首发精神分裂症患者脑灰质和脑网络的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     基于结构磁共振(magnetic resonance imaging, MRI)脑灰质密度的检测,发现精神分裂症脑灰质结构密度减少,但是脑影像表型与临床症状表现型之间的关系仍未明。通过比较有无关系妄想为主要精神症状的首发精神分裂症患者脑灰质密度,将使我们更好的认识关系妄想这种常见临床症状的生物学基础,从而加深我们对精神分裂症生物学机制的理解,并为首发精神分裂症的早期诊断提供科学依据。
     方法
     按DSM-Ⅳ的精神分裂症诊断标准,入组首发精神病患者44例和年龄、性别及教育水平与之匹配的健康对照25人。对每一位受试者进行韦氏成人智测量表中的常识和数字符号测验评估。采用阳性症状量表(Scale for the Assessment of Positive Symptoms, SAPS)、阴性症状量表(Scale for the Assessment of Negative Symptoms, SANS)及关系妄想半定式访谈量表对患者的精神症状进行评估,并根据关系妄想的评分将患者分为三组:(1)关系妄想组(n=15):以阳性症状关系妄想为主要临床表现;(2)非关系妄想组(n=14):以其他阳性症状而不是关系妄想为主要临床表现;(3)阴性症状组(n=15):以阴性症状为主要临床表现。以基于体素的形态测量法(voxel-based morphometry, VBM)对脑灰质结构MR]图像进行预处理,得到每一个体的灰质密度图像。采用协方差分析,引入年龄、性别、教育水平及颅内总体积为协变量,检测四组间灰质密度存在差异的脑区。然后提取差异脑区的灰质密度绝对值,进行组间的单因素方差分析及采用post hoc检验进行组间两两比较,采用Spearman秩相关以探索脑灰质异常与临床特征之间的相关关系。
     结果
     四组间脑灰质密度比较的协方差分析发现存在显著差异的脑区位于左,右侧尾状核头、双侧丘脑及左侧小脑后叶(p<0.001, cluster size>200);与非关系妄想组,阴性症状组及健康对照组的受试者相比,关系妄想组患者存在双侧尾状核头灰质密度的显著下降,而其他三组受试者之间的双侧尾状核头灰质密度值无显著性差异;与正常对照相比,患者均存在双侧丘脑和左侧小脑后叶灰质密度下降,而三组患者之间的双侧丘脑和左侧小脑后叶灰质密度无显著性差异;另外,双侧尾状核头灰质密度与关系妄想的严重程度呈显著负相关(r=-0.333,p<0.05;r=-0.383,p<0.05)。
     结论
     关系妄想为主的精神分裂症患者与其他几组患者及健康对照相比,两侧尾状核头部灰质密度下降并与关系妄想显著负相关,提示两侧尾状核头部灰质密度下降可能是关系妄想形成的神经生物学基础。
     目的
     基于种子点和独立主成份分析发现静息状态下精神分裂症患者的功能连接增强或减弱的脑区包括皮层到边缘系统,但是由于这两种分析方法的局限性使我们无法了解到全脑的整体的脑功能。本研究使用我们最新发表在分子精神病学(Molencular Psychiatry)的分析方法,构建首发精神分裂症患者静息状态的脑网络内部及脑网络之间的功能连接异常模型,更深入的探讨首发精神分裂症患者脑功能改变的神经生物学机制,寻找精神分裂症可能的神经生物学标记。
     方法
     入组首发精神分裂症(first-episode schizophrenia, FES)41例和与之年龄、性别和教育水平相互匹配的健康对照(healthy controls,HC)33人。所受试者者均接受静息状态下的功能磁共振(functional MRI, fMRI)扫描。采用(SAPS)和SANS对患者的精神症状进行评估。使用MATLAB7.8.SPM8和Data Processing Assistant for Resting-State fMRI (DPARSF)进行fMRI数据预处理。用网络探索算法(community discovery algorithm)对33个健康受试者的脑功能网络进行探索与构建以获取脑功能网络的结构模板,并以此做为FES组的脑功能网络模板。以脑解剖图谱为模板(共有90个ROI)分别提取每一位受试者的90个ROI的时间序列,进行功能连接分析(Pearson相关分析,p<0.01)。采用偏相关检验(p<0.01)以消除任两个ROI之间的假阳性相关。计算脑区之间的功能连接与疾病之间的关联强度即优势比(odds ratio, OR)以确定与疾病存在显著关联的功能连接,并比较两组之间的功能连接差异。
     结果
     (1)采用网络探索算法(community discovery algorithm)构建的脑功能网络模型有默认网络、注意网络、视觉识别网络、听觉网络、感觉运动网络及皮质下网络。
     (2)与HC相比,FES患者默认网络内部的连接减弱;默认网络与注意网络之间的功能连接异常增强与减弱并存;默认网络与视觉识别网络、听觉网络之间的功能连接显著增强而与皮质下网络连接减弱。
     (3)FES患者的其它脑网络内部及之间的连接模式异常表现为:FES患者的听觉网络、视觉识别网络内部的连接异常增强与减弱并存,而皮质下网络的连接明显减弱;FES患者注意网络与视觉网络之间的连接显著减弱。
     (4)FES患者的左右大脑半球存在显著的功能失连接。
     结论
     本研究发现首发精神分裂症患者静息态脑网络功能连接模式存在明显异常,异常的连接模式涉及整个脑功能网络。结果提示首发精神分裂症患者静息态脑网络功能连接模式可能是精神症状包括幻觉、妄想、思维障碍形式障碍、动作与行为障碍等及“认知辨距不良”的神经病理基础。
Objective
     Delusions of reference (DOR) are one of the most common psychotic symptoms, which are closely linked with dopamine activities theoretically. This study using magnetic resonance imaging (MRI) aims to explore their neuroanatomical substrates, in particular in the basal ganglia.
