多种植物挥发油成分分析和抗菌活性及岩白菜素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过GC-MS对18种植物挥发油成分进行了定性定量分析,并采用了滤纸片法和微量法测定了它们和3种纯品(蒿酮、对聚伞花烃和1,8-桉叶素)的抗菌活性。
     定性分析是采用了3种不同极性的毛细管柱,通过Xcalibur工作站NIST 98系统谱库和挥发性成份的GC-MS定性谱库对被分析的组分的质谱进行检索,并与相关文献的质谱对照,另外,通过与正烷烃化合物的保留时间比较,采用线性插入的方法挥发油中各成分的保留指数,与GC-MS定性谱库和文献报道的化合物保留指数进行比较,进一步确认各化合物。定量分析按面积归一化法计算各化合物在挥发油中的百分含量。
     在对挥发油进行定性分析时,由于采用了非极性、弱极性和极性毛细管色谱柱,挥发油的不同极性成分能较好的分开,提高了检出率及检出化合物的可信度。在使用质谱库进行检索的同时,采用保留指数进一步确证,结果更加可靠。
     同时本文讨论了长瓣马铃苣苔中的生物活性组分岩白菜素的分离和初步鉴定,还探讨了岩白菜素的清除自由基的能力以及它的电化学稳定性、热稳定性和热分解动力学过程。
Essential oils obtained from 18 plant material were qualitatively and quantitatively analyzed by GC-MS. The antimicrobial activity of the oils of 18 plant material and pure samples (artemisia ketone, p-cymene, 1,8-cineole) was evaluated using disc paper and broth microdilution methods. The oils were analyzed by GC-MS with three different fused silica capillary columns (30 m×0.25 mm i.d.; film thickness 0.25 μm) of different polarities (DB-5, DB-1 and HP-innowax). Components were identified by comparison of their mass spectra with those of NIST'98 GC-MS library data of the GC-MS system and literature data, and further confirmed by comparison with the compounds elution order with their retention indices on semi-polar phases reported in the literature. Retention indices of the components were determined relative to the retention times of a series of n-alkanes with linear interpolation. At the same time, the paper deals with the separation and the identification of bergenin that is the component of Oreocharis acericula presenting the biologic activity, also includesits ability of eliminating O_2~-. and its stability and mechanism of the thermal dehydration.1 Essential oil GC-MS analysisThe experiment dealt with some plants such as Compositae, Umbelliferae, Aristolochiaceae, Magnoliaceae and Lauraceae, all the oils' contents of which wereabundant, the yield of the essential oil obtained from Litsea pungens was highest, up to
    5.55%. According to the result of the component analysis, terpenes were shown as the major group of compositions in the oils obtained from most experimental plants except Artemsia capillaries, capillene and 5-phenyl-l,3-pentadiyne were the main components in its oil.1.1 Monoterpenes were shown as the major group of compositions in the oils of Dendranthema indicum and its flowers, especially oxygenated monoterpenes were present in large percentage. The four components characterized two essential oils: 1,8-cineole (0.12%~30.41%), camphor (2.86%~23.52%), borneol (4.66%~18.34%), germacrene D (1.08-12.67%).The essential oils of Artemisia were divided into four types basing on the change of the composition and content:I) type of Artemisia apiacea Hance: it includes A. apiacea, A. lavandulaefolia, A.sacrorum and A. lactiflora, the content of oxygenated monoterpenes were very high in their essential oils. 1,8-cineole (4.65%~41.80%), artemisia ketone (6.90%~15.47%), artemisia alcohol (0.56%~9.55%) and yomogi alcohol (0.86%~9.35%) were the characterized components;II) type of A. annna: the essential oil mainly contained terpenes, for example,p-himachalene (11.52%), trans-cadia-l(6),4-diene (7.05%), p-farnesene (E-) (4.07%), caryophyllene(Z-) (5.76%) and p-cymene (4.98%);III) type of A. imponens: its oil mainly contained oxygenated terpenes such as vulgarone B (26.58%), 1,8-cineole (19.89%), camphor (7.91%) and a-cadinol (7.03%), in which vulgarone B was the particularly characterized component;IV) type of A. capillaries: benzene alkyne were the major group of compositions in theoil: capillene (43.64%) and 5-phenyl-l,3-pentadiyne (10.26%).The essential oil of Cacalia tangutica differed from the oils of the other congener plants, it contained terpenes: a-zingiberene (13.49%), germacrene D (10.76%), a-pinene (8.54%) and caryophyllene(Z-) (6.36%).1.2 The six essential oils of Umbelliferae were divided into three types basing on the change of the composition and content:I) Saposhnikovia divaricata and Peucedanum medicum, the content of monoterpenes
