生物油催化重整制氢和草酸二甲酯加氢合成乙二醇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能源是一种绿色清洁的可再生能源,随着全球化石资源的日渐枯竭和环境污染问题的日趋严重,生物质能的高效开发利用变得越来越重要。生物质快速热裂解技术可以将能量密度低的固体生物质转化为能量密度相对较高并易于运输的液体燃料生物油,其产率可以高达70%以上。然而,生物油具有水分含量高、氧含量高、pH值低和粘度大等特性,无法直接作为动力燃料油使用,因此需要对其进行提质改性。催化重整技术可以将富含水的生物油高效地转化为用途广泛的氢气。氢气不仅可直接用于内燃机与燃料电池,也可用于生物油提质改性的氢源供应。因此,本论文重点对生物油催化重整制氢技术开展了研究,同时还开展了草酸二甲酯加氢合成乙二醇的研究。
     首先选取乙醇为模化物,比较不同制备方法对Ni/Al2O3催化剂活性的影响。研究发现,由共沉淀法得到的催化剂,具有优良的反应活性,对乙醇进行重整反应时,其H2产率可以达到88%,乙醇转化率达到99%。同时通过密度泛函理论(DFT)计算确定了乙醇在Ni(111)面上最优的分解途径CH3CH2OH*→CH3CH2O*→CH3CH2*→CH3C*→CH3*+C*。
     随后选取了乙酸、羟基丙酮和苯酚,在Ni/nano-Al2O3催化剂上开展了催化重整制氢研究。以纳米A1203为载体的Ni/Al2O3催化剂,对这三种模化物均具有较高的反应活性,当反应温度达到700℃时,乙酸的转化率达到98.2%,氢气产率为87%;羟基丙酮的转化率为98.7%,氢气产率为97.2%;苯酚的转化率略低,为84.2%,氢气产率为69%。同时,此催化剂对三种模化物的稳定性均超过了10h。随后以模拟生物油为反应物,开展了催化重整制氢反应初步能耗分析。
     制备了系列无负载的Co-Fe催化剂,以乙酸为生物油模化物开展催化重整制氢实验研究。结果表明,纯Co催化剂具有最高的反应活性,在低温400℃时,(?)酸的转化率100%,氢气产率达到96%,催化剂稳定性超过了65h。确定了乙(?)Co(111)面上最优的分解反应路径:CH3COOH*→CH3OO*→CH3CO*→CH3*+CO*。
     利用分子蒸馏技术,将稻壳热解原始生物油分离成两个不同的组分,富水蒸馏组分和低水残留组分。在Ni/Al2O3催化剂上开展的富水蒸馏组分催化重整买验结果表明,在最优的反应工况下,碳转化率达到95%,氢气质量得率达到135(?)mg g-1organics),催化剂的寿命达到11个小时。在该重整过程中不需要额外的水蒸汽供应.反应所需的H2O全部来源于原始生物油中的水分。通过DFT计算得出了乙酸、羟基丙酮、糠醛和苯酚四种化合物在Ni(111)面上最优的分解反应路径。
     最后,利用尿素水解法制备了Cu/SiO2催化剂,并在其上开展了草酸二甲酯加氢合成乙二醇研究。在15.6%的Cu负载量以及优化的反应条件下,草酸二甲酯的转化率达到100%,乙二醇选择性达到98%。
Biomass energy is a green, clean and renewable energy. With the global depletion of fossil resources and deterioration of environment, efficient utilization of biomass energy has become increasingly important. Biomass fast pyrolysis can convert solid biomass of low energy density to liquid bio-oil of relatively high energy density and transport convenience. The bio-oil yield can be up to70%. However, bio-oil has several disadvantages associated with high water content, high oxygen content, low pH value and high viscosity. Thus it cannot be directly used as power fuel oil and must be upgraded. Catalytic reforming technology can efficiently convert bio-oil of rich water into widely-used hydrogen. The produced hydrogen can be used not only in the field of internal combustion engines and fuel cells but also as hydrogen resource for bio-oil upgrading process. Therefore, this thesis focuses on the bio-oil catalytic reforming for hydrogen production and the synthesis of ethylene glycoly via dimethyl oxalate hydrogenation.