     Methods
     A total of44first-episode psychosis patients and25well-matched healthy controls were recruited. Patients were divided into three groups according to their clinical profile:(1) DOR group (n=15) with DOR as chief positive symptom,(2) non-DOR group (n=14) with positive symptoms other than DOR, and (3) negative group (n=15) with minimal positive symptoms. All participants underwent a structural magnetic resonance imaging scan of the brain. Voxel-based morphometry analysis was used to detect group differences in gray matter density. The relationship between DOR and structural anomalies was explored using Spearman's correlation.
     Results
     Significant group difference was observed in left and right caudate head, bilateral thalamus and left cerebellum. Post-hoc analysis showed that DOR patients had lower gray matter density in the caudate head bilaterally, which showed no difference among the other three groups. Gray matter density in the left and right caudate head was negatively correlated with DOR severity rho=-0.333and-0.383, both p<0.05). All patients exhibited reduced gray matter density bilaterally in the thalamus and left cerebellar posterior lobe compared with controls.
     Conclusion
     Gray matter deficit in the caudate head is specifically observed in first-episode psychosis patients with DOR and is related to the severity of the symptom. Structural anomalies in the caudate may be related to the experience of DOR in psychosis.
     Objective
     Abnormal Functional connectivity including corticol-subcortical brain regions in schizophrenia have been detected by Seed-based analysis and independent component analysis approach. However, in consideration of limitations, more holistic and objective approach is needed. A new holistic approach was used to construct the abnormal functional connectivity model within and between brain networks in patients of first episode schizophrenia and seek to provide new clues and evidences for the understanding of the pathology mechanism and biological makers of schizophrenia.
     Methods
     Forty-one patients with first-episode schizophrenia (FES) and33well-matched healthy controls (HC) were recruited. All participants underwent a resting state functional magnetic resonance imaging (fMRI) scan of the brain. Psychotic symptoms were assessed by SAPS and SANS. fMRI data preprocessing was conducted by SPM8(Statistical Parametric Mapping) and DPARSF (Data Processing Assistant for resting-state fMRI). Community discovery algorithm was used to explore and construct functional brain networks in healthy control subjects. A canonical template of connectivity in90different brain regions was constructed from healthy control subjects and this identified a six community structure with each network corresponding to a different functional system. An automated anatomical labeling atlas was used to parcellate the brain into90regions of interest (ROIs). The time series were extracted in each ROI by averaging the signals of all voxels within that region. Pearson correlation coefficients between all pairs of ROIs were first calculated (P-value<0.01). Significant correlations were detected with a90×90correlation matrix was obtained for each subject and then tested by partial correlation analysis (P-value<0.01).Odds ratio which represents the strength of association between functional connectivity and the disease was calculated and the differences of functional connectivities were compared between groups.
     Results
     (1) Six different brain functional networks were constructed using a community discovery algorithm. That is default mode network, attention network, auditory network, visual recognition network, the sensory-motor areas and subcortical network.
     (2) Compared with HC, patients with FES showed obviously decreased functional connectivity within default mode network, significantly decreased and increased functional connectivity between default mode network and attention network, significantly increased functional connectivity between default mode network and visual recognition network and auditory network, and decreased functional connectivity between default mode network and subcortical network.
     (3) Other abnormal functional connectivities within single brain network and between different brain networks were also detected in patients with FES. The abnormal functional connectivitiy model involved significantly decreased and increased functional connectivity within auditory network and visual recognition network, and significantly decreased functional connectivity within subcortical network. In addition, obviously decreased functional connectivity was also detected between attention network and visual recognition network.
     (4) Functional dysconnectivity of the left and right Brain's Hemispheres existed in patients with FES.
     Conclusion
     Abnormal Functional connectivities involved all the different brain networks were observed in patients with FES. This may represent the pathophysiology underlying psychotic symptoms including hallucinations, delusions, positive formal thought disorder, bizarre behavior and congnitive dymentia.
引文
[1]Phillips MR, Zhang J, Shi Q, et al. Prevalence, treatment, and associated disability of mental disorders in fourprovinces in China during 2001-05:an epidemiological survey. Lancet.2009.373(9680):2041-2053.
    [2]郝伟.精神病学[M].2001.北京.人民卫生出版社.96-96.
    [3]Lindqvist CA. Effect of Chlorpromazine or Haloperidol on Formation of 3-Methoxytyramine and Normetanephrine in Mouse Brain. Acta Pharmacol et Toxicol.1963.20:140-144.
    [4]Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry.1987.44(7):660-669.
    [5]Carlsson A, Carlsson ML. A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues Clin Neurosci.2006.8(1):137-142.
    [6]Krystal JH, D'Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist effects, cortical glutamatergic function, andschizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl).2003.169(3-4):215-233.