    were very high in their oils, but the high-content components differed respectively, y-terpinene (24.43%), sabinene (11.15%), p-pinene (7.01%), caryophyllene (Z-)(6.56%) and terpene-4-ol (6.27%) were rich in the former o The latter oil mainly consisted of limonene (13.93%), p-mentha-2,4(8)-diene (9.19%) and a-pinene(5.58%).II ) Angelica pubescens and Cryptotaenia japonica, terpenes were their maincomponent in the oils, which shared the high-content components: germacrene D (4.09%~16.20%), caryophyllene(E-) (7.36%~12.57%), limonene (2.54%~10.21%)and cc-pinene (1.21%~9.17%).Ill) A. megaphylla and Osmorthiza aristata, their oils both contained large amount of sesquiterpenes, especially the amount of sesquiterpenes in the former one, up to 75.12%, although they were different in high-content component. The former oil was high abundant in caryophylIene(E-) (12.57%), a-selinene (8.35%), germacrene D (7.85%), p-selinene (6.71%) and p-famesene (E-) (6.26%). There wereEpi-a-bisabolol (18.25%), germacrene D (12.17%) and p-selinene (4.19%) in thelatter oil.1.3 Two essential oils of Aristolochiaceae differed a lot in the main components, Asarum caulescen was rich in p-pinene (6.64%~46.64%), germacrone (7.63%~20.72%), a-phellandrene (7.80%~14.39%), 1,8-cineole (8.91%~13.29%) and 2-carene (7.99%~8.94%). Camphene (23.98%), borneol (6.82%), bomeol ramificaton 24.09% and selina-l,3,7(ll)-trien-8-onel0.24% occupied high percentage in the oil of Aristolochia debilis.1.4 The oil extracts of Iiicium henryi and L. pungens were in large amount, and both were colorless. But the components of those two oils were quite distinct from each other. In the former, 1,8-cineole (29.62%), a-pinene (4.86%), p-pinene (4.05%), a-terpineol (3.78%), terpene-4-ol (3.09%) and camphor (3.7%) were shown as the major group of compositions. The latter oil mainly contained carvone (29.36%), geraniol (25.36%),limonene (6.88%), P-citronellol (4.08%) and linalool (3.80%). The oil complexity demanded independent analyses on dissimilar stationary phase columns. By using apolar column, low-polarity column and polar column, and many
    components could be found. The MS search routine used linear retention as a post filter and the identification of the unknowns was made more reliable.2 Antimicrobial activity of 15 essential oils and 3 pure samples ( artemisia ketone,p-cymene, 1,8-cineole)Fifteen essential oils tested antimicrobial activity in vitro. But the essential oils of A. annua and P. medicum were tested by using the agar disc diffusion method in virtue of lack of the oils (other oils were not examined the antimicrobial activity in vitro due to lack of the oils). The detailed analysis divided into three files according to the antibacterial activity from strong to weak.2.1 Analysis of the essential oil showing the strongest antimicrobial activityThe essential oil of L pungens showed the strongest antimicrobial activity and presented rather a broad antimicrobial spectrum. At the concentration of 0.31~2.5 mg/ml, it exhibited very strong antimicrobial activity against all the microorganisms tested, particularly against clinical isolated strains. The range of MBC against clinical isolated strains was fromO.31 mg/ml to 0.61 mg/ml.2.2 Analysis of the essential oil showing the very strong antimicrobial activityAt the concentration of 0.63~10.00mg/ml, the oil of/, henryi Diels exhibitedrather strong antimicrobial activity against all the microorganisms tested. At the concentration of 1.25~5.00mg/m it exhibited rather strong antimicrobial activity against clinical isolated strains.At the concentration of 0.16~20.00mg/ml, the oil of A. capillaries exhibited rather strong antimicrobial activity against all the microorganisms tested, especially against the gram-positive bacteria and yeasts. The bactericidal activity of this oil was stronger against two yeasts than other oils. All the results of MBC against Staphylococcus aureus CCTCC AB91053, S. aureus CCTCC AB91118, H. anomala and Candida sp. Were 0.16mg/ml. This oil showed the most effective on S. saprophyticus, the result of MIC was 0.02mg/ml.The oil of A. sacrorum exhibited rather effective against gram-positive bacteria, gram-negative bacteria and yeasts except Salmonella typhi. The fact that at the concentration of 0.31~2.50mg/ml, it showed the bactericidal activity against clinical