     Firstly, ethanol was selected as a bio-oil model compound to carry out studies of the influence of different catalyst preparation methods on the performance of Ni/Al2O3catalyst. It was found that the catalyst prepared by coprecipitation method had high activity. For ethanol reforming reaction, hydrogen yield was maximized to88%and ethanol conversion reached99%. The opimized decomposition route of ethanol on the Ni(111) surface was identified via density functional theory (DFT) calculation:CH3CH2OH→CH3CH2O*→CH3CH2*→CH3C*-→CH3*+C*.
     Secondly, acetic acid, hydroxylacetone and phenol were selected to study the catalytic reforming for hydrogen production over Ni/nano-Al2O3catalyst. The Ni/nano-Al2O3catalyst exhibited high activity for all the three above organics. At the temperature of700℃. acetic acid conversion reached98.2%with hydrogen yield of87%and hydroxylacetone conversion reached98.7%with hydrogen yield of97.2%. Phenol had a slightly lower conversion of84.2%and the hydrogen yield was69%. Meanwhile, for these three organics, the stability of catalyst was more than10h. Subsequently, preliminary analysis of energy consumption of catalytic reforming was carried out.
     Series of Co-Fe catalysts without support were prepared and used for catalytic reforming of acetic acid for hydrogen production. The results indicated that pure cobalt catalyst had highest activity. Acetic acid can be converted completely, and the hydrogen yield can reach highly to96%at the low reaction temperature of400℃. The stability of catalyst was more than65h. Furthermore, the optimized decomposition route of acetic acid on the Co(111) surface was identified by DFT calculation:CH3COOH→CH3COO*→CH3CO*→CH3*+CO*.
     Molecular distillation technology was adopted to separate the rice husk bio-oil into two different fractions:water-rich distillation fraction and water-less residual fraction. Results of catalytic reforming of the water-rich distillation fraction on Ni/Al2O3catalyst revealed that the carbon conversion of95%and hydrogen mass yield of135(mg g-1organics) were obtained under the optimum reaction conditions. The catalyst stability reached11hours. Besides, an interesting found was that all the water invovled in the reforming reaction came from the crude bio-oil without any extra supply, which contributed to significant reduction in water consumption of the catalytic reforming for hydrogen production. Furthermore, the most likely decomposition pathway of acetic acid, hydroxyacetone, furfural and phenol on the Ni(111) surface were identified via DFT calculations.
     Finally, ethylene glycol synthesis from dimethyl oxalate hydrogenation over Cu/SiO2catalysts was studied. The Cu/SiO2catalysts were prepared by urea hydrolysis method. The100%conversion of dimethyl oxalate and98%selectivity of ethylene glycol were obtained over the catalyst with Cu loading content of15.6%.
引文
[1]中国可再生能源发展战略研究项目组.中国可再生能源发展战略研究丛书:综合卷[M].中国电力出版社,2008.
    [2]A. V. Bridgwater, G. V. C. Peacocke. Fast pyrolysis processes for biomass [J]. Renewable and Sustainable Energy Reviews,2000,4(1):1-73.
    [3]A. V. Bridgwater. Biomass fast pyrolysis [J]. Thermal Science,2004,8(2):21-49.
    [4]A. V. Bridgwater, D. Meier, D. Radlein. An overview of fast pyrolysis of biomass [J]. Organic Geochemistry,1999,30(12):1479-1493.
    [5]http://www.ensyn.com/
    [6]http://www.dynamotive.com/
    [7]http://www.renewableoil.com/
    [8]http://www.sdynsw.com/index.php
    [9]http://www.chinabiomasstech.com/
    [10]王琦,骆仲泱,王树荣,岑可法.生物质快速热裂解制取高品位液体燃料[J].浙江大学学报(工学版),2010,44(5):988-990.