    [7]Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science.1997.275(5306):1593-1599.
    [8]Miller R. Striatal dopamine in reward and attention:a system for understanding the symptomatology of acute schizophrenia and mania. Int Rev Neurobiol.1993. 35:161-278.
    [9]Kapur S. Psychosis as a state of aberrant salience:a framework linking biology,phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003.160(1):13-23.
    [10]Heinz A, Schlagenhauf F. Dopaminergic dysfunction in schizophrenia:salience attribution revisited. Schizophr Bull.2010.36(3):472-485.
    [11]Frith CD. Consciousness, information processing and schizophrenia. Br J Psychiatry.1979.134:225-235.
    [12]McKenna PJ. Schizophrenia and related syndromes[M].2006. Oxford. Oxford University Press.
    [13]Garety PA, Kuipers E, Fowler D, Freeman D, Bebbington PE. A cognitive model of the positive symptoms of psychosis. Psychol Med.2001.31(2): 189-195.
    [14]Broome MR, Woolley JB, Tabraham P, et al. What causes the onset of psychosis. Schizophr Res.2005.79(1):23-34.
    [15]Corlett PR, Honey GD, Aitken MR, et al. Frontal responses during learning predict vulnerability to the psychotogeniceffects of ketamine:linking cognition, brain activity, and psychosis. Arch Gen Psychiatry.2006.63(6):611-621.
    [16]Gradin VB, Kumar P, Waiter G, et al. Expected value and prediction error abnormalities in depression andschizophrenia. Brain.2011.134(Pt 6): 1751-1764.
    [17]Menon M, Schmitz TW, Anderson AK, et al. Exploring the neural correlates of delusions of reference. Biol Psychiatry.2011.70(12):1127-1133.
    [18]World Health Organization. Schizophrenia:A multinational study.1973. World Health Organization:Geneva.
    [19]Birchwood M, Smith J, Macmillan F, et al. Predicting relapse in schizophrenia: the development and implementation of anearly signs monitoring system using patients and families as observers, apreliminary investigation. Psychol Med. 1989.19(3):649-656.
    [20]Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis:the Comprehensive Assessment of At-Risk MentalStates. Aust N Z J Psychiatry. 2005.39(11-12):964-71.
    [21]American Psychiatric Association. Diagnostic and statistical manual of mental disorders:DSM-IV-TR.2000. American Psychiatric Association. Washington, DC.
    [22]Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, "Just the Facts":What we know in 2008:Part 1:Overview.2. Epidemiology and etiology. Schizophr Res.2008.102(1-3):1-18.
    [23]Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, "just the facts" 4. Clinical features and conceptualization. Schizophr Res.2009.110(1-3):1-23.
    [24]Hyman SE. Can neuroscience be integrated into the DSM-V. Nat Rev Neurosci. 2007.8(9):725-732.
    [25]Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res.2001.49(1-2):1-52.
    [26]Danielyan A, Nasrallah HA. Neurological disorders in schizophrenia. Psychiatr Clin North Am.2009.32(4):719-757.
    [27]Jayakumar PN, Venkatasubramanian G, Gangadhar BN, Janakiramaiah N, Keshavan MS. Optimized voxel-based morphometry of gray matter volume in first-episode,antipsychotic-naive schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry.2005.29(4):587-591.
    [28]Chua SE, Cheung C, Cheung V, et al. Cerebral grey, white matter and csf in never-medicated, first-episodeschizophrenia. Schizophr Res.2007.89(1-3): 12-21.
    [29]Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E. The anatomy of first-episode and chronic schizophrenia:an anatomical likelihood estimation meta-analysis. Am J Psychiatry.2008.165(8):1015-1023.
    [30]Koutsouleris N, Gaser C, Jager M, et al. Structural correlates of psychopathological symptom dimensions in schizophrenia:a voxel-based morphometric study. Neuroimage.2008.39(4):1600-1612.
    [31]Nenadic I, Sauer H, Gaser C. Distinct pattern of brain structural deficits in subsyndromes of schizophreniadelineated by psychopathology. Neuroimage. 2010.49(2):1153-1160.
    [32]Kubicki M, Westin CF, Maier SE, et al. Uncinate fasciculus findings in schizophrenia:a magnetic resonance diffusiontensor imaging study. Am J Psychiatry.2002.159(5):813-820.
    [33]Kyriakopoulos M, Bargiotas T, Barker GJ, Frangou S. Diffusion tensor imaging in schizophrenia. Eur Psychiatry.2008.23(4):255-273.
    [34]Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK. Diffusion tensor imaging in schizophrenia. Biol Psychiatry.2005.58(12): 921-929.
    [35]Friston KJ, Frith CD. Schizophrenia:a disconnection syndrome. Clin Neurosci. 1995.3(2):89-97.
    [36]Friston KJ. Dysfunctional connectivity in schizophrenia. World Psychiatry. 2002.1(2):66-71.
    [37]Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res.2007.97(1-3):194-205.
    [38]Sambataro F, Blasi G, Fazio L, et al. Treatment with olanzapine is associated with modulation of the default modenetwork in patients with Schizophrenia. Neuropsychopharmacology.2010.35(4):904-912.