    isolated strains was worth the whistle.2.3 Analysis of the essential oil showing the stronger antimicrobial activityThe oil of A. imponens had a strong effect on the gram-positive bacteria and yeasts, and strongest effect on S. aureus CCTCC AB91053, with MBC up to 0.04mg/ml, followed by Enterococcusfaecalis, S.saprophyticu, whose MIC&MBC are both 0.16mg/ml. However, it had no effect on E. coli CCTCC AB91107. The result of MBC against H. anomala was 0.31mg/ml, and the one of MIC against Candida sp was 0.08mg/ml.At the concentration of 0.16~5.00mg/ml, the oil of C. tangutica had bactericidal activity against the other microorganisms except B. subtilis and E. coli CCTCC AB90054 against which the oil had no inhibitory effect. It showed very strong effect on P. mirabilis which belonged to the gram-positive bacteria. The results of MIC&MBC were both 0.63mg/ml.Both oils of S. divaricata and A. megaphylla had effect on the gram-positive bacteria, gram-negative bacteria and yeasts. For example, the former oil had obvious effect on C.freundill which was the gram-negative bacterium, while the results of MIC&MBC were both 0.63mg/ml. However, the latter oil had no activity against E. faecalis the gram-positive bacterium.The activity of the oil of C. japonica was the more effective on the gram-positive bacteria and yeasts. The oil exhibited the strongest effect on Candida sp., and the resultof MIC was 0.04mg/mL followed by S. aureus. It had no activity against the threegram-negative bacteria.2.4 Analysis of the essential oil showing the moderately strong antimicrobial activity The oil of A. debili had good activity against the gram-positive bacteria,particularly B. subtilis, the result of MIC was 0.16mg/ml. It had a generic activity against the yeast. It showed no bactericidal activity against S. typhi and P. mirabilis and had no inhibitory effect on E. coli and K. pneumoniae.In general, the oils of D. indicum, air-dried flowers of C. indicum and pre-processed flowers of C. indicum showed better effect on the gram-positive bacteria and yeasts. The oil of air-dried flowers had best effect on E. coli clinically isolated strains (the results of MIC&MBC were 0.39mg/ml) and had no activity against S. cescerevisiae, E. faecalis. In addition, the other two oils had best antimicrobial activity
    against S. saprophyticus, the results of MBC were0.78 mg/ml fP 1.25 mg/mlrespectively.The oil of A. apiacea showed a little stronger bactericidal activity against the gram-positive bacteria, had best bactericidal activity against E.faecalis (the results of MIC&MBC both were 0.63 mg/ml), and exhibited no activity against many gram-negative bacteria.The oil of A. laxandulaefolia exhibited the strongest antimicrobial activity against the gram-positive bacteria, the range of MBC was from0.63 mg/ml to 5.00mg/ml, had a generic activity against the epiphyte. It had no activity against three gram-negative bacteria: S. typhi, E. coli, E. cloacae.The oils of fresh and air-dried rootstock of A. caulescen exhibited the stronger antimicrobial activity against the gram-positive bacteria and yeasts, showed the weaker bactericidal activity against all the microorganisms tested. In general, the activity of the oil of fresh rootstock was weaker than the one of air-dried rootstock .2.5 Analysis of antimicrobial activity of A. annua and P. medicum oils (only theresults of DD)The two oils was better effective on the gram-positive bacteria, and had a generic activity against the epiphyte. The essential oil of A. annua had no activity against B. subtilis and S. typhi. The essential oil of P. medicum had no inhibitory