    [11]张素萍,颜涌捷,任铮伟,李庭琛.生物质快速裂解液体产物的分析[J].华东理工大学学报,2001,27(6):666-668.
    [12]H. B. Goyal, D. Seal, R. C. Saxena. Bio-fuels from thermochemical conversion of renewable resources:A review [J]. Renewable and Sustainable Energy Reviews, 2008,12(2):504-517.
    [13]J. P. Diebold. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils [R]. Golden, Colorado:National Renewable Energy Laboratory,2000.
    [14]W. M. Xiong, M. Z. Zhu, L. Deng, Y. Fu. Q. X. Guo. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts [J]. Energy & Fuels,2009,23 (4): 2278-2283.
    [15]N. Lohitharn, B. H. Shanks. Upgrading of bio-oil:Effect of light aldehydes on acetic acid removal via esterification [J]. Catalysis Communications.2009,11(2): 96-99.
    [16]Q. Zhang, J. Chang, T. J. Wang, Y. Xu. Upgrading bio-oil over different solid catalysts [J]. Energy Fuels,2006,20 (6):2717-2720.
    [17]D. C. Elliott, T. R. Hart. Catalytic Hydroprocessing of chemical models for bio-oil [J]. Energy Fuels,2009,23(2):631-637.
    [18]C. Zhao, Y. Kou, A. A. Lemonidou, X. B. Li, J. A. Lercher. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY(?) Ni and Nafion/SiO2 catalysts [J]. Chemical Communications,2010,46:412-414.
    [19]S. R. Wang, Z. G. Guo. Q. J. Cai, L. Guo. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production [J]. Biomass and Bioenergy, 2012,45:138-143.
    [20]K. L. Hew, A. M. Tamidi, S. Yusup, K. T. Lee, M. M. Ahmad. Catalytic cracking of bio-oil to organic liquid product (OLP) [J]. Bioresource Technology,2010, 101(22):8855-8858.
    [21]I. Graca, F. R. Ribeiro, H. S. Cerqueira, Y. L. Lam, M. B. B. Almeida. Catalytic cracking of mixtures of model bio-oil compounds and gasoil [J]. Applied Catalysis B:Environmental,2009,90(3-4):556-563.
    [22]D. Wang, D. Montane, E. Chornet. Catalytic steam reforming of biomass-derived oxygenates:acetic acid and hydroxyacetaldehyde [J]. Applied Catalysis A: General,1996,143(2):245-270.
    [23]D. Wang, S. Czernik, D. Montane, M. Mann, E. Chornet. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions [J]. Industrial & Engineering Chemistry Research,1997,36(5):1507-1518.
    [24]D. N. Wang, S. Czernik, E. Chornet. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils [J]. Energy & Fuels,1998,12(1): 19-24.
    [25]L. Garcia, R. French, S. Czernik, E. Chornet. Catalytic steam reforming of bio-oil for the production of hydrogen:effects of catalyst composition [J]. Applied Catalysis A:General.2000.201(2):225-239.
    [26]S. Czernik, R. Evans, R. French. Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil [J]. Catalysis Today,2007,129(3-4):265-268.
    [27]C. Rioche, S. Kulkarni, F. C. Meunier, J. P. Breen, R. Burch. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts [J]. Applied Catalysis B:Environmental,2005,61(1-2):130-139.
    [28]S. Czernik, R. Evans, R. French. Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil [J]. Catalysis Today,2007,129 (3-4):265-268.
    [29]M. C. Ramos, A. I. Navascuses, L. Garcia, R. Bilbao. Hydrogen production by catalytic steam reforming of acetol, a model compound of bio-oil [J]. Industrial & Engineering Chemistry Research,2007,46(8):2399-2406.
    [30]J. A. Medrano, M. Oliva, J. Ruiz, L. Garcia, J. Arauzo. Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Al catalysts [J]. Journal of Analytical and Applied Pyrolysis,2009, 85(1-2):214-225.