    [39]Liu H, Kaneko Y, Ouyang X, et al. Schizophrenic patients and their unaffected siblings share increasedresting-state connectivity in the task-negative network but not itsanticorrelated task-positive network. Schizophr Bull.2012.38(2): 285-294.
    [40]Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independentresting-state components in schizophrenia. Neuroimage.2008.39(4):1666-1681.
    [41]Tao H, Guo S, Ge T, et al. Depression uncouples brain hate circuit.LID-10.1038/mp.2011.127 [doi]. Mol Psychiatry.2011.
    [42]Gottesman H, Gould TD. The endophenotype concept in psychiatry:etymology and strategic intentions. Am J Psychiatry.2003.160(4):636-645.
    [43]Chen EY, Wong GH, Hui CL, et al. Phenotyping psychosis:room for neurocomputational and content-dependentcognitive endophenotypes. Cogn Neuropsychiatry.2009.14(4-5):451-472.
    [44]Crow TJ. Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry.1980.137:383-386.
    [45]Crow TJ. Molecular pathology of schizophrenia:more than one disease process. Br Med J.1980.280(6207):66-68.
    [46]Liddle PF. The symptoms of chronic schizophrenia. A re-examination of the positive-negative dichotomy. Br J Psychiatry.1987.151:145-151.
    [47]Yuasa S, Kurachi M, Suzuki M, et al. Clinical symptoms and regional cerebral blood flow in schizophrenia. Eur Arch Psychiatry Clin Neurosci.1995.246(1): 7-12.
    [48]Gur RE, Mozley PD, Shtasel DL, et al. Clinical subtypes of schizophrenia: differences in brain and CSF volume. Am J:Psychiatry.1994.151(3):343-350.
    [49]Lanin-Kettering I, Harrow M. The thought behind the words:a view of schizophrenic speech and thinkingdisorders. Schizophr Bull.1985.11(1):1-15.
    [50]Andreasen NC. The Scale for the Assessment of Positive Symptoms in Schizophrenia.1984. The University of Iowa. Iowa.
    [51]Andreasen NC. The Scale for the Assessment of Negative Symptoms in Schizophrenia.1984. The University of Iowa. Iowa.
    [52]Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull.1987.13(2):261-276.
    [53]Wing JK; JEC; NS. Measurement and classification of psychiatric symptoms: an instruction manual for the PSE and Catego Program.1974. London. Cambridge University Press.
    [54]Addington D, Addington J, Schissel B. A depression rating scale for schizophrenics. Schizophr Res.1990.3(4):247-251.
    [55]Amador XF, Strauss DH, Yale SA, Flaum MM, Endicott J, Gorman JM. Assessment of insight in psychosis. Am J Psychiatry.1993.150(6):873-879.
    [56]Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis:the Comprehensive Assessment of At-Risk MentalStates. Aust N Z J Psychiatry. 2005.39(11-12):964-971.
    [57]Peters ER, Joseph SA, Garety PA. Measurement of delusional ideation in the normal population:introducing the PDI (Peters et al. Delusions Inventory). Schizophr Bull.1999.25(3):553-576.
    [58]Kendler KS, Lieberman JA, Walsh D. The Structured Interview for Schizotypy (SIS):a preliminary report. Schizophr Bull.1989.15(4):559-571.
    [59]Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000.11(6 Pt1):805-821.
    [60]Wong GH, Hui CL, Tang JY, et al. Screening and assessing ideas and delusions of reference using a semi-structured interview scale:a validation study of the Ideas of Reference Interview Scale(IRIS) in early psychosis patients. Schizophr Res.2012.135(1-3):158-163.
    [61]Keshavan MS, Rosenberg D, Sweeney JA, Pettegrew JW. Decreased caudate volume in neuroleptic-naive psychotic patients. Am J Psychiatry.1998.155(6): 774-778.
    [62]Corson PW, Nopoulos P, Andreasen NC, Heckel D, Arndt S. Caudate size in first-episode neuroleptic-naive schizophrenic patients measuredusing an artificial neural network. Biol Psychiatry.1999.46(5):712-720.
    [63]Jaspers, K. General Psychopathology.1963. Manchester. Manchester University Press.
    [64]Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine systemresponsivity:a hypothesis for the etiology of schizophrenia. Neuroscience.1991.41(1):1-24.
    [65]Heinz A, Schlagenhauf F. Dopaminergic dysfunction in schizophrenia:salience attribution revisited. Schizophr Bull.2010.36(3):472-485.
    [66]Koo MS, Levitt JJ, McCarley RW, et al. Reduction of caudate nucleus volumes in neuroleptic-naive female subjects withschizotypal personality disorder. Biol Psychiatry.2006.60(1):40-48.
    [67]Levitt JJ, Westin CF, Nestor PG, et al. Shape of caudate nucleus and its cognitive correlates in neuroleptic-naiveschizotypal personality disorder. Biol Psychiatry.2004.55(2):177-184.
    [68]Langen M, Durston S, Staal WG, Palmen SJ, van EH. Caudate nucleus is enlarged in high-functioning medication-naive subjects withautism. Biol Psychiatry.2007.62(3):262-266.
    [69]Freedman R, Schwab PJ. Paranoid symptoms in patients on a general hospital psychiatric unit.Implications for diagnosis and treatment. Arch Gen Psychiatry. 1978.35(3):387-390.