activity against E. coli CCTCC AB90054 and E. cloacae.2.6 Analysis of antimicrobial activity of artemisia ketone, p-cymene, 1,8-cineole With comparison of the antimicrobial ability of three sample (artemisia ketone,p-cymene, 1,8-cineole), artemisia ketone exhibited the strongest activity, especially showed the strongest antimicrobial activity against S. saprophyticus, and the result of MBC was 0.01mg/ml.l,8-Cineole showed the higher inhibitory effect against the epiphytes, and the results of MIC&MBC are 0.31 mg/ml. p-Cymene exhibited the weakest activity in all.From the analysis of the compositions of the essential oils and the results of antimicrobial activity, it was shown that the major components were concluded to be responsible for bacteriostatic activity. The high-content components showing the anti-epiphyte activity(l,8-cineole and vulgarone B), which were in the essential oil of
    A. imponens. Although the essential oils showed the strong anti-epiphyte activity, with comparison in the landscape orientation of the oils' main components obtained from A. capillaries, A.sacrorum, C.tangutica and C.japonica which exhibited significant anti-epiphyte activity, the antimicrobial activity had nothing to do with the bases clearly and directly. Therefore in fact it was possible that the antimicrobial effect presented is the result of that some components might be involved in some type of synergism with the others. It was obvious to fine that with comparison of the antimicrobial effect of the oils and samples.3 Study of bergenin3.1 Bergenin was separated from the plant of O. acericula by TLC, and qualitatively analysed by UV spectrophotometry and HPLC. The elementary judgement is that Bergenin exists in this plant and its content is lower.3.2 The stability and ability of anti-oxygen free radicals of bergeninThe ability of anti-oxygen free radicals of bergenin was determined by the classical methods of Mcord et al. and Beauchamp et al. The result shows that bergenincan eliminate O27 effectively, and the ability in the illuminaton-lactoflavm system is higher than in the Xanthine-oxidase-cytochrome C system. The data obtained by the method of cycle volt-ampere shows that bergenin is more stable in the acidic environment than the neutral one, and is easy to be attacked by NO and oxidated.3.3 The non-isothermal decomposition kinetics of ephedrine hydrochloridum, tinidazole, idoxuridine and several kinds of anti-inflammation drugs were studied by TG-DTG techniques, The pissible decomposition kinetic function was suggested and kinetic parameters were obtained.
引文
白音夫,析宏听.芘茇挥发油对动物性胃溃疡的保护作用[J].中草药,2000,31(1):40
    蔡定国,缪平,顾明娟.高速逆流色谱法从银杏叶分离异鼠李素、山奈酚和槲皮素对照品[J].中药新药与临床药理,1999,10(1):44
    曹文军,吴定新,毛国芳.植物精油的超临界流体萃取的研究与发展[J].北京林业大学学报,1998,20(1):67
    陈靖,陈庆之.福建崇安黄花蒿精油成分分析[J].中国野生植物资源,1997,17(1):45
    程立方 田樱.侧柏叶总黄酮提取工艺与含量测定方法研究[J].时珍国医国药,1995,4:15
    陈业高,海丽娜,毕先钧.微波辐射在天然药用活性成分提取分离中的应用[J].微波学报,2003:6122
    褚明艳,胡一桥,谭仁祥.茵陈蒿的化学及药理学研究进展[J].中草药,1998,29(8):564
    戴勋.植物次生代谢[J].昭通师范高等专科学校学报,2002,25(5):35
    丁林生,楼凤昌.马兜铃属(Aristolochia)植物的化学成分[J].中草药,1983,14(9):40
    董玉山,傅建熙,许平安,王强,王素荣.植物精油研究进展[J].河南林业科技,1999,19(4):23
    杜青云,宁旺榕,张铭等.姜黄挥发油降低人体面部皮肤粗糙度的研究[J].海峡药学,1999,11(1):31
    方才君 胡仕林,植物精油对朱砂叶螨的毒性试验[J].西南师范大学学报(自然科学版),1997,22(4):471
    方洪钜,苏秀玲,刘红岩.香叶天竺葵精油的化学成份及抗肿瘤作用[J].药学学报,1989,24(5):366
    傅乃武.β-榄香烯的抗肿瘤作用和药理学研究[J].中药通报,1984,9(2):35
    高致明,喜进安,宋鸿雁.野菊挥发油成分研究[J].河南农业大学学报,1997,31(4):391
    葛卫红,沈映君.荆芥、防风挥发油抗炎作用的实验研究[J].成都中医药大学学报,2003,25(1):55
    龚慕辛,李敏.苍术挥发油β-环糊精包合物的制备研究[J].中成药,2000,22(7):464
    龚慕辛.青香薷与江香薷挥发油的药理作用比较[J].北京中医,2000,15(4):49
    谷利伟,谷文英,陶冠军,等.HPLC-ESI/MS法分析大豆胚芽中的异黄酮-大豆异黄酮和皂苷的研究(Ⅲ)[J].中草药,2000,31(11):821
    谷文祥,段舜山,骆世明.萜类化合物的生态特征及其对植物的化感作用[J].华南农业大学学报,1998,19:108
    顾静文,刘立鼎,陈京达,等.艾蒿和野艾蒿精油的化学成分[J].江西科学,1998,16(4):273
    广东中药志编辑委员会.广东中药志[M].广州:广东科技出版社,1994:19
    贵州植物志编辑委员会.贵州植物志第四卷[M].成都:四川民族出版社,1989
    何坚,孙保国编著.香料化学与工艺学[M].北京:化学工业出版社,1995
    何维明,钟章成.胶股蓝种群次生代谢产物的动态及其生态学意义[J].云南植物研究,1998,20:434
    侯宽昭.中国种子植物科属词典(第2版)[M].北京:科学出版社,1998,75