    [31]L. X. Yuan, Y. Q. Chen, C. F. Song, T. Q. Ye, Q. X. Guo, Q. S. Zhu, Y. Torimoto, Q. X. Li. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil [J]. Chemical Communications,2008,0:5215-5217.
    [32]T. Kan, J. X. Xiong, X. L. Li, T. Q. Ye, L. X. Yuan, Y. Torimoto, M. Yamamoto, Q. X. Li. High efficient production of hydrogen from crude bio-oil via an integrative process between gasification and current-enhanced catalytic steam reforming [J]. International Journal of Hydrogen Energy,2010,35(2):518-532.
    [33]C. Wu, Q. Huang, M. Sui, Y. Yan, F. Wang. Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system [J]. Fuel Process Technology,2008,89(12):1306-1316.
    [34]E. C. Vagia, A. A. Lemonidou. Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble catalysts [J]. Applied Catalysis A:General,2008.351(1):111-121.
    [35]X. Hu, G. X. Lu. Steam reforming of acetic acid to hydrogen over Fe-Co catalyst [J]. Chemistry Letters,2006.3(4):452-453.
    [36]X. Hu, G. X. Lu. Acetic acid steam reforming to hydrogen over Co-Ce/A1203 and Co-La/Al2O3 catalysts-the promotion effect of Ce and La addition [J]. Catalysis Communications,2010,12 (1):50-53.
    [37]X. Hu, G. X. Lu. Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid [J]. Applied Catalysis B:Environment,2010,99 (1-2):289-297.
    [38]K. Takanabe, K. Aika, K. Seshan, L. Lefferts. Sustainable hydrogen from bio-oil—steam reforming of acetic acid as a model oxygenate [J]. Journal of catalysis,2004,227(1):101-108.
    [39]K. Takanabe, K. Aika, K. Seshan, L. Lefferts. Catalyst deactivation during steam reforming of acetic acid over Pt/ZrO2 [J]. Chemical Engineering Journal,2006, 120(1-2):133-137.
    [40]K. Takanabe, K. Aika, K. Inazu, T. Baba, K. Seshan, L. Lefferts. Steam reforming of acetic acid as a biomass derived oxygenate:bifunctional pathway for hydrogen formation over Pt/ZrO2 catalysts [J]. Journal of Catalysis,2006,243(2):263-269.
    [41]K. I. Gursahani, R. Alcala, R. D. Cortright, J. A. Dumesic. Reaction kinetics measurements and analysis of reaction pathways for conversions of acetic acid, ethanol, and ethyl acetate over silica-supported Pt [J]. Applied Catalysis A: General,2001.222 (1-2):369-392.
    [42]R. Alcala, J. W. Shabaker, G. W. Huber, M. A. Sanchez-Castillo, J. A. Dumesic. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts [J]. The Journal of Physical Chemistry B,2005,109(6): 2074-2085.
    [43]K. Polychronopoulou, J. L. G. Fierro, A. M. Efstathiou. The phenol steam reforming reaction over MgO-based supported Rh catalysts [J]. Journal of Catalysis,2004,228(2):417-432.
    [44]K. Polychronopoulou, C. N. Costa, A. M. Efstathiou. The steam reforming of phenol reaction over supported-Rh catalysts [J]. Applied Catalysis A:General, 2004,272 (1-2):37-52.
    [45]K. Polychronopoulou, A. Bakandritsos, V. Tzitzios, J. L G. Fierro, A. M. Efstathiou. Absorption-enhanced reforming of phenol by steam over supported Fe catalysts [J]. Journal of Catalysis,2006,241 (1):132-148.
    [46]JP 54103817. [P].1979.
    [47]US 4585890. [P].1986.
    [48]U. Matteoli, M. Bianchi, G. Menchi, P. Frediani, F. Piacenti. Hydrogenation of dimethyl oxalate in the presence of ruthenium carbonyl carboxylates:ethylene glycol formation [J]. Journal of Molecular Catalysis,1985,29 (2):269-270.
