常减压蒸馏装置减压深拔的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料型减压塔的主要任务是为催化裂化或加氢裂化提供裂化原料,基本要求是在尽量避免油料发生分解反应的条件下尽可能多地拔出减压馏分油,目的是最大限度地提高经济效益。做到这一点的关键在于降低汽化段到塔顶的流动压降和提高塔顶的真空度。
    本文通过分析燃料型减压蒸馏的工艺流程特点,把直接接触式传热技术应用于减压塔,提出了新的工艺流程。同时,以华北常渣的物性及恩氏蒸馏数据为基础,对减压蒸馏体系进行了模拟计算,根据模拟结果对燃料型减压塔进行了工艺设计。新流程由于采用了空塔传热技术、重减压瓦斯油(HVGO)在两个连续的塔段中进行冷凝的技术、减压塔一线拔出柴油的技术、“干式”减压蒸馏技术及减压过汽化油炉前循环技术等,使得在保证产品质量的同时拔出率有了很大的提高。
    为了寻求直接接触式传热技术应用于减压塔的实验依据,本文对喷射式分布器进行了工业规模的喷淋和传热实验研究。同时,针对喷射式分布器的雾沫夹带弊端,提出了淋降式分布器并进行了工业规模的传热实验研究。结果表明,空塔喷淋取热技术应用于传热为主传质为辅的燃料型减压塔行之有效。这样做一方面可以节省较为昂贵的填料投资,另一方面可以大大降低全塔压降。
The main function of fuel-type vacuum column is to provide material for catalytic cracking or hydrocracking. In order to enhance economy benefit, the pull-out rate of vacuum distillation equipment should be heightened by all means on condition that feed-in oil can avoid being decomposed. The key factor is less pressure drop of the whole column and higher vacuum at column top.
     The new process of direct-contact heat transfer was applied in this paper. At the same time, the whole column process simulation and design were studied based on the properties and ASTM D86 datum of Huabei atmospheric residue. The results showed
    that the pull-out rate of the new process was greatly heightened because it adopted many new technologies including applying hollow column direct-contact heat transfer, high vacuum gas-oil (HVGO) condensation in successive two-stage column sect, light vacuum gas-oil (LVGO) making diesel oil, dry vacuum distillation and slop oil being recycled back to the vacuum furnace inlet.
    In search of the basis that direct-contact heat transfer is applied to fuel-type vacuum column, spraying experiment and heat transfer experiment of spray nozzle distributor were studied in the paper. To overcome the shortcoming that spray nozzle distributor leads to serious liquid entrainment problems, the author designed a new kind of distributor named dripping distributor, and did heat transfer experiment of the dripping distributor. The results showed that the application of hollow column direct-contact heat transfer to fuel-type vacuum column was effective. It not only economized packings but also greatly reduced the pressure drop of the whole column.
引文
[1]王树楹,现代填料塔技术指南,北京:中国石化出版社,1998
    [2]候祥麟,中国炼油技术,北京:中国石化出版社,1991
    [3]华东石油学院炼油工程教研室,石油炼制工程(上册),北京:石油工业出版社,1980
    [4]Hanson, D.W., De-entrainment and Washing of Flash-zone Vapors in Heavy Oil Fractionators,Hydrocarbon Processing, 1999, 78(7):55~60
    [5]Golden, S.W., Martin, G.R., Improve HVGO Quality and Cutpoint, Hydrocarbon Processing, 1991, 70(11):69~74
    [6] 李凭力,李秀芝,白跃华等,常减压蒸馏装置的减压深拔,化工进展,2003,22(12):1290-1295
    [7] Hartman, E.L., et al, Improving Wash Zone Reliability in Deepcut Vacuum Columns, Proceeding from Middle East Petrotech 96 Conference and Exhibition, 1996.1197~1207
    [8]Hanson, D.W., et al, Modifying Crude Units to Deepcut Operation, Hydrocarbon Engineering, 1997, February
    [9]Golden, S.W., et al, Feed Characterization and Deepcut Vacuum Columns: Simulation and Design, Paper 47a, AIChE 1994, Spring National Meeting, 1994, April
    [10]Leroy, C.F., et al, Hydrotreating Vacuum and Coker Gas Oil from Heavy Venezuelan Crude for FCCU Feedstock, NPRA Annual Meeting, San Antonio, Texas, 1991, March 17~19
    [11]Lee, Cliff,State-of-the-Art Technology Enhances Gasoil Extration on Vacuum Units, 1990 NPRA Annual Meeting, San Antonio, Texas, 1990, March 25~27
    [12]王加丽译,力争最大回报的减压塔设计和改造,NPRA年会报告,2001
    [13]Krikorian K V et al. , FCC’S Effect on Refinery Yields, Hydrocarbon Processing, 1987, 66(9):63~66
    [14]Fred Banta, Peter O. Staffeld, Mary P. McGuiness, Robert G. Wuest, Improveved processes produce high-quality pubes, Oil & Gas Journal, 1998, 96(28):70~74
    