    胡伯渊.水菖蒲抗癌活性研究[J].中西医结合杂志,1986,6(8):480
    胡平,罗国安,王如骥,等.中药菟丝子的高效毛细管电泳法鉴别[J].药学学报,1997,32(7):549
    辉国均,葛发欢,王海波,等.超临界CO2萃取工艺在紫苏子脂肪油提取中的应用研究[J].中国医药工业杂志,1996,27(2):51
    滑艳,邓雁如,汪汉卿.各种植物挥发油的药理活性及在医学方面的应用[J].天然产物研究与开发,2003,467
    黄亚非,张永明,陶玲,等.广东野菊花挥发油的化学成分[J].分析测试学报,2001,20(6):40
    吉力,潘炯光,杨健,等.防风、水防风、云防风和川防风挥发油的GC-MS分析[J].中国中药杂志,1999,24(11):678
    江苏新医学院.中药大辞典[M].上海:上海科技出版社,1993
    江志利,张兴,冯俊涛.植物精油研究及其在植物保护中的利用[J].陕西农业科 学,2002(1):32
    靳风云,武孔云,张连富,等.红茴香叶精油化学成分的研究[J].中草药,2002,33(5):403
    瞿万云,杨春海,余爱农,等.鸭儿芹挥发性化学成分的研究[J].精细化工,2003,20(7):416
    李百华,王俊平.岩白菜素的研究概况[J].西北药学杂志,1990,5(3)
    李诚秀,李玲,罗俊等.姜黄挥发油对呼吸道作用的研究[J].中国中药杂志,1998,23(10):624
    李建华,周敏君,郎书源.桉叶挥发油对几种寄生虫驱杀作用的研究[J].贵阳医学院学报,2000,25(4):362
    李建军,瞿麦,等.十二味利水中药体外抗泌尿生殖道沙原衣眼体活性检测[J].中国中药杂志,2000,10:628
    李沛涛,周坚,查国章,等.山苍子油乳剂的抗菌机制研究[J].湖南医科大学学报,1994,19(6):471
    李顺意,李紫,王世敏,等.高效液相色谱-质谱-质谱法快速鉴定中药竹节香附的皂苷[J].湖北大学学报,2000,22(4):382
    李绪文,刘松艳,阎江红,等.东北天南星根脂肪酸成分的研究[J].白求恩医科大学学报,2001,27(2):143
    李晓光,叶富强,徐鸿华,砂仁挥发油中乙酸龙脑酯的药理作用研究[J].华西药学杂志,2001,16(5):357
    李雄彪,张金忠.简明植物生物化学[M].天津,南开大学出版社,1992
    李子鸿,蒋春飞,刘东文,等.广东刘寄奴挥发油化学成分的GC-MS分析[J].中药材,2001,24(8):575
    黎克湖,李灵芝,刘庆增,等.马兜铃属植物的药理学研究[J].武警医学院学报,2000,119(13):230
    林刚,康宁,刘启宏.湖北细辛属植物的引种载培研究[J].武汉植物学研究,1995,13(2):171
    林翠梧,苏镜娱,曾陇梅.毛叶木姜子叶挥发油化学成分的研究[J].中国药学杂志,2000,35(3):156
    林蕊,吴清河,梁若,等.香连软胶囊抗感染作用的研究[J].中药药理与临 床,2001,17(3):3
    林有润.中国植物志[M].1991,76(2):87
    凌大奎.中药质量评价中的现代分析技术[J].世界科学技术-中药现代化,1999,(1):26
    刘力,谢琦琦,徐德生.正交实验优选荆芥挥发油B2环糊精包结工艺的研究[J].中国中药杂志,2000,25(6):348
    刘群.黄花蒿花序精油化学成分初步分析[J].植物学报,1988,30(2):223
    刘书堂,郑国和,闫亚强.环糊精挥发油粉末化技术在中药制剂中的研究与应用[J].中草药,1997,28(12):749
    刘小琴,万福珠,郑世玲.紫苏挥发油抑制皮肤癣菌O_2~+的作用[J].天然产物研究与开发,2001,13(5):39
    刘晓亚,刘培.植物次生代谢:功能、调控及其基因工程[J].生命科学,1996,8(2):8
    刘应泉,谭洪根.天仙藤与青木香挥发油的GC-MS分析[J].中国中药杂志,1994,1:34
    刘永忠,龚千锋,魏学鑫.大蒜挥发油主要化学成分的药理作用研究进展[J].江西中医学院学报,1998,10(1):44
    柳江华,徐绥绪,姚新生.独活的化学成分与药理研究进展[J].沈阳药学院学报,1994,11(2):143
    刘振海.热分析[M].北京:化学工业出版社,1994
    罗集鹏,刘玉萍,冯毅凡,等.广藿香的两个化学型及产地与采收期对其挥发油成分的影响[J].药学学报,2003,38(4):307
    苗明三,李振国.现代实用中药材质量控制技术[M].北京:人民卫生出版社,2000
    倪峰,洪华炜,翁华春,等.木姜子根多糖对小鼠免疫功能的影响[J].中药药理与临床,2001,17(5):15
    倪峰,林静瑜,周春权,等.木姜子根多糖对荷瘤小鼠作用的实验研究[J].福建中医学院学报,2002,12(2):34
    倪峰,周春权,邱颂平,等.木姜子根多糖抗肿瘤作用研究[J].中药药理与临床,2003,19(3):13
    彭洪,郭振德,张镜澄,等.黄花蒿挥发油的成分研究[J].中药材,1996,19(9): 458
    潘峰云,张亮,杭太俊,等.离子对2超临界流体色谱在药物分析中的应用[J].药学进展,2000,24(6):326
    乔传卓,苏中武.草珊瑚精油具有一定的抗肿瘤活性[J].中草药,1991,12(10):435
    全国中草药汇编组.全国中草药汇编[M].北京:人民卫生出版社,1973
    秦路平,丁如贤,张卫东等.积雪草挥发油成分分析及其抗抑郁作用的研究[J].第三军医大学学报,1998,19(2):187
    邱琴,刘廷礼,崔兆杰,等.独活挥发油化学成分的气相色谱-质谱法测定[J].分析测试学报,2000,19(2):58
    邱琴,崔兆杰,刘廷礼,等.青蒿挥发油化学成分的GC/MS研究[J].中成药,2001,23(4):278
    全健.超临界流体萃取技术在提取中药挥发油中的应用[J].广东微量元素科学,2001,446
    任爱农,王志刚,卢振初,等.野菊花抑菌和抗病毒作用实验研究[J].药物生物技术,1999,6(4):241
    佘佳红,柳正良,蔡定国.高速逆流色谱分离制备白果内酯[J].中国新药杂志,2000,9(6):392
    佘佳红,袁伯俊,柳正良.银杏叶活性成分的提取制备及测定方法的研究进展[J].中国新药杂志,2000,9(4):221
    施超欧,陶萍.丹参注射液主要成分的HPLC及LC-MS定性分析[J].世界科学技术-中药现代化,2001,3(5):29
    施小华.中药几个常用品种的混用问题及对药效的影响[J].中草药,1998,29(12):833
    舒璞.中国伞形科花粉图志[M].上海:上海科学技术出版社,2001
    宋洪涛,郭涛,颜秀涛,等.苏合香β-环糊精包合物与混合物的稳定性比较[J].解放军药学学报,2000,16(3):163
    孙文基.天然活性成分简明手册[M].中国医药科技出版社.1996
    王发松,杨得坡,任三香,等.川桂叶挥发油的化学成分与抗菌活性研究[J].武汉植物学研究,2000,18(4):321
    王国亮,朱信强,袁萍,等.湖北产黄花蒿精油化学成分研究[J].武汉植物学研究,1994,12(4):375
    王华,朴明杰,张红英.苦参虫挥发油抗炎作用的实验研究[J].吉林中医,1997,5:39
    王建华,楼之岑.防风挥发油的化学成分研究[J].药学通报,1987,22(6):335
    王建华,楼之岑.中药防风的研究概况[J].中国药学杂志,1992,27(6):323
    王丽君,张伟,卿可光,等.莪术油β-环糊精包合物的制备工艺及稳定性考察[J].中草药,2001,32(4):314
    王满霞.人参精油对体外胃癌细胞成份的影响[J].中国中药杂志,1992,17(2):110
    王群红,李宏建,王介明.芳香疗法与芳香油的临床应用[J].国外医学中医中药分册,2001,23(6):328
    王炎,王进福,尤宏,等.北五味子挥发油的GS2MS分析[J].中国药学杂志,2001,36(2):91
    魏刚,王淑英.侧柏叶挥发油化学成分气质联用分析[J].时珍国医国药,2001,12(1):18
    魏兴国,董岩,崔庆新,等.德州野生青蒿挥发油化学成分的GC/MS分析[J].山东中医药大学学报,2004,28(2):140
    温远影,汪波.细杆沙蒿挥发油及春驱虫作用研究[J].植物学通报,1998,15(1):76
    吴燕飞,葛发欢,史庆龙,等.超临界CO2萃取草果挥发油成分研究[J].中药材,1997,20(5):240
    夏忠弟,余俊龙.α-蒎烯对白色念珠菌生物合成的影响[J].中国现代医学杂志,2000,10(1):44
    向云峰.生姜油树脂微囊化的试验研究[J].天然产物与开发,1997,9(4):72
    肖崇厚.中药化学[M].上海:上海科学技术出版社,1993
    谢君,张义正,顾永祚.党参挥发油及脂溶性化学成分的研究[J].中国中药杂志,2000,35(9):583
    熊皓平,杨伟丽,张发胜,等.天然植物抗氧化剂的研究进展[J].天然产物研究与开发,2001,13(5):75
