguide.com/home.htm
    [125] http://www.atmmicrowave.com/wave-flexible.html
    [126]任伟,赵家升.电磁场与微波技术.北京:电子工业出版社.2005
    [127]傅君眉,冯恩信.高等电磁场.西安:西安交通大学出版社.2000
    [128] Eric S. Li, Jui-Ching Cheng, Chih Che Lai. Designs for Broad-Band Microstrip VerticalTransitions Using Cavity Couplers. IEEE Trans. Microwave Theory Tech.,2006,54(1):464-472
    [129] T. Swierczynski, D.A. McNamara, M. Clenet. Via-walled cavities as vertical transitions inmultilayer millimetre-wave circuits. ELECTRONICS LETTERS,2003,39(25):1829-1831
    [130] Marat Davidovitz, Robert A. Sainati, and Steven J. Fraasch. A non-contact interconnectionthrough an electrically thick ground plate common to two microstrip lines. IEEE Trans.Microw. Theory Tech.,1995,43(4):753–759
    [131] KeLi Wu. An Optimal Circular-Waveguide Dual-Mode Filter Without Tuning Screws. IEEETrans. Microw. Theory Tech.,1999,47(7):271-276
    [132]林为干.微波理论与技术.北京:科学出版社.1979
    [133] Ian Hunter. Theory and design of microwave.filters. London: The Institution of Engineeringand Technology,2006
    [134] Rhodes J.D.; Cameron R.J. General with Extracted Pole Synthesis Technique Applications toLow-Loss TEO11Mode Filters. IEEE Trans. Microw. Theory Tech.,1980,28(9):1018-1028
    [135] XiaoPing Chen, Ke Wu. Substrate Integrated Waveguide Filter With Improved StopbandPerformance for Satellite Ground Terminal. IEEE Trans. Microw. Theory Tech.,2009,57(3):674-683
    [136] Uwe Rosenberg, Smain Amari. Novel Design Possibilities for Dual-Mode Filters withoutIntracavity Couplings. IEEE Microw. Wirel. Compon. Lett.,2002,12(8):296-298
    [137] Marco Guglielmi, Pierre Jarry, Eric Kerherve, et al. A New Family of All-InductiveDual-Mode Filters. IEEE Trans. Microw. Theory Tech.,2001,49(10):1764-1769
    [138]高葆新,洪兴楠.微波电路计算机辅助设计.北京:清华大学出版社.1988
    [139]吴宁.电网络分析与综合.北京:科学出版社2008,06,01
    [140] Robert Spence, Randeep Singh Soin. Tolerance design of electronic circuits. Addison-Wesley,1988
    [141]林为干.电磁场工程.北京:人民邮电出版社.1982
    [142]章文勋.无线电技术中的微分方程.北京:国防工业出版社.1982
    [143]吕善伟.微波工程基础.北京:北京航空航天出版社.1995
    [144] Luciano Accatino, Giorgio Bertin, and Mauro Mongiardo, Elliptical Cavity Resonators forDual-Mode Narrow-Band Filters. IEEE Trans. Microw. Theory Tech.,1997,45(12):2393-2401
    [145] G Kretzschmar. Wave propagation in hollow conducting elliptical waveguides. IEEE Trans.Microw. Theory Tech,1970,18(9):547-554
    [146]陈孟尧.电磁场与微波技术.北京:高等教育出版社.1989
    [147] J. G Kretzschmar, Mode charts for elliptical resonant cavities, Electronics Lett.,1970,6(14):432-434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700