    [70]Jorgensen P. Manic-depressive patients with delusions. Clinical and diagnostic course. Acta Psychiatr Scand.1985.72(4):364-368.
    [71]Phillips KA. Psychosis in body dysmorphic disorder. J Psychiatr Res.2004. 38(1):63-72.
    [72]Andreasen NC, Flashman L, Flaum M, et al. Regional brain abnormalities in schizophrenia measured with magnetic resonanceimaging. JAMA.1994. 272(22):1763-1769.
    [73]Konick LC, Friedman L. Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry.2001.49(1):28-38.
    [74]Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC. Subcortical MRI volumes in neuroleptic-naive and treated patients withschizophrenia. Am J Psychiatry.1998.155(12):1711-1717.
    [75]Koutsouleris N, Gaser C, Jager M, et al. Structural correlates of psychopathological symptom dimensions in schizophrenia:a voxel-based morphometric study. Neuroimage.2008.39(4):1600-1612.
    [76]Volz H, Gaser C, Sauer H. Supporting evidence for the model of cognitive dysmetria in schizophrenia--astructural magnetic resonance imaging study using deformation-based morphometry. Schizophr Res.2000.46(1):45-56.
    [77]Berman KF, Ostrem JL, Randolph C, et al. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test:a positron emission tomography study. Neuropsychologia.1995.33(8):1027-1046.
    [78]Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006.129(Pt 2):290-292.
    [79]Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey:implications for the cerebellar contribution to higher function. Neurosci Lett.1995.199(3):175-178.
    [80]Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain.1998.121 (Pt 4):561-79.
    [81]Andreasen NC, Paradiso S, O'Leary DS. "Cognitive dysmetria" as an integrative theory of schizophrenia:a dysfunction incortical-subcortical-cerebellar circuitry. Schizophr Bull.1998.24(2):203-218.
    [82]Lee CU, Shenton ME, Salisbury DF, et al. Fusiform gyrus volume reduction in first-episode schizophrenia:a magneticresonance imaging study. Arch Gen Psychiatry.2002.59(9):775-781.
    [83]Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia:systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry.2006.188:510-518.
    [84]Tanskanen P, Ridler K, Murray GK, et al. Morphometric brain abnormalities in schizophrenia in a population-based sample relationship to duration of illness. Schizophr Bull.2010.36(4):766-777.
    [85]Cahn W, Hulshoff PHE, Lems EB, et al. Brain volume changes in first-episode schizophrenia:a 1-year follow-up study. Arch Gen Psychiatry.2002.59(11): 1002-1010.
    [86]Cahn W, Hulshoff PHE, Bongers M, et al. Brain morphology in antipsychotic-naive schizophrenia:a study of multiple brain structures. Br J Psychiatry Suppl.2002.43:s66-72.
    [87]Chakos MH, Lieberman JA, Bilder RM, et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients takingantipsychotic drugs. Am J Psychiatry.1994.151(10):1430-1436.
    [88]Buchsbaum MS, Potkin SG, Siegel BV Jr, et al. Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry.1992. 49(12):966-974.
    [89]Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006.29:449-476.
    [90]Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature.2001. 412(6843):150-157.
    [91]Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A.2001.98(2): 676-682.
    [92]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magneticresonance imaging. Nat Rev Neurosci.2007.8(9):700-711.
    [93]Damoiseaux JS, Rombouts SA, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A.2006.103(37): 13848-13853.
    [94]Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS One.2009.4(5):e5743.
    [95]Horovitz SG, Fukunaga M, de Zwart JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep:asimultaneous EEG-fMRI study. Hum Brain Mapp.2008.29(6):671-682.
    [96]Greicius MD, Kiviniemi V, Tervonen O, et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp.2008.29(7):839-847.
    [97]Boly M, Tshibanda L, Vanhaudenhuyse A, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp.2009.30(8):2393-2400.
    [98]蒋田仔,刘勇,李永辉.脑网络:从脑结构到脑功能.生命科学.21(2):181-188.
    [99]Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network withhighly connected association cortical hubs. J Neurosci.2006.26(1):63-72.
    [100]Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci.2008.1124: 1-38.
    [101]Friston KJ, Frith CD. Schizophrenia:a disconnection syndrome. Clin Neurosci. 1995.3(2):89-97.
    [102]Friston KJ. Dysfunctional connectivity in schizophrenia. World Psychiatry. 2002.1(2):66-71.
    [103]Friston K. Beyond phrenology:what can neuroimaging tell us about distributed circuitry. Annu Rev Neurosci.2002.25:221-250.
    [104]Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res.2007.97(1-3):194-205.
    [105]Liu H, Kaneko Y, Ouyang X, et al. Schizophrenic patients and their unaffected siblings share increasedresting-state connectivity in the task-negative network but not itsanticorrelated task-positive network. Schizophr Bull.2012.38(2): 285-294.
    [106]Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia andin first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A.2009.106(4): 1279-1284.
    [107]Bluhm RL, Miller J, Lanius RA, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenicpatients:anomalies in the default network. Schizophr Bull.2007.33(4):1004-1012.
    [108]Sambataro F, Blasi G, Fazio L, et al. Treatment with olanzapine is associated with modulation of the default modenetwork in patients with Schizophrenia. Neuropsychopharmacology.2010.35(4):904-912.