    徐红,袁惠南,潘华,等.缬草挥发油对中枢神经系统花理作用的研究[J].药物分析杂志,1997,17(6):339
    徐彭.陈皮水提物和陈皮挥发油的药理作用比较[J].江西中医学学报,1998,10(4):173
    许嘉民,王钦礼,霍本运,等.心脑康软胶囊的临床应用[J].实用中西医结合杂志.1992,5(5):296
    严亦慈,娄小娥,蒋惠娣.野菊花水提液抗氧化作用的实验研究[J].中国现代应用药学杂志,1999,16(6):16
    严银芳,杨小清,王丹,等.华荠苎挥发油对几种病毒的抑制作用[J].中华微生物学和免疫学杂志,2000,20(6):526
    阎豫君,鲁建江,成玉怀.微波法提取红景天根茎叶挥发油的工艺研究[J].中医药学刊,2002,20(1):123
    杨得坡.霍香和广霍香挥发油的抗皮肤细菌活性与化学成分的研究[J].微生物学报,1998,18(4):4
    杨基森,马家骥,杨璐,等.透骨香油载体吸附物及其稳定性研[J].中国中药杂志,1998,23(1):29
    杨家芬,欧阳颗.清热解毒中药对3种肠道寄生原虫的体外抑制作用[J].中国抗感染药杂志,2001,1(1):43
    杨致年,曾朝,朱宗良,等.植物精油的抗菌性[J].四川林叶科技,2000,21(3):37
    耀洪,石建东,施汉堂.青蒿挥发性化学成分分析[J].分析测试学报,1999,18(1):55
    阴健,郭力弓中药现代研究与临床应用[M].北京:学苑出版社,1994
    袁家谟.贵州芳香植物资源研究[J].中国植物学会六十周年年会学术报告及论文摘要汇编.北京:中国科学技术出版社,1993:476
    袁萍,王国亮,龚复俊,等.3种植物精油对霉菌的抑制作用[J].武汉植物学研究,2001,19(6):521
    曾南,沈映君,刘旭光等.荆芥挥发油抗炎作用研究[J].中药药理与临床,1998,14(6):24
    张秀.东北细辛资源的开发与综合利用[J].中国野生植物资源,1994,1:37
    张永明,黄亚非.广西野菊花挥发油化学成分研究[J].中草药,2002,33(8):687
    张越林.单味青木香颗粒治疗幽门螺旋杆菌感染胃炎的临床对比研究[J].安徽中医临床杂志,1998,10(6):352
    张振秋,李峰,韩伟,等.复方大蒜素软胶囊的药学研究[J].中成药,1997,19(9):44
    张尊听.太白棱子芹籽挥发油主要成分L-藏茴香酮对离体大鼠子宫平滑肌和肠平肌的作用[J].陕西师范大学学报(自然科学版),2000,28(1):1
    赵荣春,高志燕.岩白菜素的稳定性研究[J].新疆医学院学报,1993,16(4):
    赵维民,杨一鸣,秦国伟.热喷雾液质联用技术在药用植物化学研究中的应用[J].天然产物研究与开发,1998,11(3):82
    中国科学院中国植物志编辑委员会.中国植物志(第七十六卷第二分册)[Z].北京:科学出版社,1991,63
    中国植物学会.全国精油成分研究学术讨论会论文摘要汇编[M]杭州:浙江科学技术出版社,1981
    周俊,郝小江.加强我国植物化学研究[J].中国科学院院刊,2000,6:413
    周立东,余竞光,郭伽,等.蚂蟥七根的华学成分研究[J].中国中药杂志 2001,26(2):114
    朱麟,古德祥.昆虫对植物次生性物资的适应策略[J].生态学杂志,2000,19:36
    Adams R P. Identification of Essential Oils components by Gas Chromatagraphy/Quadrupole Mass Spectroscopy [M]. Allured Publishing Corporation, Illinois, USA, 2001
    Ansari S H, Ali M, Qadry J S. Essential oils of pistacia integerrirna galls and their effect on the central nervous system[J]. Int. J. Pharmacogn., 1993, 31(2): 89
    Aridogan B C, Baydar H, Kaya S, et al. Antimicrobial activity and chemical composition of some essential oils[J]. Arch. Pharm. Res., 2002, 5:860
    Bagamboula C F, Uyttendaele M, Debevere J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri[J]. Food Microbiol., 2004, 21: 33
    Bamba D, Bessiere J M, Marion C, et al. Essential oil of Eupatorium odoratum[J]. Planta Med., 1993, 59(2): 184
    Barel S, Segal R, Yashphe J. The antimicrobial activity of the essential oil from Achillea fragrantissima[J]. J.Ethnopharmacol., 1991, 33: 187
    Beauchamp C, Fridovich Irwin. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Anal. Biochem., 1974, 44: 276
    Berenbaum M R. Evolution of specialization in insect-umbelliferassociations[J]. Ann. Rev.Ent., 1990, 35: 319
    Bergstrom G C. Hemical ecology of terpenoid and other fragrances of angiosperm flowers in Harborne JB, and Tomes-Bberan FA. Ecological Chemistry and Biochemistry of Plant Terpenoids[M]. Oxford, Claredon Press, 1991
    Bertsch W, Hsu F, Zlatkls A. Heart cutting technique in high resolution gas chromatography applied to sulfur compounds in cigarette smoke[J]. Analyt.Chem., 1976, 48: 928
    Bishop J R, Nelson G, Lamb J. Microencasulation in yeast cells[J]. J. Microencap. Sul., 1998, 15(6): 761
    Carson C F, Hammer K A, Riley T V. Broth microditution method for determing the susceptibility of Escherichia coil and staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil) [J]. J. Antimicrob. Chemother., 1996, 37(6): 1177
    Carson C F, Riley T V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia[J]. J. Appl. Bacterid., 1995, 74: 264
    Cosentino S, Tuberoso C I G, Pisano B, et al. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils[J]. Lett. Appl. Microbiol, 1999, 29: 130
    De Smet. Adverse Effects of Herbal Drugs[M]. Springer Verlag , Berlin-Heidelberg-New York-London Paris-Tokyo-Hong Kong-Barcelona -Budapest, 1992
    De Vincenzi M, Mancini E, Dessi M R. Monographs on Botanical avouring substances used in foods, Part V[J].Fitoterapia, 1996, 67: 241
    Delgado B, Fernandez P S, Palop A, et al. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions [J].