    [49]H. T. Teunissen, C.J. Elsevier. Ruthenium catalysed hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Communications,1997, (7):667-668.
    [50]US 4614728. [P].1986.
    [51]JP 57122941. [P].1982.
    [52]JP 57122946. [P].1982.
    [53]L. F. Chen, P. J. Guo, M. H. Qiao, S. R. Yan, H. X. Li. W. Shen, H. L. Xu. K. N. Fan. Cu/SiO2 catalysts prepared by the ammonia-evaporation method:Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol [J]. Journal of Catalysis,2008,257 (1):172-180.
    [54]A. Y. Yin, X. Y. Guo, W. L. Dai, H. X. Li, K. N. Fan. Highly active and selective copper-containing HMS catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol [J]. Applied Catalysis A:General,2008,349 (1-2):91-99.
    [55]A. Y. Yin, X. Y. Guo, K. N. Fan, W. L. Dai. Influence of copper precursors on the structrue evolution and catalyitic performance of Cu/HMS catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol [J]. Applied Catalysis A: General,2010,377(1-2):128-133.
    [56]A. Y. Yin, X. Y. Guo, K. N. Fan, W. L. Dai. Ion-exchange temperature effect on Cu/HMS catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol [J]. ChemCatChem,2010,2(2):206-213.
    [57]Z. He, H. Q Lin, P. He, Y. Z. Yuan. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol [J]. Journal of Catalysis,2011,277(1):54-63.
    [58]Y. Y. Zhu, S. R. Wang, L. J. Zhu, X. L. Ge, X. B. Li, Z. Y. Luo. The influence of copper particle dispersion in Cu/SiO2 catalysts on the hydrogenation synthesis of ethylene glycol [J]. Catalysis Letters,2010.135(3-4):275-281.
    [59]G. Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science,1996,6(1):15-50.
    [60]G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B,1996,54(16): 11169-11186.
    [61]G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Physical Review B,1993,47(1):558-561.
    [62]G. Mills, H. Jonsson, G. K. Schenter. Reversible work transition state theory: application to dissociative adsorption of hydrogen [J]. Surface Science,1995, 324(2-3):305-337.
    [63]陈诵英,陈平,李永旺.催化反应动力学[M].化学工业出版社,2007.
    [64]P. Gava. Modeling the catalyst selectivity in the ethylene epoxidation reaction:a first principles study [D]. Doctor thesis.2010.
    [65]W. Kohn. Nobel lecture:elcetronic strcture of matter-wave functions and density functionals [J]. Reviews of modern physics.1999,71(5):1253-1266.
    [66]徐光宪,黎乐民,王德民编著.量子化学—基本原理和从头计算法(中册)[M].科学出版社,2009.
    [67]G. D. Wen, Y. P. Xu, Z. S. Xu. Characterization and catalytic properties of the Ni/Al2O3 catalysts for aqueous-phase reforming of glucose [J]. Catalysis Letters, 2009,129(1-2):250-257.
    [68]A. J. Akande, R. O. Idem, A. K. Dalai. Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production [J]. Applied Catalysis A:General.2005,287(2):159-175.
    [69]H. V. Fajardo. L. F. Dias. Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts [J]. Applied Catalysis A:General,2006,306: 134-141.
    [70]L. Z. Zhang. X. Q. Wang, B. Tan. U. S. Ozkan. Effect of preparation method on structural characteristics and propane steam reforming performance of Ni-Al2O3 catalysts [J]. Journal of Molecular Catalysis A:Chemical,2009,297(1-2):26-34.
    [71]J. G. Seo, M. H. Youn, J. C. Jung, I. K. Song. Effect of preparation method of mesoporous Ni-Al2O3 catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG) [J]. International Journal of Hydrogen Energy,2009,34(13):5409-5416.
    [72]J. Comas, F. Marino, M. Laborde, N. Amadeo. Bio-ethanol steam reforming on Ni/Al2O3 catalyst [J]. Chemical Engineering Journal,2004.98(1-2):61-68.