    [109]Salvador R, Sarro S, Gomar JJ, et al. Overall brain connectivity maps show cortico-subcortical abnormalities inschizophrenia. Hum Brain Mapp.2010. 31(12):2003-2014.
    [110]Jafri MJ, Pearlson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independentresting-state components in schizophrenia. Neuroimage.2008.39(4):1666-1681.
    [111]Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia. Brain.2008.131(Pt 4):945-61.
    [112]柯铭,沈辉,胡德文.基于fMRI的静息状态脑功能复杂网络分析.国防科技大学学报.2010.32(1):147-151.
    [113]Tao H, Guo S, Ge T, et al. Depression uncouples brain hate circuit.LID-10.1038/mp.2011.127 [doi]. Mol Psychiatry.2011.
    [114]Yang B LJ, Feng J. On the spectral characterization and scalable mining of network communities. Knowledge and Data Engineering, IEEE Transactions On:doi:10.1109/TKDE.2010.233 (in press).
    [115]Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopicanatomical parcellation of the MNI MRI single-subject brain. Neuroimage.2002.15(1): 273-289.
    [116]Shulman GL, Fiez JA, Corbetta M. Common blood flow changes across visual tasks:II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience.1997. 9(5):648-663.
    [117]Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain theconscious resting state in man. Brain Res Bull. 2001.54(3):287-298.
    [118]Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage.2005.26(2):471-479.
    [119]Raz A, Buhle J. Typologies of attentional networks. Nat Rev Neurosci.2006. 7(5):367-379.
    [120]Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci.1990.13:25-42.
    [121]Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci.2002.3(3):201-215.
    [122]Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci.2000.4(6):215-222.
    [123]Starrfelt R, Gerlach C. The visual what for area:words and pictures in the left fusiform gyrus. Neuroimage.2007.35(1):334-342.
    [124]Cordes D, Haughton VM, Arfanakis K, et al. Frequencies Contributing to Functional Connectivity the Cerebral Cortex in "Resting-state" Data. American Society of Neuroradiology.2011.22:1326-1333.
    [125]Horel JA, Pytko-Joiner DE, Voytko ML, Salsbury K. The performance of visual tasks while segments of the inferotemporal cortex aresuppressed by cold. Behav Brain Res.1987.23(1):29-42.
    [126]Gaffan D. Dissociated effects of perirhinal cortex ablation, fornix transection andamygdalectomy:evidence for multiple memory systems in the primate temporal lobe. Exp Brain Res.1994.99(3):411-422.
    [127]Papagno C, Capitani E. Proper name anomia:a case with sparing of the first-letter knowledge. Neuropsychologia.1998.36(7):669-679.
    [128]Maguire EA, Mummery CJ. Differential modulation of a common memory retrieval network revealed by positronemission tomography. Hippocampus. 1999.9(1):54-61.
    [129]Kapur N, Ellison D, Smith MP, McLellan DL, Burrows EH. Focal retrograde amnesia following bilateral temporal lobe pathology. Aneuropsychological and magnetic resonance study. Brain.1992.115 Pt 1:73-85.
    [130]Corcoran R, Frith CD. Autobiographical memory and theory of mind:evidence of a relationship inschizophrenia. Psychol Med.2003.33(5):897-905.
    [131]Maguire EA, Frith CD, Morris RG. The functional neuroanatomy of comprehension and memory:the importance of prior knowledge. Brain.1999. 122 (Pt 10):1839-1850.
    [132]Braak H, Braak E, Yilmazer D, Bohl J. Functional anatomy of human hippocampal formation and related structures. J Child Neurol.1996.11(4): 265-275.
    [133]Beauregard M, Chertkow H, Bub D, Murtha S, Dixon R, Evans A. The neural substrate for concrete, abstract, and emotional word lexica a positron emission tomography study J Cognit Neurosci.1997.9:441-461.
    [134]Laureys S. The neural correlate of (un)awareness:lessons from the vegetative state. Trends Cogn Sci.2005.9(12):556-559.
    [135]Indefrey P, Brown CM, Hellwig F, et al. A neural correlate of syntactic encoding during speech production. Proc Natl Acad Sci U S A.2001.98(10): 5933-5936.
    [136]Gaser C, Nenadic I, Volz HP, Buchel C, Sauer H. Neuroanatomy of "hearing voices":a frontotemporal brain structural abnormalityassociated with auditory hallucinations in schizophrenia. Cereb Cortex.2004.14(1):91-96.
    [137]Whitford TJ, Grieve SM, Farrow TF, et al. Progressive grey matter atrophy over the first 2-3 years of illness infirst-episode schizophrenia:a tensor-based morphometry study. Neuroimage.2006.32(2):511-519.
    [138]Koutsouleris N, Gaser C, Jager M, et al. Structural correlates of psychopathological symptom dimensions in schizophrenia:a voxel-based morphometric study. Neuroimage.2008.39(4):1600-1612.
    [139]Menon V, Anagnoson RT, Glover GH, Pfefferbaum A. Functional magnetic resonance imaging evidence for disrupted basal gangliafunction in schizophrenia. Am J Psychiatry.2001.158(4):646-9.
    [140]Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal gangliaand cortex. Annu Rev Neurosci.1986. 9:357-581.