     Food Microbiol., 2004, 21: 327
    Denyer S P, Hugo W B. Mechanisms of action of chemical biocides; their study and exploitation. The Society for Applied Bacteriology, Technical Series No 27 [M]. Oxford: Oxford Blackwell Scientific Publication, 1991
    Dobson H. Floral volatiles in insect biology in Bernays E A, Insect-Plant Interactions[M]. Vol. V. Boca Raton, Florida. CRC Press, 1993
    Edris A, Bergnstahl B. Encap sulation of orange oil in a spraydried double emulsion[J]. Nah. Rung., 2001, 45(2): 133
    EI-TE, Eamauda MSM, Azzam As. Chemical composition and biological activity of the essential oil of Tagetes evecta L[J]. cultivated in Egypt, Bull. Fac. Pharm., 1994, 32(1): 113
    Eklund T. Organic acids and esters. In Mechanisms of Action of Food Presercation Procedures[M], ed. Gould G, London: Elsevier, 1989
    Endo J, Ogino T, Nagasawa M. Studies on the volatile oil of Asarum caulescens. Yakugaku Zasshi, 1972, 92 (7): 874
    Endo J, Nagasawa M..Studies on the essential oil of Asarum caulescens. Ⅱ]. Yakugaku Zasshi, 1974, 94:1574
    Endo J, Studies on the essential oil of Asarum caulescens. Ⅲ. Yakugaku Zasshi. 1975, 95:1321
    Endo J. Studies on the essential oil of Asarum caulescens. Ⅳ Yakugaku Zasshi, 1977, 97:393
    Gao X, Pollimore D. A kinetic study of the thermal decomposition of manganese (Ⅱ) oxalate dihydrate[J]. Therm. Acta, 1993, 47:215
    Gottlieb L D. Electrophoretic evidence and plant populations[J]. Progress in Phytochemistry, 1981, 7:1
    Harborne J B. Introduction to ecological biochemistry, 3rd ed[M]. London, Academic Press, 1988
    Harborne J B. Recent advances in the ecological chemistry of plantterpenoids. In Harborne, J.B. Ecological chemistry and biochemistry of plant terpenoids[M]. Oxford. Clarendon Press, 1991
    Hartmans K J, Diepenhorst P, Bakker W, et al. The use of carvone in agriculture: sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases[J]. Indust.Crops Prod., 1995, 4(1): 3
    Hegnauer R. Insect-Plant Interactions[M]. Boca Raton, Florida CRC Press, 1966
    Jedlickova Z, Mottl O, Sery V. Antibacterial properties of the Vietnamese cajeput oil and ocimum oil in combination with antibacterial agents[J]. J. Hyg. Epidemiol. Microbiol. Immunol., 1992, 36(3): 303
    Jorge R M, Lurdes B C, Susana C M, et al. Composition and antimicrobial activity of the essential oils from invasive species of the Azores, Hedychium gardnerianum and Pittosporum undulatum[J]. Phytochemistry, 2003, 64: 561
    Juteau F, Masotti V, Bessiere J M, et al. BessiereAntibacterial and antioxidant activities of Artemisia annua essential oil[J]. Fitoterapia, 2002, 73: 532
    Keiichi S. Determination of berberine and palmatine in phellodendri cortex using ion-air supercritical fluid chromatography on-line coupled with ion2pair supercritical fluid extration by on2column trapping[J]. J. Chromatog., 1997, 786 (12): 371
    Kim H S, Lim H K, Chung M W, et al. Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus , on carbon tetrachloride-intoxicated hepatocytes[J]. J. Ethnopharmacol., 2000a, 9(1): 79
    Knobloch K, Pauli A, Iberi B, et al. Antibacterial and antifungal properties of essential oil components[J]. J. Essen. Oil Res., 1989, 119
    oezuka Y, Honda G, Tabata M. Genetic control of phenylpropanoids in perilla frutescens[J]. Phytochemistry, 1986, 5(9): 2085
    Kong L D, Cai Y, Huang W W, et al. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout[J]. J. Ethnopharmacol., 2000, 73: 199
    Lam L K T, Zheng B. Effects of essential oils on glutathione S-transferase activity in mice[J]. J.Agric.Food Chem., 1991, 39(4): 660
    Lattaoui N, Tantaoui-Eiaraki A. Individual and combined antibacterial activity of the main components of three thyme essential oils[J].Riv Ital EPPOS, 1994, 5(13):
     13
    Lim H K, Kim H S, Chung M W, Kim Y C. Protective effects of bergenin, the major constituent of Mallotus japonicus , on D-galactosamine-intoxicated rat hepatocytes[J], J. Ethnopharmacol., 2000b, 70(1): 69
    Lis-Balchin M, Deans S G. Bioactivity of selected plant essential oils against Listeria monocytogenes[J]. J. App. Microbiol., 1997, 82: 759
    Mann J. Secondary metabolism[M]. Oxford, Clarendon Press, 1978, 84
    Mareynold W D. Gas chromatographic retention data[M]. New York: Preston Technical Abstracts Co, Evanston Ill, 1966
    Marino M, Bersani C, Comi G Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceace and Compositae[J]. International J. Food Microbiol., 2001, 67: 187
    Matsuda H, Morikawa T, Toguchida I, et al. Medicinal flowers.Ⅵ. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase[J]. Chem. Pharm. Bull., 2002, 50: 972
    Meepagala K M, Kuhajek J M, Sturtz G D, et al. The antifungal constituent in the steam-distilled fraction of Artemisia douglasiana[J]. J. Chem. Ecol., 2003, 29: 1771
    Miyazawa M, Shimamura H, Kameoka H. Antimutagenic activity of giganotolform Dendrobium nobile[J]. J. Agric. Food. Chem., 1997, 45(8): 2849
    Miyazawa M, Shimamura H, Nakamura S, et al. Antimutagenic activity of (+)- β -Eudesmol and paenonol from Dioscorea japonica[J]. J. Agric. Food Chem., 1996, 44(7): 1647
    Morris J A, Khettry A, Seitz E W. Antimicrobial activity of aroma chemicals and essential oils[J]. J. Am. Oil Soc, 1979, 56: 595
    Mourey A, Canillac N. Anti-Listeria monocytogenes activity of essential oils components of conifers[J]. Food Control, 2002, 13: 289
    Nazera A, Kobilinskyb J L, Tholozana F, et al. Combinations of food antimicrobials at low levels to inhibit the growthof Salmonella sv. Typhimurium: a synergistic
     effect? [J]. Food Microbiol., 2005, 22: 391
    NCCLS (National Committee for Clinical Laboratory Standards). Performance standards for antimicrobial disk susceptibility test. 6th ed. Approved standard [M], Wayne, Pa., M2-A6, 1997
    NCCLS (National Committee for Clinical Laboratory Standards). Performance standards for antimicrobial susceptibility testing. 9th International Supplement[M], Wayne, Pa., M100-S9, 1999