    [73]J. P. Breen, R. Burch, H. M. Coleman. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications [J]. Applied Catalysis B:Environmental,2002,39(1):65-74.
    [74]M. A. Goula, S. K. Kontou. P. E. Tsiakaras. Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst [J]. Applied Catalysis B: Environmental,2004.49(2):135-144.
    [75]M. Li, X. D Wang, S. R. Li, S. P. Wang, X. B. Ma. Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds [J]. International Journal of Hydrogen Energy,2010. 35(13):6699-6708.
    [76]K. Christmann, J. E. Demuth, The adsorption and reaction of methanol on Pd(100). I. Chemisorption and condensation [J]. The Journal of Chemical Physics, 1982,76(12):6308-6317.
    [77]F. Bimbela, M. Oliva, J. Ruiz, L. Garcia. J. Arauzo. Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids [J]. Journal of Analytical and Applied Pyrolysis,2007.79(1-2):112-120.
    [78]S. Thaicharoensutcharittham, V. Meeyoo. B. Kitiyanan, P. Rangsunvigit. T. Rirksomboon. Hydrogen production by steam reforming of acetic acid over Ni-based catalysts [J]. Catalysis Today,2011,164(1):257-261.
    [79]T. A. S. Ferreira, J. C. Waerenborgh, M. H. R. M. Mendonca, M. R. Nunes. F. M. Costa. Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method [J]. Solid State Sciences,2003,5(2): 383-392.
    [80]Z. Y. Hou, J. Gao, J. Z. Guo, D. Liang, H. Lou, X. M. Zheng. Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor [J]. Journal of Catalysis,2007,250(2):331-341.
    [81]S. Czernik, R. French, C. Feik. E. Chornet. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion process [J]. Industrial & Engineering Chemistry Research,2002,41(17):4209-4215.
    [82]J. H. Sinfelt. Specificity in catalytic hydrogenolysis by metals [J]. Advances Catalysis,1973,23:91-119.
    [83]D. C. Grenoble. M. M. Estadt. The chemistry and catalysis of the water gas shift reaction:1. The kinetics over supported metal catalysts [J]. Journal of Catalysis, 1981,67(1):90-102.
    [84]B. Bayram, I.I. Soykal. D. Deak, J. T. Miller, U. S. Ozkan. Ethanol steam reforming over Co-based catalysts:investigation of cobalt coordination environment under reaction conditions [J]. Journal of Catalysis,2011,284(1): 77-89.
    [85]R. Espinal. E. Taboada, E. Molins. R. J. Chimentao, F. Medina. J. Llorca. Cobalt hydrotalcite for the steam reforming of ethanol with scarce carbon production [J]. RSC Advances,2012.2:2946-2956.
    [86]C. Zhao. J. A. Lercher. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions [J]. Angewandte Chemie,2012,124(24):6037-6042.
    [87]W. J. Yu, Y. Tang, L. Y. Mo. P. Chen, H. Lou, X. M. Zheng. One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading [J]. Bioresource Technology,2011,102(17): 8241-8246.
    [88]W. J. Yu, Y. Tang, L. Y. Mo, P. Chen, H. Lou, X. M. Zheng. Bifunctional Pd/Al-SBA-15 catalyzed one-step hydrogenation-esterification of furfural and acetic acid:A model reaction for catalytic upgrading of bio-oil[J]. Catalysis Communications,2011,13(1):35-39.
    [89]Y. Tang, W. J. Yu, L. Y. Mo, H. Lou, X. M. Zheng. One-step hydrogenation-esterification of aldehyde and acid to ester over bifunctional Pt catalysts:a model reaction as novel route for catalytic upgrading of fast pyrolysis bio-oil [J]. Energy & Fuels,2008.22(5):3484-3488.
    [90]T. P. Vispute, H. Y. Zang, A. Sanna, R. Xiao, G. W. Huber. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils [J]. Science,2010,330(6008):1222-1227.