    [141]Hannan KL, Wood SJ, Yung AR, et al. Caudate nucleus volume in individuals at ultra-high risk of psychosis:across-sectional magnetic resonance imaging study. Psychiatry Res.2010.182(3):223-230.
    [142]Zhou Y, Shu N, Liu Y, et al. Altered resting-state functional connectivity and anatomical connectivity ofhippocampus in schizophrenia. Schizophr Res.2008. 100(1-3):120-132.
    [143]Harrison PJ. The hippocampus in schizophrenia:a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl).2004.174(1):151-162.
    [144]Kanwisher N, Wojciulik E. Visual attention:insights from brain imaging. Nat Rev Neurosci.2000.1(2):91-100.
    [145]Glahn DC, Ragland JD, Abramoff A, et al. Beyond hypofrontality:a quantitative meta-analysis of functional neuroimagingstudies of working memory in schizophrenia. Hum Brain Mapp.2005.25(1):60-69.
    [146]Barch DM, Smith E. The cognitive neuroscience of working memory:relevance to CNTRICS andschizophrenia. Biol Psychiatry.2008.64(1):11-17.
    [147]Silver H, Feldman P, Bilker W, Gur RC. Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry.2003. 160(10):1809-1816.
    [148]Liu CL, Hue CW, Chen CC, et al. Dissociated roles of the middle frontal gyri in the processing of Chinesecharacters. Neuroreport.2006.17(13):1397-401.
    [149]Indefrey P, Brown CM, Hellwig F, et al. A neural correlate of syntactic encoding during speech production. Proc Natl Acad Sci U S A.2001.98(10): 5933-6.
    [150]Drevets WC, Gadde K, Krishnan R. Neurobiology of mental illness.1999. New York. Oxford Press.
    [151]Gazzaniga MS. Cerebral specialization and interhemispheric communication: does the corpuscallosum enable the human condition. Brain,2000,123 (Pt 7):1293-326.
    [152]Bloom JS, Hynd GW. The Role of the Corpus Callosum in Interhemispheric Transfer of Information:Excitation or Inhibition. Neuropsychology Review, 2005,15:59-71.
    [153]Torrey EF. Studies of individuals with schizophrenia never treated with antipsychoticmedications:a review. Schizophr Res,2002,58(2-3):101-115.
    [154]Downhill JE Jr, Buchsbaum MS, Wei T, et al. Shape and size of the corpus callosum in schizophrenia and schizotypalpersonality disorder. Schizophr Res, 2000,42(3):193-208.
    [155]Venkatasubramanian G, Jayakumar PN, Gangadhar BN, et al. Measuring the corpus callosum in schizophrenia:a technique with neuroanatomical and cytoarchtectural basis. Neurol India,2003,51(2):189-192.
    [156]Gasparotti R, Valsecchi P, Carletti F, et al. Reduced fractional anisotropy of corpus callosum in first-contact, antipsychotic drug-naive patients with schizophrenia. Schizophr Res,2009,108(1-3):41-48
    [157]Kong X, Ouyang X, Tao H, et al. Complementary diffusion tensor imaging study of the corpus callosum in patientswith first-episode and chronic schizophrenia. J Psychiatry Neurosci.2011.36(2):120-5.
    [158]Price G, Bagary MS, Cercignani M, Altmann DR, Ron MA. The corpus callosum in first episode schizophrenia:a diffusion tensor imagingstudy. J Neurol Neurosurg Psychiatry.2005.76(4):585-587.
    [1]Raichle ME. Behind the scenes of functional brain imaging:a historical and physiologicalperspective. Proc Natl Acad Sci U S A,1998,95(3):765-772.
    [2]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A,2001,98(2):676-682.
    [3]Shulman GL, Fiez JA, Corbetta M, et al. Common blood flow changes across visual tasks:II Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 1997,9(5):648-663.
    [4]Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain theconscious resting state in man. Brain Res Bull, 2001,54(3):287-98.
    [5]Shannon BJ, Snyder AZ, Vincent JL, et al. Spontaneous correlations and the default network:effects of task performance. Society for Neuroscience,2006.
    [6]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of the defaultmode hypothesis. Proc Natl Acad Sci U SA,2003,100(1):253-258.
    [7]Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci, 2004,16(9):1484-1492.
    [8]Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelatedfunctional networks. Proc Natl Acad Sci USA,2005,102(27):9673-9678.
    [9]Vincent JL, Snyder AZ, Fox MD, et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol,2006,96(6):3517-3531.
    [10]Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci, 2008,1124:1-38.
    [11]Fransson P, Skiold B, Horsch S, et al. Resting-state networks in the infant brain. Proc Natl Acad Sci U S A,2007,104(39):15531-15536.
    [12]Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption of large-scale brain systems in advanced aging. Neuron,2007,56(5):924-935.
    [13]Shulman GL, Fiez JA, Corbetta M, et al. Common Blood Flow Changes across Visual Tasks:Ⅱ. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience,1997,9(5):648-663.
    [14]Hahn B, Ross TJ, Stein EA. Cingulate activation increases dynamically with response speed under stimulusunpredictability. Cereb Cortex,2007,17(7): 1664-1671.
    [15]Gilbert DT, Wilson TD. Prospection:experiencing the future. Science, 2007,317(5843):1351-1354.