    Nes I F, Eklund T. The effect of parabens on DNA, RNA and protein synthesis in Escherichia coli and Bacillus subtilis[J]. J. App. Bacterio., 54, 237—242
    Oladimeji F A, Orafidiya O O, Ogunniyi T A, et al. Pediculocidal and scabicidal p roperties of L ipp ia multiflo ra essential oil[J]. J. Ethnopharmacol., 2000, 72(122): 305
    Otero R, Nunez V, Barona J, et al. Snakebites and ethnobotany in the northwest region of Colombia. Part Ⅲ: Neutralization of the haemorrhagic effect of Bothrops atrox venom[J]. J. Ethnopharmacol., 2000a, 73(1-2): 233
    Otero R, Fonnegra R, Jimenez S L, et al. Snakebites and ethnobotany in the northwest region of Colombia. Part I: Traditional use of plants[J]. J. Ethnopharmacol., 2000b, 71(3): 493
    Paton A. A synopsis of Ocimum L (Labiatea) in Africa. Kew Bull, 1992, 47: 403-435
    Pattnaik S, Subramanyam V R, Bapaji M, Kole C R. Antibacterial and antifungal activity of aromatic constituents of essential oils[J]. Microbios., 1997, 89: 39
    Piacente S, Pizza C, De Tommasi N, et al. Bergenin showed weak anti-HIV activity. J. Nat. Prod., 1996, 59(6): 565
    Pu H L, Huang X, Zhao J H, et al. Bergenin is the antiarrhythmic principle of Fluggea virosa[J].Planta Med., 2002, 68(4): 372
    Ribeiro A, Arnaud P, Frazao S, et al. Development of vegetable estracts by m icroencap sulation[J]. J. Mcroencap. Sul., 1997, 14(6): 735
    Rai R K, Gupta KC, Broophy J L, et al. Insecticidal activity and isolation of active principle from essential oil of Cymbopogan winterianus roots [J]. Chen. Envirom. Res., 1993, 2(3): 267
    Robert S P, Gerige S. Unusual Alkynes found in the essrntial oil of Artemisia dracunculus L. var. dracunculus from the Pacific Northewest[J]. J. Essen.Oil Res., 2001, 13: 187
    Rokuro H, Mariko I. Volatile components of Aritemisia capillaries[J]. Phytochemistry, 1982, 21(8): 2009
    Samson Sibanda, Grace Chigwada, Melvin Poole, et al. Composition and bioactivity of the leaf essential oil of Heteropyxis dehniae from Zimbabwe[J]. J. Ethnopharmacol., 2004, 92: 107
    Satoshi S, Yokoi S, Ito M, et al. Pathologic significance of Staphylococcus saprophytics in complicated urinary tract infections [J]. Urology, 2001, 57: 17
    Setzer W N, Vogler B, Schmidt M J, et al. Antimicrobial activity of Artemisia douglasiana leaf essential oil [J]. Fitoterapia, 2004, 75: 192
    Shama R N, Tare V, Pawar P, et al. Toxic effects of some plant oils and their common constituents on the psyllid pest, Heteropsylla cubana (Homoptera: Psyllidae) of social forestry tree leucaena ieucocephala[J]. Appl. Entomol. Zool., 1992, 27(2): 285
    Singh S, Majumadr D K. Analgesic activity of ocimum sanctum and its possible mechanism of action[J]. Int. J. Pharmacogn., 1995, 33(3): 188
    Smid E J, de Witte Yke, Gorris Leon G M. Secondary plant metabolites as control agents of postharvest Penicillium rot on tulip bulbs[J]. Postharvest Biolo. Technolo., 1995, 6(3-4): 303
    Soren D. Three phenylethanoid glusides of unusal structure from Chirita sinensis. Phytochemistry 1994, 37(2): 441
    Steinmetz M, Moulin-Traffort J, R'egli P. Transmission and scanning electron study of the action of sage and rosemary essential oils and eucalyptol on Candida albicans[J]. Mycoses., 1988, 31: 40
    Sumino M, Sekine T, Ruangrungsi N, et al. Ardisiphenols and other antioxidant principles from the fruits of Ardisia colorata [J]. Chem. Pharm. Bull. (Tokyo), 2002, 50(11): 1484
    Tabanca N, Kirimer N, Demirci B, et al. Composition and antimicrobial activity of the
     essential oils of Micromeria cristata subsp.phyrgia and the Enantiomeric Distribution of Borneol [J]. J.Agr. Food Chem., 2001, 49: 4300
    Takahashi H, Kosaka M, Watanabe Y, et al. Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity[J]. Bioorg. Med. Chem. 2003, 17, 11(8): 1781
    Tanaks S, Akimoto A, tambe Y, et al. Volatile antiallergic principles from a traditional herbal prescription of Kampo medicine[J]. Phytother. Res., 1996, 10(3): 238
    Tassou C, Koutsoumanis K, Nychas G-JE. Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil [J]. Food Res. Int., 2000, 33: 273
    Telsuo N, Andrew T, Lupo J R, et al. Biological activity of essential oils and their constituents[J]. Stud. Nat. Prod. Chem., 2000
    Tkachenko K G, Platonov V G, Satzyperova I F. Antivirua and antibacterial activity of essential oils from the fruit of some species of the genus Heracleum L.(Apiaceae)[J].Rastit R., 1995, 31 (4): 9
    Toyomizu M, Sugiyama S, Jin R L, et al. a -Glucosidase and aldose reductase inhibitors: constituents of Cashew, Anacaridum occidenlale, nut shell liquids[J]. Phytother. Res., 1996, &(3): 252
    Tzakou O, Pitarokili D, Chinou I B, et al. Composition and antimicrobial activity of the essential oil of Salvia ringens[J]. Planta Med., 2001, 67: 81
    Valero E, Varon R, Garcia-carmona F. Inhibition of grape polyphenol oxidase by several natural aliphatic alcohols[J]. J.Agric. Food Chem., 1990, 38(4): 1097
    Viljoen A, Vuuren S V, Ernst E, et al. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial and essential oil composition of a Cape-Dutch remedy [J]. J. Ethnopharmacol., 2003, 88, 137
    Setzer W N, Vogler B, Schmidt J M, et al. Antimicrobial activity of Artemisia douglasiana leaf essential oil[J]. Fitoterapia, 2004, 75: 192
    Yoshikawa M, Morikawa T, Toguchida I, et al. Medicinal flowers. Ⅱ. Inhibitors of nitric oxide production and absolute stereostructures of five new germacrane-type sesquiterpenes, kikkanols D, D monoacetate, E, F, and F
     monacetate from the flowers of Chrysanthemum indicum L[J]. Chem. Pharm. Bull., 2000, 48: 651
    Yu J Q, Lei J C, Yu H, et al.. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata[J]. Phytochemistry. 2004, 65: 881
    Zhu S Y, Yang Y, Yu H D, et al. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum[J]. J. Ethnopharmacol., 2005, 96: 151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700