    [15]林世雄,石油炼制工程(上册),石油工业出版社,1988
    [16]张韬,渣油的深拔研究,石油学报(石油加工),2002,18(4):53~58
    [17]Boduszynski, Mieczyslaw M.(Cevron Research & Technology Co), Deep Cut Assay Reveals Additional Yields of High-value VGO, Oil & Gas Journal, 1995, 93 (37):39~45
    [18]Roberts, D.A., Recover Additional Distillate from Vacuum Residue, Hydrocarbon Processing, 1993, 72(7):75~78
    [19]Martin,G.R., Understand Vacuum-system Fundamentals, Hydrocarbon Processing, 1994, 73(10):91~98
    [20]SEI北京设计执行中心,国外常减压蒸馏工艺概况,第五届常减压情报站年会资料,2002
    [21]杨友麒,计算机与化工,1986,(1):1~14
    [22]裘俊红,龚建平,胡上序,原油常压蒸馏过程模拟系统的开发(上),石油炼制,1993,24(1):42~49
    [23]郑陵,杜英生,余国琮,燃料型减压塔模拟计算的研究Ⅰ.高沸点石油馏分物性计算的真组分法,石油学报(石油加工),1994,10(4):64~71
    [24]E.W.Thiele R.L.Geddes, Computation of Distillation Apparatus for Hydrocarbon Mixture, I&EC., 1933, 25(3):289~295
    [25]C.D.Holland, Multi-component Distillation, McGraw-Hill, Inc., 1963
    [26]C.D.Holland, Fundamentals or Multi-component Distillation, McGraw-Hill, Inc., 1981
    [27]D.S.Billingsley, On the Numerical Solution of Problems in Malticomponent Distillation at the Steady State, AIChE J., 1966, 12(6):1134~1147
    [28]D.S.Billingsley and G.W.Boynton, Iterative Methous for Solving Problems in Malticomponent Distillation at the Steady State, AIChE J., 1971, 17(1):65~68
    [29]J.F.Boston and S.L.Sullivan Jr., An Improved Algorithm for Solving the Mass Balance Equations in Multistage Separation Process, Can.J. Chem.Eng., 1972, 50(5):663~668
    [30]A.D.Sujata, Hydrocarbon Processing and Petrol. Refiner, 1961, 40(12):137
    
    [31]R.P.Goldstein and R.B.Standfield, Flexible Method for the Solution of Distillation Design Problems Using the Newton Raphson Technique Ind. Eng. Chem. Process Des. Dev., 1970, 9(1):78~84
    [32]L.M.Naphtall and D.P.Sanelholm, Multicomponent Separation Calculation by Linearization, AIChE J., 1971, 17(1):148~153
    [33]A.Rose, R.F.Sweeny and V.N.Schrodt, Continuous Distillation Calculation by Relaxation Meth, I&EC., 1958, 50(5):737~740
    [34]耿英杰,李天金,陆茵等,石油数据系统及常减压蒸馏装置过程模拟,炼油设计,1992,22(1):18~25
    [35]裘俊红,龚建平,胡上序等,原油常减压蒸馏过程模拟系统的开发(下),石油炼制,1993,24(3):51~56
    [36]张凡,常减压蒸馏装置的模拟,石油炼制,1993,(3):49~56
    [37]毛安国,李松年,原油常压蒸馏塔模拟软件的开发,石油炼制与化工,1994,25(3):47~51
    [38]郑陵,杜英生,余国琮,燃料型减压塔的模拟计算的研究Ⅱ.模型求解的吸收型算法,石油学报(石油加工),1995,11(1):79~86
    [39]周文,胡山鹰,李有润等,燃料型减压塔模拟、在线修正和优化系统的开发Ⅰ.燃料型减压塔的模拟,石化技术,1996,6(3):157~161
    [40]Baker T et al, Trans.Am.Inst.Chem.Engrs.,1935,31(5):296
    [41]Butkai E et al, Chem.Eng.Sci.,1968,23(11):1365
    [42]Scott A H. Trans.Inst.Chem.Eng.,1935, 13(2):211
    [43]Porter K E et al, Trans.Inst.Chem.Eng.,1968, 46(3):86
    [44]Jameson J B. Trans.Inst.Chem.Eng.,1966, 44(6):198
    [45]Richard Z. Chem Eng., 1985,27
    [46]Hoek P.J., et al, Small Scale and Large Scale Liquid Maldistribution in Packed Columns, Chem. Eng. Res. Des., 1986, 64(6):431~449
    [47]Stikkelmen R.M., et.al., International Chemical Engineering Symposium Series, No.104,A183,1987
    [48]Kouri R.J., et al, International Chemical Engineering Symposium Series, No.104,B93,1987
    [49]林涛,董德福,姜斌等,新型塔内件在大型减压塔中德应用,炼油设计,2001,31(7):37~39
    [50]蒋荣兴,李志强,常减压蒸馏技术新进展,第五届常减压蒸馏科技情报站年
    
    
    会论文选编[C],青岛,2002,25(8):36~41
    [51]郭天民,多元汽液平衡和精馏,北京:化学工业出版社,1983
    [52]Simcon, Dynamic Simulation System, ABB Simcon Inc,1995
    [53]SPEED UP, ASPEN Tech Inc,1991
    [54]Spiegel L.Meier W.I Chem E Symp Ser No.104, 1987,A203
    [55]王吉红,于健,丁浩,填料塔的气液分布及分布器的设计,石油化工设计,2001,18 (2):1~7
    [56]张吕鸿,填料塔进料气体分布器气液运动的研究:[博士学位论文],天津:天津大学,1998
    [57]莱恩哈特·毕力特,填料塔(中译本),北京:化学工业出版社,1998:103~105
    [58]费维扬,张宝清,于志刚,大型萃取塔液体分布器性能和设计方法的研究,化学工程,1990,18(3):22~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700