    [16]Andreasen NC, O'Leary DS, Cizadlo T, et al. Remembering the past:two facets of episodic memory explored with positronemission tomography. Am J Psychiatry,1995,152(11):1576-1585.
    [17]Svoboda E, McKinnon MC, Levine B. The functional neuroanatomy of autobiographical memory:a meta-analysis. Neuropsychologia,2006,44(12): 2189-2208.
    [18]Brune M. "Theory of Mind" in Schizophrenia:A Review of the Literature. Schizophrenia Bulletin,2005,31(1):21-42.
    [19]Saxe R, Carey S, Kan wisher N. Understanding other minds:linking developmental psychology and functionalneuroimaging. Annu Rev Psychol, 2004,55:87-124.
    [20]Bar M. The proactive brain:using analogies and associations to generate predictions. Trends Cogn Sci,2007,11(7):280-289.
    [21]Addis DR, Schacter DL. Constructive episodic simulation:temporal distance and detail of past and futureevents modulate hippocampal engagement. Hippocampus,2008,18(2):227-237.
    [22]Gusnard DA, Akbudak E, Shulman GL, et al. Medial prefrontal cortex and self-referential mental activity:relation to adefault mode of brain function. Proc Natl Acad Sci U S A,2001,98(7):4259-4264.
    [23]Kelley WM, Macrae CN, Wyland CL, et al. Finding the self? An event-related fMRI study. J Cogn Neurosci,2002,14(5):785-794.
    [24]Mitchell JP, Macrae CN, Banaji MR. Dissociable medial prefrontal contributions to judgments of similar anddissimilar others. Neuron,2006,50(4): 655-663.
    [25]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of the defaultmode hypothesis. Proc Natl Acad Sci U SA,2003,100(1):253-258.
    [26]Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelatedfunctional networks. Proc Natl Acad Sci USA,2005,102(27):9673-9678.
    [27]Golland Y, Bentin S, Gelbard H, et al. Extrinsic and intrinsic systems in the posterior cortex of the human brainrevealed during natural sensory stimulation. Cereb Cortex,2007,17(4):766-777.
    [28]Zhou Y, Liang M, Tian L, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res,2007,97(1-3):194-205.
    [29]Whitfield-Gabrieli S, Thermenos HW, Milanovic S, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia andin first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A, 2009,106(4):1279-1284.
    [30]Pomarol-Clotet E, Salvador R, Sarro S, et al. Failure to deactivate in the prefrontal cortex in schizophrenia:dysfunction ofthe default mode network. Psychol Med,2008,38(8):1185-1193.
    [31]Calhoun VD, Maciejewski PK, Pearlson GD, et al. Temporal Lobe and "Default" Hemodynamic Brain Modes Discriminate Between Schizophrenia and Bipolar Disorder. Human Brain Mapping,2008,29:1265-1275.
    [32]Guerrero-Pedraza A, McKenna PJ, Gomar JJ, et al. First-episode psychosis is characterized by failure of deactivation but not by hypo-or hyperfrontality. Psychological Medicine,2012,42:73-84.
    [33]Harrison BJ, Yucel M, Pujol J, et al. Task-induced deactivation of midline cortical regions in schizophrenia assessedwith fMRI. Schizophr Res, 2007,91(1-3):82-86.
    [34]Mannell MV, Franco AR, Calhoun VD, et al. Resting state and task-induced deactivation:A methodological comparison inpatients with schizophrenia and healthy controls. Hum Brain Mapp,2010,31(3):424-437.
    [35]Garrity AG, Pearlson GD, McKiernan K, et al. Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry,2007,164(3): 450-457.
    [36]Bluhm RL, Miller J, Lanius RA, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenicpatients:anomalies in the default network. Schizophr Bull,2007,33(4):1004-1012.
    [37]Liu H, Kaneko Y, Ouyang X, et al. Schizophrenic patients and their unaffected siblings share increasedresting-state connectivity in the task-negative network but not itsanticorrelated task-positive network. Schizophr Bull,2012,38(2): 285-294.
    [38]Sambataro F, Blasi G, Fazio L, et al. Treatment with olanzapine is associated with modulation of the default modenetwork in patients with Schizophrenia. Neuropsychopharmacology,2010,35(4):904-912.
    [39]Salvador R, Sarro S, Gomar JJ, et al. Overall brain connectivity maps show cortico-subcortical abnormalities inschizophrenia. Hum Brain Mapp,2010, 31(12):2003-2014.
    [40]Jafri MJ, Pearlson GD, Stevens M, et al. A method for functional network connectivity among spatially independentresting-state components in schizophrenia. Neuroimage,2008,39(4):1666-1681.
    [41]Friston KJ, Frith CD. Schizophrenia:a disconnection syndrome. Clin Neurosci, 1995,3(2):89-97.
    [42]Friston K. Beyond phrenology:what can neuroimaging tell us about distributed circuitry. Annu Rev Neurosci,2002,25:221-250.
    [43]Kennedy DP, Courchesne E. The intrinsic functional organization of the brain is altered in autism. Neuroimage,2008,39(4):1877-1885.
    [44]Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer's disease:evidence for a relationship between default activity, amyloid, and memory. J Neurosci,2005,25(34): 7709-7717.
    [45]Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk forAlzheimer's disease. Proc Natl Acad Sci U S A,2007, 104(47):18760-18765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700