    [91]R. M. Ravenelle, F. Schuβler, A. D. Amico. N. Danilina. J. A. V. Bokhoven, J. A. Lercher, C. W. Jones, C. Sievers. Stability of zeolites in hot liquid water [J]. The Journal of Physical Chemistry C,2010,114(46):19582-19595.
    [92]S. R. Wang, Y. L. Gu, Q. Liu, Y. Yao, Z. G. Guo, Z. Y. Luo, K. F. Cen. Separation of bio-oil by molecular distillation [J]. Fuel Processing Technology,2009.90(5): 738-745.
    [93]X. J. Guo, S. R. Wang, Z. G. Guo, Q. Liu. Z. Y. Luo, K. F. Cen. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation [J]. Applied Energy,2010,87(9):2892-2898.
    [94]Z. G. Guo, S. R. Wang, Y. L. Gu, G. H. Xu. X. Li, Z. Y. Luo. Separation characteristics of biomass pyrolysis oil in molecular distillation [J]. Separation and Purification Technology,2010,76(1):52-57.
    [95]C. Zhao, Y. Kou, A. A. Lemonidou. X. B. Li.,J. A. Lercher. Highly selective catalytic conversion of phenolic bio-oil to alkanes [J]. Angewandte Chemie,2009, 121(22):4047-4050.
    [96]X. B. Li. S. R. Wang, Q. J. Cai, L. J. Zhu, Q. Q. Yin, Z. Y. Luo. Effects of preparation method on the performance of Ni/Al2O3 catalysts for hydrogen production by bio-oil steam reforming [J]. Applied Biochemistry Biotechnology, 2012,168(1):10-20.
    [97]N. Palmeri, V. Chiodo, S. Freni. F. Frusteri, J. C. J. Bart, S. Cavallaro. Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst [J]. International Journal of Hydrogen Energy,2008,33(22):6627-6634.
    [98]S. Sitthisa, T. Sooknoi, Y. G. Ma, P. B. Balbuena, D. E. Resasco. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts [J]. Journal of Catalysis,2011,277(1):1-13.
    [99]Czernik S, French R, Feik C, Echornet E. Hydrogen by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes [J]. Ind Eng Chem Res,2002,41:4209-4215.
    [100]R. Espinal, E. Taboada, E. Molins, R. J. Chimentao, F. Medina, J. Llorca. Cobalt hydrotalcite for the steam reforming of ethanol with scarce carbon production [J]. RSC Advances,2012,2:2946-2956.
    [101]S. R. Wang, X. B. Li, L. Guo, Z. Y. Luo. Experimental research on acetic acid steam reforming over Co-Fe catalysts and subsequent density functional theory studies[J]. International Journal of Hydrogen Energy,2012,37(15): 11122-11131.
    [102]D. W. Blaylock. T. Ogura. W. H. Green, G. J. O. Beran. Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni (111) under realistic conditions [J]. The Journal of Physical Chemistry C.2009, 113(12):4898-4908.
    [103]S. Sitthisa, W. An, D. E. Resasco. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts [J]. Journal of Catalysis,2011,284(1):90-101.
    [104]US 4677234. [P].1987.
    [105]JP 54103817. [P].1979.
    [106]F. Alonso, Y. Moglie, G. Radivoy, M. Yus. Unsupported copper nanoparticles in the 1,3-Dipolar cycloaddition of terminal alkynes and azides[J]. European Journal of Organic Chemistry,2010, (10):1875-1884.
    [107]F. Alonso, Y. Moglie, G. Radivoy, M. Yus. Multicomponent Synthesis of 1,2,3-Triazoles in water catalyzed by copper nanoparticles on activated carbon [J]. Advanced Synthesis & Catalysis,2010,352 (18):3208-3214.
    [108]A. Y. Yin, X. Y. Guo, W. L. Dai, K. N. Fan. Effect of initial precipitation temperature on the structural evolution and catalytic behavior of Cu/SiO2 catalyst in the hydrogenation of dimethyloxalate [J]. Catalysis Communications.2011.12 (6):412-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700